Raies, AB, Bajic, VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. 2016;6:147–72.
Parasuraman, S. Toxicological screening. J Pharmacol Pharmacother. 2011;2(2):74–9.
Vinardell Martínez‐Hidalgo, MP. Alternativas a la experimentación animal en toxicología: situación actual. Acta Bioethic. 2007;13(1):41–52.
Russell, W, Burch, R. The principles of humane experimental technique. Med J Aust. 1960;1(13):500.
European Commission. Directive 2010/63/EU on the protection of animals used for scientific purposes. Off J Eur Union. 2010;276:33–79.
Thakkar, S, Li, T, Liu, Z, Wu, L, Roberts, R, Tong, W. Drug‐induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity. Drug Discov Today. 2020;25(1):201–8.
Eskes, C. Swiss 3R Competence Centre: promoting the 3Rs implementation. Biomed Sci Eng. 2019;3(2):89.
Cartwright, H. Artificial neural networks. New York: Springer; 2015.
European Chemicals Agency (ECHA). Guidance on information requirements and chemical safety assessment. Chapter R.6: QSARs and grouping of chemicals. 2008, 1–134.
Patel, CN, Kumar, SP, Rawal, RM, Patel, DP, Gonzalez, FJ, Pandya, HA. A multiparametric organ toxicity predictor for drug discovery. Toxicol Mech Methods. 2020;30(3):159–66.
Panel, ECEF. Scientific opinion on recent developments in the risk assessment of chemicals in food and their potential impact on the safety assessment of substances used in food contact materials. EFSA J. 2016;14(1):4357.
Egeghy, PP, Sheldon, LS, Isaacs, KK, Özkaynak, H, Goldsmith, MR, Wambaugh, JF, et al. Computational exposure science: an emerging discipline to support 21st‐century risk assessment. Environ Health Perspect. 2016;124(6):697–702.
Schlueter, U, Tischer, M. Validity of tier 1 modelling tools and impacts on exposure assessments within reach registrations—eteam project, validation studies and consequences. Int J Environ Res Public Health. 2020;17(12):4589.
Basile, AO, Yahi, A, Tatonetti, NP. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci. 2019;40(9):624–35.
Hutter, MC. The current limits in virtual screening and property prediction. Future Med Chem. 2018;10(13):1623–35.
Kirchmair, J, Göller, AH, Lang, D, Kunze, J, Testa, B, Wilson, ID, et al. Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov. 2015;14(6):387–404.
Awale, M, Visini, R, Probst, D, Arús‐Pous, J, Reymond, JL. Chemical space: big data challenge for molecular diversity. Chimia (Aarau). 2017;71(10):661–6.
Zhu, H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol. 2020;60(5):573–89.
Lavecchia, A. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov Today. 2019;24(10):2017–32.
Yang, H, Sun, L, Li, W, Liu, G, Tang, Y. In Silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem. 2018;6(2):129.
Vilar, S, Friedman, C, Hripcsak, G. Detection of drug–drug interactions through data mining studies using clinical sources, scientific literature and social media. Brief Bioinform. 2018;19(5):863–77.
Tyzack, JD, Kirchmair, J. Computational methods and tools to predict cytochrome P450 metabolism for drug discovery. Chem Biol Drug Des. 2019;93(4):377–86.
Ekins, S. The next era: deep learning in pharmaceutical research. Pharm Res. 2016;33(11):2594–603.
Zhang, L, Tan, J, Han, D, Zhu, H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680–5.
Fraser, K, Bruckner, DM, Dordick, JS. Advancing predictive hepatotoxicity at the intersection of experimental, in silico, and artificial intelligence technologies. Chem Res Toxicol. 2018;31(6):412–30.
Vo, AH, Van Vleet, TR, Gupta, RR, Liguori, MJ, Rao, MS. An overview of machine learning and big data for drug toxicity evaluation. Chem Res Toxicol. 2020;33(1):20–37.
Dearden, JC, Rowe, PH. Use of artificial neural networks in the QSAR prediction of physicochemical properties and toxicities for REACH legislation. Artificial neural networks. 1260 New York, NY: Springer; 2015. p. 65–88.
Dobchev, D, Karelson, M. Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework? Expert Opin Drug Discov. 2016;11(7):627–39.
Wu, Y, Wang, G. Machine learning based toxicity prediction: from chemical structural description to transcriptome analysis. Int J Mol Sci. 2018;19(8):2358.
Zhou, L, Zhang, C, Liu, F, Qiu, Z, He, Y. Application of deep learning in food: a review. Compr Rev Food Sci Food Saf. 2019;18(6):1793–811.
Kleinstreuer, NC, Hoffmann, S, Alépée, N, Allen, D, Ashikaga, T, Casey, W, et al. Non‐animal methods to predict skin sensitization (II): an assessment of defined approaches. Crit Rev Toxicol. 2018;48(5):359–74.
Kleandrova, V, Luan, F, Speck‐Planche, A, Cordeiro, M. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect. Mini‐reviews. Med Chem. 2015;15(8):677–86.
Hartung, T, Rovida, C. Chemical regulators have overreached. Nature. 2009;460(7259):1080–1.
Copeland, BJ. Artificial intelligence. Encyclopaedia Britannica [Internet]. Chicago, IL: Britannica Group, Inc; 2020. https://www.britannica.com/technology/artificial-intelligence. Accessed 22 January 2021.
