Rinaldi, D, Rivail, J‐L. Polarisabilités moléculaires et effet diélectrique de milieu à l`état liquide. Étude théorique de la molécule d`eau et de ses dimères. Theor Chem Accounts. 1973;32:57–70.
Rivail, J‐L, Rinaldi, D. A quantum chemical approach to dielectric solvent effects in molecular liquids. J Chem Phys. 1976;18:233–42.
Miertuš, S, Scrocco, E, Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys. 1981;55:117–29.
Miertuš, S, Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys. 1982;65:239–45.
Bonaccorsi, R, Cimiraglia, R, Tomasi, J. Ab initio evaluation of absorption and emission transitions for molecular solutes, including separate consideration of orientational and inductive solvent effects. J Comput Chem. 1983;4:567–77.
Tomasi, J. Thirty years of continuum solvation chemistry: a review, and prospects for the near future. Theor Chem Accounts. 2004;112:184–203.
Grochowski, P, Trylska, J. Continuum molecular electrostatics, salt effects, and counterion binding—a review of the Poisson–Boltzmann theory and its modifications. Biopolymers. 2008;89:93–113.
Pliego, JR Jr, Riveros, JM. Hybrid discrete‐continuum solvation methods. WIREs Comput Mol Sci. 2020;10:e1440.
Tomasi, J, Persico, M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev. 1994;94:2027–94.
Amovilli, C, Barone, V, Cammi, R, Cancès, E, Cossi, M, Mennucci, B, et al. Recent advances in the description of solvent effects with the polarizable continuum model. Adv Quantum Chem. 1999;32:227–61.
Tomasi, J, Mennucci, B, Cammi, R, Cossi, M. Quantum mechanical models for reactions in solution. In: Nâaray‐Szabâo, G, Warshel, A, editors. Computational approaches to biochemical reactivity. Understanding chemical reactivity. Volume 19. New York: Springer; 2002; (chapter 1). p. 1–102.
Cammi, R, Mennucci, B, Tomasi, J. Computational modelling of the solvent effects on molecular properties: an overview of the polarizable continuum model (PCM) approach. In: Leszczynski, J, editor. Computational chemistry: reviews of current trends. Volume 8. Singapore: World Scientific; 2003; (chapter 1). p. 1–79.
Tomasi, J, Mennucci, B, Cammi, R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999–3093.
Tomasi, J. Selected features of the polarizable continuum model for the representation of solvation. WIREs Comput Mol Sci. 2011;1:855–67.
Mennucci, B. Polarizable continuum model. WIREs Comput Mol Sci. 2012;2:386–404.
Lipparini, F, Mennucci, B. Perspective: polarizable continuum models for quantum‐mechanical descriptions. J Chem Phys. 2016;144:160901.
Scrocco, E, Tomasi, J. The electrostatic molecular potential as a tool for the interpretation of molecular properties. Top Curr Chem. 1973;42:95–170.
Scrocco, E, Tomasi, J. Electronic molecular structure, reactivity and intermolecular forces: an heuristic interpretation by means of electrostatic molecular potentials. Adv Quantum Chem. 1978;11:115–93.
Tomasi, J. On the use of the electrostatic molecular potential in theoretical investigations on chemical reactivity. In: Daudel, R, Pullman, A, Salem, L, Veillard, A, editors. Quantum theory of chemical reactions. Volume 1. Dordrecht: Reidel Publishing Company; 1980. p. 191–228.
Tomasi, J. Use of the electrostatic potential as a guide to understanding molecular properties. In: Politzer, P, Truhlar, DG, editors. Chemical applications of atomic and molecular electrostatic potentials. New York: Plenum Press; 1981. p. 257–94.
Lange, AW, Herbert, JM. Polarizable continuum reaction‐field solvation models affording smooth potential energy surfaces. J Phys Chem Lett. 2010;1:556–61.
Lange, AW, Herbert, JM. A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: the switching/Gaussian approach. J Chem Phys. 2010;133:244111.
Herbert, JM, Lange, AW. Polarizable continuum models for (bio)molecular electrostatics: basic theory and recent developments for macromolecules and simulations. In: Cui, Q, Ren, P, Meuwly, M, editors. Many‐body effects and electrostatics in biomolecules. Boca Raton: Pan Stanford; 2016; (chapter 11). p. 363–416.