Speck‐Planche, A. Multi‐scale QSAR approach for simultaneous modeling of ecotoxic effects of pesticides. Methods in pharmacology and toxicology. New York, NY: Humana; 2020. p. 639–60.
Concu, R, Kleandrova, VV, Speck‐Planche, A, Cordeiro, MNDS. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory. Nanotoxicology. 2017;11(7):891–906.
Tenorio‐Borroto, E, Ramirez, F, Speck‐Planche, A, Cordeiro, M, Luan, F, Gonzalez‐Diaz, H. QSPR and flow cytometry analysis (QSPR‐FCA): review and new findings on parallel study of multiple interactions of chemical compounds with immune cellular and molecular targets. Curr Drug Metab. 2014;15(4):414–28.
Speck‐Planche, A, Cordeiro, MN. Review of current chemoinformatic tools for modeling important aspects of CYPs mediated drug metabolism. Integrating metabolism data with other biological profiles to enhance drug discovery. Curr Drug Metab. 2014;15(4):429–40.
Luan, F, Kleandrova, VV, González‐Díaz, H, Ruso, JM, Melo, A, Speck‐Planche, A, et al. Computer‐aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR‐perturbation approach. Nanoscale. 2014;6(18):10623–30.
Kleandrova, VV, Luan, F, González‐Díaz, H, Ruso, JM, Speck‐Planche, A, Cordeiro, MNDS. Computational tool for risk assessment of nanomaterials: novel QSTR‐perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ Sci Technol. 2014;48(24):14686–94.
Kleandrova, VV, Luan, F, González‐Díaz, H, Ruso, JM, Melo, A, Speck‐Planche, A, et al. Computational ecotoxicology: simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions. Environ Int. 2014;73:288–94.
Speck‐Planche, A, Cordeiro, MNDS. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles. Med Chem Res. 2017;26(10):2345–56.
Speck‐Planche, A, Natalia Dias Soeiro Cordeiro, M0. Speeding up early drug discovery in antiviral research: a fragment‐based in silico approach for the design of virtual anti‐hepatitis C leads. ACS Comb Sci. 2017;19(8):501–12.
Kleandrova, VV, Ruso, JM, Speck‐Planche, A, Dias Soeiro Cordeiro, MN. Enabling the discovery and virtual screening of potent and safe antimicrobial peptides. Simultaneous prediction of antibacterial activity and cytotoxicity. ACS Comb Sci. 2016;18(8):490–8.
Speck‐Planche, A, Cordeiro, M. Computer‐aided discovery in antimicrobial research: in Silico model for virtual screening of potent and safe anti‐pseudomonas agents. Comb Chem High Throughput Screen. 2015;18(3):305–14.
Speck‐Planche, A, Cordeiro, MNDS. Chemoinformatics for medicinal chemistry: in silico model to enable the discovery of potent and safer anti‐cocci agents. Future Med Chem. 2014;6(18):2013–28.
Speck‐Planche, A, Cordeiro, MNDS. Simultaneous virtual prediction of anti‐Escherichia coli activities and admet profiles: a chemoinformatic complementary approach for high‐throughput screening. ACS Comb Sci. 2014;16(2):78–84.
Ekins, S. The next era: deep learning in pharmaceutical research. Pharm Res. 2016;33(11):2594–603.
Weaver, RJ, Blomme, EA, Chadwick, AE, Copple, IM, Gerets, HHJ, Goldring, CE, et al. Managing the challenge of drug‐induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov. 2020;19(2):131–48.
Meunier, L, Larrey, D. Drug‐induced liver injury: biomarkers, requirements, candidates, and validation. Front Pharmacol. 2019;10:1482.
Kotsampasakou, E, Ecker, GF. Predicting drug‐induced cholestasis with the help of hepatic transporters—an in silico modeling approach. J Chem Inf Model. 2017;57(3):608–15.
Aleo, MD, Shah, F, Allen, S, Barton, HA, Costales, C, Lazzaro, S, et al. Moving beyond binary predictions of human drug‐induced liver injury (DILI) toward contrasting relative risk potential. Chem Res Toxicol. 2020;33(1):223–328.
Liu, Z, Shi, Q, Ding, D, Kelly, R, Fang, H, Tong, W. Translating clinical findings into knowledge in drug safety evaluation—drug induced liver injury prediction system (DILIps). PLoS Comput Biol. 2011;7(12):1002310.
Kotsampasakou, E, Montanari, F, Ecker, GF. Predicting drug‐induced liver injury: the importance of data curation. Toxicology. 2017;389:139–45.
Xu, Y, Dai, Z, Chen, F, Gao, S, Pei, J, Lai, L. Deep learning for drug‐induced liver injury. J Chem Inf Model. 2015;55(10):2085–93.
Clark, AM, Dole, K, Coulon‐Spektor, A, McNutt, A, Grass, G, Freundlich, JS, et al. Open source Bayesian models. 1. Application to ADME/Tox and drug discovery datasets. J Chem Inf Model. 2015;55(6):1231–45.
Clark, AM, Ekins, S. Open source Bayesian models. 2. Mining a “big dataset” to create and validate models with ChEMBL. J Chem Inf Model. 2015;55(6):1246–60.