Lange, AW, Herbert, JM. Symmetric versus asymmetric discretization of the integral equations in polarizable continuum solvation models. Chem Phys Lett. 2011;509:77–87.
Lange, AW, Herbert, JM, Albrecht, BJ, You, Z‐Q. Intrinsically smooth discretization of Connolly`s solvent‐excluded molecular surface. Mol Phys. 2020;118:e1644384.
Cappelli, C. Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute–solvent systems. Int J Quantum Chem. 2016;116:1532–42.
Caricato, M. Coupled cluster theory with the polarizable continuum model of solvation. Int J Quantum Chem. 2019;119:e25674.
Andreussi, O, Fisicaro, G. Continuum embeddings in condensed‐matter simulations. Int J Quantum Chem. 2019;119:e25725.
Sadlej, J, Pecul, M. Computational modelling of the solvent–solute effect on NMR parameters by a polarizable continuum model. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 125–44.
Barone, V, Cimino, P, Pavone, M. EPR spectra of organic free radicals in solution from an integrated computational approach. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 145–66.
Cappelli, C. Continuum solvation approach to vibrational properties. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 167–79.
Pecul, M, Ruud, K. Solvent effects on natural optical activity. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 180–205.
Cammi, R, Mennucci, B. Macroscopic nonlinear optical properties from cavity models. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 238–51.
Ågren, H, Mikkelsen, KV. Homogeneous and heterogeneous solvent models for nonlinear optical properties. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 282–99.
Improta, R. UV–visible absorption and emission energies in condensed phase by PCM/TD‐DFT methods. In: Barone, V, editor. Computational strategies for spectroscopy: from small molecules to nano systems. 1st ed. Hoboken, NJ: John Wiley %26 Sons; 2012; (chapter 1). p. 39–76.
Basilevsky, MV, Parsons, DF. An advanced continuum medium model for treating solvation effects: nonlocal electrostatics with a cavity. J Chem Phys. 1996;105:3734–46.
Jenkins, OS, Hunt, KLC. Nonlocal dielectric functions on the nanoscale: screened forces from unscreened potentials. J Chem Phys. 2003;119:8250–6.
Basilevsky, MV, Chuev, GN. Nonlocal solvation theories. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 94–109.
Bardhan, BRJ. Comparative assessment of nonlocal continuum solvent models exhibiting overscreening. Mol Based Math Biol. 2017;5:40–57.
Whiffen, DH. Manual of symbols and terminology for physicochemical quantities and units. Pure Appl Chem. 1979;51:1–41.
Rizzo, A. Birefringences in liquids. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 252–64.
Ferrarini, A. Anisotropic fluids. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 265–81.
Wangsness, RK. Electromagnetic fields. 2nd ed. John Wiley %26 Sons, Hoboken, NJ: Wiley; 1986.
Coons, MP, Herbert, JM. Quantum chemistry in arbitrary dielectric environments: theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface. J Chem Phys. 2018;148:222834. Erratum: J. Chem. Phys., 151, 189901 (2019).
Böttcher, CJF. Theory of electric polarization. Vol 1. 2nd ed. Elsevier, Amsterdam: Elsevier; 1976.
Rashin, AA, Honig, B. Reevaluation of the Born model of ion hydration. J Phys Chem. 1985;89:5588–93.
Jacobson, LD, Williams, CF, Herbert, JM. The static‐exchange electron‐water pseudopotential, in conjunction with a polarizable water model: a new Hamiltonian for hydrated‐electron simulations. J Chem Phys. 2009;130:124115.
Cammi, R. The quantum mechanical formulation of continuum models. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 82–93.
Caricato, M, Scalmani, G, Frisch, MJ. A Lagrangian formulation for continuum models. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 64–81.
Nakamura, H. Roles of electrostatic interaction in proteins. Q Rev Biophys. 1996;29:1–90.
Alexov, E, Mehler, EL, Baker, N, Baptista, AM, Huang, Y, Milletti, F, et al. Progress in the prediction of pKa values in proteins. Proteins. 2011;79:3260–75.