Minerali, E, Foil, DH, Zorn, KM, Lane, TR, Ekins, S. Comparing machine learning algorithms for predicting drug‐induced liver injury (DILI). Mol Pharm. 2020;17(7):2628–37.
Mora, JR, Marrero‐Ponce, Y, García‐Jacas, CR, Suarez Causado, A. Ensemble models based on QuBiLS‐MAS features and shallow learning for the prediction of drug‐induced liver toxicity: improving deep learning and traditional approaches. Chem Res Toxicol. 2020;33(7):1855–73.
Williams, DP, Lazic, SE, Foster, AJ, Semenova, E, Morgan, P. Predicting drug‐induced liver injury with Bayesian machine learning. Chem Res Toxicol. 2020;33(1):239–48.
Asilar, E, Hemmerich, J, Ecker, GF. Image based liver toxicity prediction. J Chem Inf Model. 2020;60(3):1111–21.
Liu, L, Fu, L, Zhang, JW, Wei, H, Ye, WL, Deng, ZK, et al. Three‐level hepatotoxicity prediction system based on adverse hepatic effects. Mol Pharm. 2019;16(1):393–408.
Li, X, Chen, Y, Song, X, Zhang, Y, Li, H, Zhao, Y. The development and application of: in silico models for drug induced liver injury. RSC Adv. 2018;8(15):8101–11.
Hammann, F, Schöning, V, Drewe, J. Prediction of clinically relevant drug‐induced liver injury from structure using machine learning. J Appl Toxicol. 2019;39(3):412–9.
Wang, H, Liu, R, Schyman, P, Wallqvist, A. Deep neural network models for predicting chemically induced liver toxicity endpoints from transcriptomic responses. Front Pharmacol. 2019;10(2):1–12.
Wu, Q, Cai, C, Guo, P, Chen, M, Wu, X, Zhou, J, et al. In silico identification and mechanism exploration of hepatotoxic ingredients in traditional Chinese medicine. Front Pharmacol. 2019;10(5):1–15.
Hussain, F, Basu, S, Heng, JJH, Loo, LH, Zink, D. Predicting direct hepatocyte toxicity in humans by combining high‐throughput imaging of HepaRG cells and machine learning‐based phenotypic profiling. Arch Toxicol. 2020;94(8):2749–67.
Di, P, Yin, Y, Jiang, C, Cai, Y, Li, W, Tang, Y, et al. Prediction of the skin sensitising potential and potency of compounds via mechanism‐based binary and ternary classification models. Toxicol Vitr. 2019;59(12):204–14.
Verma, RP, Matthews, EJ. Estimation of the chemical‐induced eye injury using a weight‐of‐evidence (WoE) battery of 21 artificial neural network (ANN) c‐QSAR models (QSAR‐21): part II: corrosion potential. Regul Toxicol Pharmacol. 2015;71(2):331–6.
Verma, RP, Matthews, EJ. Estimation of the chemical‐induced eye injury using a weight‐of‐evidence (WoE) battery of 21 artificial neural network (ANN) c‐QSAR models (QSAR‐21): part I: irritation potential. Regul Toxicol Pharmacol. 2015;71(2):318–30.
Wang, S, Sun, H, Liu, H, Li, D, Li, Y, Hou, T. ADMET evaluation in drug discovery. 16. Predicting hERG blockers by combining multiple Pharmacophores and machine learning approaches. Mol Pharm. 2016;13(8):2855–66.
Mamoshina, P, Bueno‐Orovio, A, Rodriguez, B. Dual transcriptomic and molecular machine learning predicts all major clinical forms of drug cardiotoxicity. Front Pharmacol. 2020;11(5):1–16.
Lee, HM, Yu, MS, Kazmi, SR, Oh, SY, Rhee, KH, Bae, MA, et al. Computational determination of hERG‐related cardiotoxicity of drug candidates. BMC Bioinf. 2019;20(10):250.
Choi, KE, Balupuri, A, Kang, NS. The study on the hERG blocker prediction using chemical fingerprint analysis. Molecules. 2020;25(11):2615.
Ogura, K, Sato, T, Yuki, H, Honma, T. Support vector machine model for hERG inhibitory activities based on the integrated hERG database using descriptor selection by NSGA‐II. Sci Rep. 2019;9(1):1–7.
Fjodorova, N, Vračko, M, Novič, M, Roncaglioni, A, Benfenati, E. New public QSAR model for carcinogenicity. Chem Cent J. 2010;4(1):1–15.
Fjodorova, N, Vračko, M, Tušar, M, Jezierska, A, Novič, M, Kühne, R, et al. Quantitative and qualitative models for carcinogenicity prediction for non‐congeneric chemicals using CP ANN method for regulatory uses. Mol Divers. 2010;14(3):581–94.
Zhong, M, Nie, X, Yan, A, Yuan, Q. Carcinogenicity prediction of noncongeneric chemicals by a support vector machine. Chem Res Toxicol. 2013;26(5):741–9.
Singh, KP, Gupta, S, Rai, P. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches. Toxicol Appl Pharmacol. 2013;27(2):465–75.
Zhang, H, Cao, ZX, Li, M, Li, YZ, Peng, C. Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals. Food Chem Toxicol. 2016;97:141–9.
Golbamaki, A, Benfenati, E, Golbamaki, N, Manganaro, A, Merdivan, E, Roncaglioni, A, et al. New clues on carcinogenicity‐related substructures derived from mining two large datasets of chemical compounds. J Environ Sci Heal Part C Environ Carcinog Ecotoxicol Rev. 2016;34(2):97–113.
Yang, H, Sun, L, Li, W, Liu, G, Tang, Y. Identification of nontoxic substructures: a new strategy to avoid potential toxicity risk. Toxicol Sci. 2018;165(2):396–407.
Zhang, L, Ai, H, Chen, W, Yin, Z, Hu, H, Zhu, J, et al. CarcinoPred‐EL: novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Sci Rep. 2017;7(1):1–14.
Wang, YW, Huang, L, Jiang, SW, Li, K, Zou, J, Yang, SY. CapsCarcino: a novel sparse data deep learning tool for predicting carcinogens. Food Chem Toxicol. 2020;135(6):110921.
Guan, D, Fan, K, Spence, I, Matthews, S. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction. Regul Toxicol Pharmacol. 2018;94:8–15.
Oyaga‐Iriarte, E, Insausti, A, Sayar, O, Aldaz, A. Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters. J Pharmacol Sci. 2019;140(1):20–5.
Bloomingdale, P, Mager, DE. Machine learning models for the prediction of chemotherapy‐induced peripheral neuropathy. Pharm Res. 2019;36(2):35.
Beinse, G, Tellier, V, Charvet, V, Deutsch, E, Borget, I, Massard, C, et al. Prediction of drug approval after phase I clinical trials in oncology: RESOLVED2. JCO Clin Cancer Inf. 2019;3:1–10.
De Araújo, GL, Campos, MAA, Valente, MAS, Silva, SCT, França, FD, Chaves, MM, et al. Alternative methods in toxicity testing: the current approach. Brazilian J Pharm Sci. 2014;50(1):55–62.
Tenorio‐Borroto, E, Ramirez, F, Speck‐Planche, A, Cordeiro, M, Luan, F, Gonzalez‐Diaz, H. QSPR and flow cytometry analysis (QSPR‐FCA): review and new findings on parallel study of multiple interactions of chemical compounds with immune cellular and molecular targets. Curr Drug Metab. 2014;15:414–28.
Tonholo, DR, Maltarollo, VG, Kronenberger, T, Silva, IR, Azevedo, PO, Oliveira, RB, et al. Preclinical toxicity of innovative molecules: in vitro, in vivo and metabolism prediction. Chem Biol Interact. 2020;315(8):108896.
Banerjee, P, Eckert, AO, Schrey, AK, Preissner, R. ProTox‐II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(1):257–63.
Cheng, F, Li, W, Zhou, Y, Shen, J, Wu, Z, Liu, G, et al. AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52(11):3099–105.
Yang, H, Lou, C, Sun, L, Li, J, Cai, Y, Wang, Z, et al. AdmetSAR 2.0: web‐service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;52(11):3099–105.
Jimenez‐Carretero, D, Abrishami, V, Fernández‐de‐Manuel, L, Palacios, I, Quílez‐Álvarez, A, Díez‐Sánchez, A, et al. Tox_(R)CNN: deep learning‐based nuclei profiling tool for drug toxicity screening. PLoS Comput Biol. 2018;14(11):1–23.
Schrey, AK, Nickel‐Seeber, J, Drwal, MN, Zwicker, P, Schultze, N, Haertel, B, et al. Computational prediction of immune cell cytotoxicity. Food Chem Toxicol. 2017;107:150–66.
Webel, HE, Kimber, TB, Radetzki, S, Neuenschwander, M, Nazaré, M, Volkamer, A. Revealing cytotoxic substructures in molecules using deep learning. J Comput Aid Mol Des. 2020;34(7):731–46.
Gao, M, Igata, H, Takeuchi, A, Sato, K, Ikegaya, Y. Machine learning‐based prediction of adverse drug effects: an example of seizure‐inducing compounds. J Pharmacol Sci. 2017;133(2):70–8.
Antanasijević, D, Antanasijević, J, Trišović, N, Ušćumlić, G, Pocajt, V. From classification to regression multitasking QSAR modeling using a novel modular neural network: simultaneous prediction of anticonvulsant activity and neurotoxicity of succinimides. Mol Pharm. 2017;14(12):4476–84.
Zheng, S, Xiong, J, Wang, Y, Liang, G, Xu, Y, Lin, F. Quantitative prediction of hemolytic toxicity for small molecules and their potential hemolytic fragments by machine learning and recursive fragmentation methods. J Chem Inf Model. 2020;60(6):3231–45.
Zheng, S, Wang, Y, Liu, W, Chang, W, Liang, G, Xu, Y, et al. In silico prediction of hemolytic toxicity on the human erythrocytes for small molecules by machine‐learning and genetic algorithm. J Med Chem. 2020;63(12):6499–512.
Plisson, F, Ramírez‐Sánchez, O, Martínez‐Hernández, C. Machine learning‐guided discovery and design of non‐hemolytic peptides. Sci Rep. 2020;10(1):1–19.
Yuan, Y, Chang, S, Zhang, Z, Li, Z, Li, S, Xie, P, et al. A novel strategy for prediction of human plasma protein binding using machine learning techniques. Chemom Intel Lab Syst. 2020;199(2):103962.