Antosiewicz, J, McCammon, JA, Gilson, MK. Prediction of pH‐dependent properties of proteins. J Mol Biol. 1994;238:415–36.
Demchuk, E, Wade, RC. Improving the continuum dielectric approach to calculating pKas of ionizable groups in proteins. J Phys Chem. 1996;100:17373–87.
Grycuk, T. Revision of the model system concept for the prediction of pKa`s in proteins. J Phys Chem B. 2002;106:1434–45.
Truchon, J‐F, Nicholls, A, Roux, B, Iftimie, RI, Bayly, CI. Integrated continuum dielectric approaches to treat molecular polarizability and the condensed phase: refractive index and implicit solvation. J Chem Theory Comput. 2009;5:1785–802.
Warshel, A, Russell, ST. Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys. 1984;17:283–422.
Schutz, CN, Warshel, A. What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins. 2001;44:400–17.
Warshel, A, Sharma, PK, Kato, M, Parson, WW. Modeling electrostatic effects in proteins. Biochim Biophys Acta. 2006;1764:1647–76.
Li, L, Li, C, Zhang, Z, Alexov, E. On the dielectric “constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theory Comput. 2013;9:2126–36.
Bardhan, JP, Knepley, MG, Brune, P. Nonlocal electrostatics in spherical geometries using eigenfunction expansions of boundary‐integral operators. Mol Based Math Biol. 2015;3:1–22.
Sharp, KA, Honig, B. Electrostatic interactions in macromolecules. Annu Rev Biophys Biophys Chem. 1990;19:301–32.
Fogolari, F, Brigo, A, Molinari, H. The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recognit. 2002;15:377–92.
Baker, NA. Biomolecular applications of Poisson–Boltzmann methods. In: Lipkowitz, K, Larter, R, Cundari, TR, editors. Reviews in computational chemistry. Volume 21. John Wiley %26 Sons, Hoboken, NJ: Wiley; 2005. p. 349–79.
Botello‐Smith, WM, Cai, Q, Luo, R. Biological applications of classical electrostatics methods. J Theor Comput Chem. 2014;13:1440008.
Schnieders, MJ, Ponder, JW. Polarizable atomic multipole solutes in a generalized Kirkwood continuum. J Chem Theory Comput. 2007;3:2083–97.
Schnieders, MJ, Baker, NA, Ren, P, Ponder, JW. Polarizable atomic multipole solutes in a Poisson–Boltzmann continuum. J Chem Phys. 2007;126:124114.
Sharp, KA, Honig, B. Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann equation. J Phys Chem. 1990;94:7684–92.
Deserno, M, Holm, C. Cell model and Poisson–Boltzmann theory: a brief introduction. In: Holm, C, Kékicheff, P, Podgornik, R, editors. Electrostatic effects in soft matter and biophysics. NATO science series. Volume 46. Dordrecht: Springer Science + Business Media; 2001. p. 27–52.
Lamm, G. The Poisson–Boltzmann equation. In: Lipkowitz, KB, Larter, R, Cundari, TR, Boyd, DB, editors. Reviews in computational chemistry. Volume 19. New York: Wiley‐VCH; 2003; (chapter 4). p. 147–366.
Baker, NA. Poisson–Boltzmann methods for biomolecular electrostatics. Methods Enzymol. 2004;383:94–118.
Moreira, AG, Netz, RR. Field‐theoretic approaches to classical charged systems. In: Holm, C, Kékicheff, P, Podgornik, R, editors. Electrostatic effects in soft matter and biophysics. NATO science series. Volume 46. Dordrecht: Springer Science + Business Media; 2001. p. 367–408.
Bardhan, JP. Biomolecular electrostatics—I want your solvation (model). Comput Sci Discov. 2012;5:013001.
Stein, CJ, Herbert, JM, Head‐Gordon, M. The Poisson–Boltzmann model for implicit solvation of electrolyte solutions: quantum chemical implementation and assessment via Sechenov coefficients. J Chem Phys. 2019;151:224111.
Zhou, H‐X. Macromolecular electrostatic energy within the nonlinear Poisson–Boltzmann equation. J Chem Phys. 1993;100:3152–62.