Schmidt, F, Wenzel, J, Halland, N, Güssregen, S, Delafoy, L, Czich, A. Computational investigation of drug phototoxicity: photosafety assessment, photo‐toxophore identification, and machine learning. Chem Res Toxicol. 2019;32(11):2338–52.
Jiang, C, Zhao, P, Li, W, Tang, Y, Liu, G. In silico prediction of chemical neurotoxicity using machine learning. Toxicol Res (Camb). 2020;9(3):164–72.
Gupta, VK, Rana, PS. Toxicity prediction of small drug molecules of androgen receptor using multilevel ensemble model. J Bioinform Comput Biol. 2019;17(5):1–26.
Bai, F, Hong, D, Lu, Y, Liu, H, Xu, C, Yao, X. Prediction of the antioxidant response elements` response of compound by deep learning. Front Chem. 2019;7(5):1–10.
Wei, Y, Li, W, Du, T, Hong, Z, Lin, J. Targeting HIV/HCV coinfection using a machine learning‐based multiple quantitative structure–activity relationships (multiple QSAR) method. Int J Mol Sci. 2019;20(14):3572.
Cui, X, Liu, J, Zhang, J, Wu, Q, Li, X. In silico prediction of drug‐induced rhabdomyolysis with machine‐learning models and structural alerts. J Appl Toxicol. 2019;39(8):1224–32.
Lee, JYJ, Miller, JA, Basu, S, Kee, TZV, Loo, LH. Building predictive in vitro pulmonary toxicity assays using high‐throughput imaging and artificial intelligence. Arch Toxicol. 2018;92(6):2055–75.
Yuan, Q, Wei, Z, Guan, X, Jiang, M, Wang, S, Zhang, S, et al. Toxicity prediction method based on multi‐channel convolutional neural network. Molecules. 2019;24(18):3383.
Matsuzaka, Y, Uesawa, Y. Molecular image‐based prediction models of nuclear receptor agonists and antagonists using the DeepSnap‐deep learning approach with the Tox21 10K library. Molecules. 2020;25(12):2764.
Lagares, LM, Minovski, N, Novič, M. Multiclass classifier for P‐glycoprotein substrates, inhibitors, and non‐active compounds. Molecules. 2019;24(10):2006.
Sahu, SK, Anand, A. Drug–drug interaction extraction from biomedical texts using long short‐term memory network. J Biomed Inform. 2018;86:15–24.
Hunta, S, Yooyativong, T, Aunsri, N. A novel integrated action crossing method for drug‐drug interaction prediction in non‐communicable diseases. Comput Methods Programs Biomed. 2018;163:183–93.
Gayvert, KM, Madhukar, NS, Elemento, O. A data‐driven approach to predicting successes and failures of clinical trials. Cell Chem Biol. 2016;23(10):1294–301.
Hameed, PN, Verspoor, K, Kusljic, S, Halgamuge, S. Positive‐unlabeled learning for inferring drug interactions based on heterogeneous attributes. BMC Bioinf. 2017;18(1):1–15.
Jiménez, J, Sabbadin, D, Cuzzolin, A, Martínez‐Rosell, G, Gora, J, Manchester, J, et al. PathwayMap: molecular pathway association with self‐normalizing neural networks. J Chem Inf Model. 2019;59(3):1172–81.
Li, X, Xu, Y, Lai, L, Pei, J. Prediction of human cytochrome P450 inhibition using a multitask deep autoencoder neural network. Mol Pharm. 2018;15(10):4336–45.
Wu, Z, Lei, T, Shen, C, Wang, Z, Cao, D, Hou, T. ADMET evaluation in drug discovery. 19. Reliable prediction of human cytochrome P450 inhibition using artificial intelligence approaches. J Chem Inf Model. 2019;59(11):4587–601.
Ryu, JY, Kim, HU, Lee, SY. Deep learning improves prediction of drug–drug and drug–food interactions. Proc Natl Acad Sci USA. 2018;115(8):4304–11.
Song, D, Chen, Y, Min, Q, Sun, Q, Ye, K, Zhou, C, et al. Similarity‐based machine learning support vector machine predictor of drug‐drug interactions with improved accuracies. J Clin Pharm Ther. 2019;44(2):268–75.
Morger, A, Mathea, M, Achenbach, JH, Wolf, A, Buesen, R, Schleifer, KJ, et al. KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development. J Chem. 2020;12(1):1–17.
Liu, S, Tang, B, Chen, Q, Wang, X. Drug–drug interaction extraction via convolutional neural networks. Comput Math Methods Med. 2016;2016:1–8.
Zhao, Z, Yang, Z, Luo, L, Lin, H, Wang, J. Drug drug interaction extraction from biomedical literature using syntax convolutional neural network. Bioinformatics. 2016;32(22):3444–53.
Zhang, Y, Zheng, W, Lin, H, Wang, J, Yang, Z, Dumontier, M. Drug‐drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths. Bioinformatics. 2018;34(5):828–35.
Lim, S, Lee, K, Kang, J. Drug drug interaction extraction from the literature using a recursive neural network. PLoS One. 2018;13(1):0190926.
Lehman, AJ, Laug, EP. Procedures for the appraisal of the toxicity of chemicals in foods. Food Drug Cosmet Law Q. 1949;4(3):412–34.
Jacobs, AC, Hatfield, KP. History of chronic toxicity and animal carcinogenicity studies for pharmaceuticals. Vet Pathol. 2013;50(2):324–33.
Lehman, AJ, Patterson, WI, Davidow, B, Hagan, EC, Woodard, G, Laug, EP, et al. Procedures for the appraisal of the toxicity of Chemicals in Foods, drugs and cosmetics. Food Drug Cosmet Law J. 1955;10(10):679–748.
D`Aguanno, W. Drug‐toxicity evaluation: preclinical aspects. FDA introduction to total drug quality. Washington, DC: US Government Printing Office; 1973. p. 35–40.
Goldenthal, E. Current views on safety evaluation of drugs. FDA Pap. 1968;2:13–8.
National Research Council. Toxicity testing in the 21st century: a vision and a strategy. Washington, DC: National Academies Press; 2007.
Li, X, Zhang, Y, Chen, H, Li, H, Zhao, Y. In silico prediction of chronic toxicity with chemical category approaches. RSC Adv. 2017;7(66):41330–8.
Lapenna, S, Fuart‐Gatnik, M, Worth, A. Review of QSAR models and software tools for predicting acute and chronic systemic toxicity. JCR scientific and technical reports. Luxembourg: Publications Office of the European Union; 2010.
FAO. The state of food insecurity in the world 2001. FAO. Rome, Italy; 2002. 4–7 p.
Scheule, B, Sneed, J. From farm to fork: critical control points for food safety. J Nutr Recipe Menu Dev. 2001;3(2):3–23.
Luning, PA, Devlieghere, F. Safety in the agri‐food chain. Wageningen, The Netherlands: Wageningen Academic Pub; 2006.
Han, Z, Gao, J. Pixel‐level aflatoxin detecting based on deep learning and hyperspectral imaging. Comput Electron Agric. 2019;164:104888.
Bertani, FR, Businaro, L, Gambacorta, L, Mencattini, A, Brenda, D, Di Giuseppe, D, et al. Optical detection of aflatoxins B in grained almonds using fluorescence spectroscopy and machine learning algorithms. Food Control. 2020;112:107073.
Gutiérrez, P, Godoy, SE, Torres, S, Oyarzún, P, Sanhueza, I, Díaz‐García, V, et al. Improved antibiotic detection in raw milk using machine learning tools over the absorption spectra of a problem‐specific nanobiosensor. Sensors (Switzerland). 2020;20(16):4552.
Qiu, S, Wang, J. The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chem. 2017;230:208–14.
Han, F, Huang, X, Teye, E. Novel prediction of heavy metal residues in fish using a low‐cost optical electronic tongue system based on colorimetric sensors array. J Food Process Eng. 2019;42(2):12983.
Tan, A, Zhao, Y, Sivashanmugan, K, Squire, K, Wang, AX. Quantitative TLC‐SERS detection of histamine in seafood with support vector machine analysis. Food Control. 2019;103:111–8.
Isleroglu, H, Beyhan, S. Prediction of baking quality using machine learning based intelligent models. Heat Mass Transf Stoffuebertragung. 2020;56:2045–55.
Lu, H, Zheng, H. Fractal colour: a new approach for evaluation of acrylamide contents in biscuits. Food Chem. 2012;134(4):2521–5.
Yadav, A, Sengar, N, Issac, A, Dutta, MK. Image processing based acrylamide detection from fried potato chip images using continuous wavelet transform. Comput Electron Agric. 2018;145:349–62.
Jiang, B, He, J, Yang, S, Fu, H, Li, T, Song, H, et al. Fusion of machine vision technology and AlexNet‐CNNs deep learning network for the detection of postharvest apple pesticide residues. Artif Intell Agric. 2019;1:1–18.
Zhou, X, Sun, J, Tian, Y, Lu, B, Hang, Y, Chen, Q. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020;321:126503.
Hu, W, Chen, S, Li, Y, Wang, Q, Fang, Z. X‐ray absorption spectrum combined with deep neural network for on‐line detection of beverage preservatives. Rev Sci Instrum. 2018;89(10):103108.
Sun, X, Zhu, K, Liu, J, Hu, J, Jiang, X, Liu, Y, et al. Terahertz spectroscopy determination of benzoic acid additive in wheat flour by machine learning. J Infrared Millimeter Terahertz Waves. 2019;40(4):466–75.
González García, M, Fernández‐López, C, Bueno‐Crespo, A, Martínez‐España, R. Extreme learning machine‐based prediction of uptake of pharmaceuticals in reclaimed water‐irrigated lettuces in the region of Murcia, Spain. Biosyst Eng. 2019;177:78–89.
Tebes‐Stevens, C, Patel, JM, Koopmans, M, Olmstead, J, Hilal, SH, Pope, N, et al. Demonstration of a consensus approach for the calculation of physicochemical properties required for environmental fate assessments. Chemosphere. 2018;194:94–106.
Williams, AJ, Grulke, CM, Edwards, J, McEachran, AD, Mansouri, K, Baker, NC, et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Chem. 2017;9(1):61.
Bell, SM, Phillips, J, Sedykh, A, Tandon, A, Sprankle, C, Morefield, SQ, et al. An integrated chemical environment to support 21st‐century toxicology. Environ Health Perspect. 2017;125(5):054501.