Fogolari, F, Zuccato, P, Esposito, G, Viglino, P. Biomolecular electrostatics with the linearized Poisson–Boltzmann equation. Biophys J. 1999;76:1–16.
Debye, P, Hückel, E. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physik Z. 1923;24:185–206.
Debye, P, Hückel, E. On the theory of electrolytes. I. Freezing point depression and related phenomena. Collected papers of Peter J. W. Debye. Interscience, New York: Interscience Publishers, Inc.; 1954. p. 217–63.
Onsager, L. Theories of concentrated electrolytes. Chem Rev. 1933;13:73–89.
Lange, AW, Herbert, JM. A simple polarizable continuum solvation model for electrolyte solutions. J Chem Phys. 2011;134:204110.
Wang, C, Ren, P, Luo, R. Ionic solution: what goes right and wrong with continuum solvation modeling. J Phys Chem B. 2017;121:11159–79.
Vlachy, V. Ionic effects beyond Poisson–Boltzmann theory. Annu Rev Phys Chem. 1999;50:145–65.
Dziedzic, J, Bhandari, A, Anton, L, Peng, C, Womack, J, Famili, M, et al. Practical approach to large‐scale electronic structure calculations in electrolyte solutions via continuum‐embedded linear‐scaling density functional theory. J Phys Chem C. 2020;124:7860–72.
Born, M. Volumen und Hydratationswärme der Ionen. Z Phys. 1920;1:45–8.
Onsager, L. Electric moments of molecules in liquids. J Am Chem Soc. 1936;58:1486–93.
Bell, RP. The electrostatic energy of dipole molecules in different media. Trans Faraday Soc. 1931;27:797–802.
Kirkwood, JG. Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J Chem Phys. 1934;2:351–61.
Böttcher, CJF. The dielectric constant of dipole liquids. Phys Ther. 1938;5:635–9.
Kirkwood, JG. The dielectric polarization of polar liquids. J Chem Phys. 1939;7:911–9.
Hasted, JB. Liquid water: dielectric properties. In: Franks, F, editor. Water: a comprehensive treatise. Volume 1. New York: Plenum Press; 1972. p. 255–309.
Omini, M. A theory of electric polarisation in liquids: II. Polar liquids. Physica A. 1976;84:129–42.
Bokov, OG, Naberukhin, YI. Application of the Onsager model to the theory of the dielectric constant of nonpolar liquids. J Chem Phys. 1981;75:2357–65.
Høye, JS, Stell, G. Statistical mechanics of polar systems. II. J Chem Phys. 1976;64:1952–66.
Hannay, JH. The Clausius–Mossotti equation: an alternative derivation. Eur J Phys. 1983;4:141–3.
Bonner, WB. The electrostatic energy of molecules in solution. Trans Faraday Soc. 1951;47:1143–52.
Rinaldi, D, Ruiz‐Lopez, MF, Rivail, J‐L. Ab initio SCF calculations on electrostatically solvated molecules using a deformable three axes ellipsoidal cavity. J Chem Phys. 1983;78:834–8.
Mikkelsen, KV, Dalgaard, E, Swanstrøm, P. Electron‐transfer reactions in solution. An ab initio approach. J Phys Chem. 1987;91:3081–92.
Mikkelsen, KV, Ågren, H, Jensen, HJA, Helgaker, T. A multiconfigurational self‐consistent reaction‐field method. J Chem Phys. 1988;89:3086–95.
Mikkelsen, KV, Jørgensen, P, Jensen, HJA. A multiconfigurational self‐consistent reaction field response method. J Chem Phys. 1994;100:6597–607.
Kong, Y, Ponder, JW. Calculation of the reaction field due to off‐center point multipoles. J Chem Phys. 1997;107:481–92.
Medved`, M, Budzák, Š, Bartkowiak, W, Reis, H. Solvent effects on molecular electric properties. In: Leszczynski, J, Kaczmarek‐Kedziera, A, Puzyn, T, Papadopoulos, MG, Reis, H, Shukla, MK, editors. Handbook of computational chemistry. 2nd ed. Switzerland: Springer International Publishing; 2017; (chapter 17). p. 741–94.
Westheimer, FH, Kirkwood, JG. The electrostatic influence of substituents on the dissociation constants of organic acids. II. J Chem Phys. 1938;6:513–7.