Mansouri, K, Grulke, CM, Judson, RS, Williams, AJ. OPERA models for predicting physicochemical properties and environmental fate endpoints. J Chem. 2018;10(1):10.
Kamerlin, N, Delcey, MG, Manzetti, S, Van Der Spoel, D. Toward a computational ecotoxicity assay. J Chem Inf Model. 2020;60:3792–803.
Sobus, JR, Wambaugh, JF, Isaacs, KK, Williams, AJ, McEachran, AD, Richard, AM, et al. Integrating tools for non‐targeted analysis research and chemical safety evaluations at the US EPA. J Expo Sci Environ Epidemiol. 2018;28(5):411–26.
Russom, CL, Bradbury, SP, Broderius, SJ, Hammermeister, DE, Drummond, RA. Predicting modes of toxic action from chemical structure: acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem. 1997;16(5):948–67.
Miller, TH, Gallidabino, MD, MacRae, JR, Owen, SF, Bury, NR, Barron, LP. Prediction of bioconcentration factors in fish and invertebrates using machine learning. Sci Total Environ. 2019;648:80–9.
Tan, NX, Li, P, Rao, HB, Li, ZR, Li, XY. Prediction of the acute toxicity of chemical compounds to the fathead minnow by machine learning approaches. Chemom Intel Lab Syst. 2010;100(1):66–73.
Saet, JE, Revich, BA, Yanin, EP. Environment geochemistry. Russia (Moscow): Nedra Publ; 1990.p. 84–108.
Singh, KP, Basant, N, Gupta, S. Support vector machines in water quality management. Anal Chim Acta. 2011;703(2):152–62.
Grulke, CM, Williams, AJ, Thillanadarajah, I, Richard, AM. EPA`s DSSTox database: history of development of a curated chemistry resource supporting computational toxicology research. Comput Toxicol. 2019;12:100096.
Zang, Q, Mansouri, K, Williams, AJ, Judson, RS, Allen, DG, Casey, WM, et al. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J Chem Inf Model. 2017;57(1):36–49.
Singh, KP, Gupta, S, Rai, P. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches. Ecotoxicol Environ Saf. 2013;95:221–33.
Agüera, A, Martínez Bueno, MJ, Fernández‐Alba, AR. New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters. Environ Sci Pollut Res. 2013;20(6):3496–515.
Bingöl, D, Hercan, M, Elevli, S, Kiliç, E. Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin. Bioresour Technol. 2012;112:111–5.
Turan, NG, Mesci, B, Ozgonenel, O. Artificial neural network (ANN) approach for modeling Zn(II) adsorption from leachate using a new biosorbent. Chem Eng J. 2011;173(1):98–105.
Turan, NG, Gümüşel, EB, Ozgonenel, O. Prediction of heavy metal removal by different liner materials from landfill leachate: Modeling of experimental results using artificial intelligence technique. Sci World J. 2013;2013:1–5.
Sergeev, AP, Buevich, AG, Baglaeva, EM, Shichkin, AV. Combining spatial autocorrelation with machine learning increases prediction accuracy of soil heavy metals. Catena. 2019;174:425–35.
Schäfer, RB, Liess, M, Altenburger, R, Filser, J, Hollert, H, Roß‐Nickoll, M, et al. Future pesticide risk assessment: narrowing the gap between intention and reality. Environ Sci Eur. 2019;31(1):21.
Kobayashi, Y, Uchida, T, Yoshida, K. Prediction of soil adsorption coefficient in pesticides using physicochemical properties and molecular descriptors by machine learning models. Environ Toxicol Chem. 2020;39(7):1451–9.
Araghi, PE, Bastami, KD, Rahmanpoor, S. Distribution and sources of polycyclic aromatic hydrocarbons in the surface sediments of Gorgan Bay, Caspian Sea. Mar Pollut Bull. 2014;89(1–2):494–8.
Olawoyin, R. Exploration of the spatial‐Composite Risk Index (CRI) for the characterization of toxicokinetics in petrochemical active areas. Chemosphere. 2013;92(9):1207–13.
Olawoyin, R. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil. Chemosphere. 2016;161:145–50.
French, CJ, Dickinson, NM, Putwain, PD. Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut. 2006;141(3):387–95.
Wu, G, Kechavarzi, C, Li, X, Wu, S, Pollard, SJT, Sui, H, et al. Machine learning models for predicting PAHs bioavailability in compost amended soils. Chem Eng J. 2013;223:747–54.
Sayyad Amin, J, Rajabi Kuyakhi, H, Bahadori, A. Prediction of formation of polycyclic aromatic hydrocarbon (PAHs) on sediment of Caspian Sea using artificial neural networks. Pet Sci Technol. 2019;37(18):1987–2000.
Klein, A‐M, Cunningham, SA, Tscharntke, T, Vaissière, BE, Cane, JH, Steffan‐Dewenter, I, et al. Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci. 2007;274(1608):303–13.
Li, X, Zhang, Y, Chen, H, Li, H, Zhao, Y. Insights into the molecular basis of the acute contact toxicity of diverse organic chemicals in the honey bee. J Chem Inf Model. 2017;57(12):2948–57.
Cameron, SA, Lozier, JD, Strange, JP, Koch, JB, Cordes, N, Solter, LF, et al. Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA. 2011;108(2):662–7.
McArt, SH, Urbanowicz, C, McCoshum, S, Irwin, RE, Adler, LS. Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proc R Soc B Biol Sci. 2017;284(1867):2017181.
Sharan, M, Gopalakrishnan, SG. Bhopal gas accident: a numerical simulation of the gas dispersion event. Environ Model Software. 1997;12(2–3):135–41.
Lauret, P, Heymes, F, Aprin, L, Johannet, A. Atmospheric dispersion modeling using artificial neural network based cellular automata. Environ Model Software. 2016;85:55–69.
Lu, F, Xu, D, Cheng, Y, Dong, S, Guo, C, Jiang, X, et al. Systematic review and meta‐analysis of the adverse health effects of ambient PM2. 5 and PM10 pollution in the Chinese population. Environ Res. 2015;136:196–204.
Yang, G, Lee, HM, Lee, G. A hybrid deep learning model to forecast particulate matter concentration levels in Seoul, South Korea. Atmosphere (Basel). 2020;11(4):348.
Madaniyazi, L, Nagashima, T, Guo, Y, Yu, W, Tong, S. Projecting fine particulate matter‐related mortality in East China. Environ Sci Technol. 2015;49(18):11141–50.
Rich, DQ, Liu, K, Zhang, J, Thurston, SW, Stevens, TP, Pan, Y, et al. Differences in birth weight associated with the 2008 Beijing Olympics air pollution reduction: results from a natural experiment. Environ Health Perspect. 2015;123(9):880–7.
Zhan, Y, Luo, Y, Deng, X, Chen, H, Grieneisen, ML, Shen, X, et al. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos Environ. 2017;155:129–39.
Cervone, G, Franzese, P, Ezber, Y, Boybeyi, Z. Risk assessment of atmospheric emissions using machine learning. Nat Hazards Earth Syst Sci. 2008;8(5):991–1000.
Cerquitelli, T, Quercia, D, Pasquale, F. Transparent data mining for Big and small data. Studies in Big Data, Switzerland: Springer; 2017.
Lopez‐Aparicio, S, Grythe, H, Vogt, M, Pierce, M, Vallejo, I. Webcrawling and machine learning as a new approach for the spatial distribution of atmospheric emissions. PLoS One. 2018;13(7):0200650.
Ma, D, Zhang, Z. Contaminant dispersion prediction and source estimation with integrated Gaussian‐machine learning network model for point source emission in atmosphere. J Hazard Mater. 2016;311:327–245.
Black, J, Benke, G, Smith, K, Fritschi, L. Artificial neural networks and job‐specific modules to assess occupational exposure. Ann Occup Hyg. 2004;48(7):595–600.
Creely, KS, Tickner, J, Soutar, AJ, Hughson, GW, Pryde, DE, Warren, ND, et al. Evaluation and further development of EASE model 2.0. Ann Occup Hyg. 2005;49(2):135–45.
Tickner, J, Friar, J, Creely, KS, Cherrie, JW, Pryde, DE, Kingston, J. The development of the EASE model. Ann Occup Hyg. 2005;49(2):103–10.
Johnston, KL, Phillips, ML, Esmen, NA, Hall, TA. Evaluation of an artificial intelligence program for estimating occupational exposures. Ann Occup Hyg. 2005;49(2):147–53.
Li, YN, Luo, FT, Jiang, YM, Lu, YR, Huang, JL, Zhang, ZB. A prediction model of occupational manganese exposure based on artificial neural network. Toxicol Mech Methods. 2009;19(5):337–45.
Sottas, PE, Lavoué, J, Bruzzi, R, Vernez, D, Charrière, N, Droz, PO. An empirical hierarchical Bayesian unification of occupational exposure assessment methods. Stat Med. 2009;28(1):75–93.
Moayed, FA, Shell, RL. Application of artificial neural network models in occupational safety and health utilizing ordinal variables. Ann Occup Hyg. 2011;55(2):132–42.
Moayed, FA, Shell, RL. Developing the function of “magnitude‐of‐effect” (MoE) for artificial neural networks to demonstrate the causal effect of exposure variables on outcome variable. Ann Occup Hyg. 2011;55(2):143–51.
Coelho, C, Martins, MR, Lima, N, Vicente, H, Neves, J. An assessment to toxicological risk of pesticide exposure. In: Springer, C, editor. Communications in computer and information science. Switzerland: Springer International Publishing; 2016. p. 139–50.
Zendehdel, R, Shetab‐Boushehri, SV, Azari, MR, Hosseini, V, Mohammadi, H. Chemometrics models for assessment of oxidative stress risk in chrome‐electroplating workers. Drug Chem Toxicol. 2015;38(2):174–9.
Gernand, JM, Casman, EA. Nanoparticle characteristic interaction effects on pulmonary toxicity: a Random Forest modeling framework to compare risks of nanomaterial variants. ASCE‐ASME J Risk Uncertain Eng Syst Part B Mech Eng. 2016;2(2):021002.
Ramchandran, V, Gernand, JM. Examining the in vivo pulmonary toxicity of engineered metal oxide nanomaterials using a genetic algorithm‐based dose‐response‐recovery clustering model. Comput Toxicol. 2020;13:100113.
Salehi, M, Zare, A, Taheri, A. Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of respirable crystalline silica by Fourier‐transform infrared spectroscopy (FTIR). Ann Work Expo Heal. 2020;wxaa097:1–12.