Kirkwood, JG, Westheimer, FH. The electrostatic influence of substituents on the dissociation constants of organic acids. I. J Chem Phys. 1938;6:506–12.
Gomez‐Jeria, JS, Morales‐Lagos, D. Free energy of a charge distribution in a spheroidal cavity surrounded by concentric dielectric continua. J Phys Chem. 1990;94:3790–5.
Morales‐Lagos, D, Gómez‐Jeria, JS. New developments in the continuum representation of solvent effects. J Phys Chem. 1991;95:5308–14.
Lotan, I, Head‐Gordon, T. An analytical electrostatic model for salt screened interactions between multiple proteins. J Chem Theory Comput. 2006;2:541–55.
Alavi, DS, Waldeck, DH. Dielectric continuum models of solute/continuum interactions. In: Simon, JD, editor. Ultrafast dynamics of chemical systems. Understanding chemical reactivity. Volume 7. Dordrecht: Springer Science + Business Media; 1994; (chapter 9). p. 249–65.
Zhan, C‐G, Bentley, J, Chipman, DM. Volume polarization in reaction field theory. J Chem Phys. 1998;108:177–92.
Chipman, DM. Charge penetration in dielectric models of solvation. J Chem Phys. 1997;106:10194–206.
Chipman, DM. Simulation of volume polarization in reaction field theory. J Chem Phys. 1999;110:8012–8.
Chipman, DM. Reaction field treatment of charge penetration. J Chem Phys. 2000;112:5558–65.
Chipman, DM. Comparison of solvent reaction field representations. Theor Chem Accounts. 2002;107:80–9.
Chipman, DM. New formulation and implementation for volume polarization in dielectric continuum theory. J Chem Phys. 2006;124:224111.
Chipman, DM. Energy correction to simulation of volume polarization in reaction field theory. J Chem Phys. 2002;116:10129–38.
Karelson, MM, Katritzky, AR, Zerner, MC. Reaction field effects on the electron distribution and chemical reactivity of molecules. Int J Quantum Chem Symp. 1986;20:521–7.
Karelson, M, Tamm, T, Zerner, MC. Multicavity reaction field method for the solvent effect description in flexible molecular systems. J Phys Chem. 1993;97:11901–7.
Luque, FJ, Curutchet, C, Muñoz‐Muriedas, J, Bidon‐Chanal, A, Soteras, I, Morreale, A, et al. Continuum solvation models: dissecting the free energy of solvation. Phys Chem Chem Phys. 2003;5:3827–36.
Beglov, D, Roux, B. Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. J Chem Phys. 1994;100:9050–63.
Tironi, IG, Sperb, R, Smith, PE, van Gunsteren, WF. A generalized reaction field method for molecular dynamics simulations. J Chem Phys. 1995;102:5451–9.
Im, W, Bernèche, S, Roux, B. Generalized solvent boundary potential for computer simulations. J Chem Phys. 2001;114:2924–37.
Schaefer, P, Riccardi, D, Cui, Q. Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. J Chem Phys. 2005;123:014905.
Benighaus, T, Thiel, W. Efficiency and accuracy of the generalized solvent boundary potential for hybrid QM/MM simulations: implementation for semiempirical Hamiltonians. J Chem Theory Comput. 2008;4:1600–9.
Benighaus, T, Thiel, W. A general boundary potential for hybrid QM/MM simulations of solvated biomolecular systems. J Chem Theory Comput. 2009;5:3114–28.
Benighaus, T, Thiel, W. Long‐range electrostatic effects in QM/MM studies of enzymatic reactions: application of the solvated macromolecule boundary potential. J Chem Theory Comput. 2011;7:238–49.
Aleksandrov, A, Field, M. Efficient solvent boundary potential for hybrid potential simulations. Phys Chem Chem Phys. 2011;13:10503–9.
Zienau, J, Cui, Q. Implementation of the solvent macromolecular boundary potential and application to model and realistic enzyme systems. J Phys Chem B. 2012;116:12522–34.
Lu, X, Cui, Q. Charging free energy calculations using the generalized solvent boundary potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins. J Phys Chem B. 2013;117:2005–18.
Rega, N, Brancato, G, Barone, V. Non‐periodic boundary conditions for ab initio molecular dynamics in condensed phase using localized basis functions. Chem Phys Lett. 2006;422:367–71.
Brancato, G, Rega, N, Barone, V. Reliable molecular simulations of solute–solvent systems with a minimum number of solvent shells. J Chem Phys. 2006;124:214505.
Brancato, G, Rega, N, Barone, V. A hybrid explicit/implicit solvation method for first‐principle molecular dynamics simulations. J Chem Phys. 2008;128:144501.
Brancato, G, Rega, N, Barone, V. Molecular dynamics simulations in a NpT ensemble using non‐periodic boundary conditions. Chem Phys Lett. 2009;483:177–81.
Linder, B, Hoernschemeyer, D. Cavity concept in dielectric theory. J Chem Phys. 1967;46:784–90.
Luo, Y, Ågren, H, Mikkelsen, KV. Unique determination of the cavity radius in Onsager reaction field theory. Chem Phys Lett. 1997;275:145–50.
Swanson, JMJ, Adcock, SA, McCammon, JA. Optimized radii for Poisson–Boltzmann calculations with the AMBER force field. J Chem Theory Comput. 2005;1:484–93.
Manjeera, M, Chamberlin, AC, Valero, R, Cramer, CJ, Truhlar, DG. Consistent van der Waals radii for the whole main group. J Phys Chem A. 2009;113:5806–12.
Bondi, A. Van der Waals volumes and radii. J Phys Chem. 1964;68:441–51.
Rowland, RS, Taylor, R. Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J Phys Chem. 1996;100:7384–91.
Bonaccorsi, R, Palla, P, Tomasi, J. Conformational energy of glycine in aqueous solutions and relative stability of the zwitterionic and neutral forms. An ab initio study. J Am Chem Soc. 1984;106:1945–50.
Brookes, DH, Head‐Gordon, T. Family of oxygen–oxygen radial distribution functions for water. J Phys Chem Lett. 2015;6:2938–43.
Onufriev, AV, Aguilar, B. Accuracy of continuum electrostatic calculations based on three common dielectric boundary definitions. J Theor Comput Chem. 2014;13:1440006.
Connolly, ML. Solvent‐accessible surfaces of proteins and nucleic acids. Science. 1983;221:709–13.
Richards, FM. Areas, volumes, packing, and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–76.
Kim, D‐S, Won, C‐I, Bhak, J. A proposal for the revision of molecular boundary typology. J Biomol Struct Dyn. 2010;28:277–87.
Lee, B, Richards, FM. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971;55:379–400.
Pomelli, CS. Cavity surfaces and their discretization. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 49–63.
Connolly, ML. The molecular surface package. J Mol Graph. 1993;11:139–41.
Gasteiger, J, Engel, T, editors. Chemoinformatics: a textbook. Weinheim: Wiley‐VCH; 2003.
Xu, D, Zhang, Y. Generating triangulated macromolecular surfaces by Euclidean distance transform. PLoS One. 2009;4:e8140.
Decherchi, S, Rocchia, W. A general and robust ray‐casting‐based algorithm for triangulating surfaces at the nanoscale. PLoS One. 2013;8:e59744.
Zhan, C‐G, Chipman, DM. Cavity size in reaction field theory. J Chem Phys. 1998;109:10543–58.
Barone, V, Cossi, M, Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys. 1997;107:3210–21.
Ginovska, B, Camaioni, DM, Dupuis, M, Schwerdtfeger, CA, Gil, Q. Charge‐dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities. J Phys Chem A. 2008;112:10604–13.
Lange, AW, Herbert, JM. Improving generalized Born models by exploiting connections to polarizable continuum models. I. An improved effective Coulomb operator. J Chem Theory Comput. 2012;8:1999–2011.
Lange, AW, Herbert, JM. Improving generalized Born models by exploiting connections to polarizable continuum models. II. Corrections for salt effects. J Chem Theory Comput. 2012;8:4381–92.
Foresman, JB, Keith, TA, Wiberg, KB, Snoonian, J, Frisch, MJ. Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J Phys Chem. 1996;100:16098–104.
Chipman, DM, Dupuis, M. Implementation of solvent reaction fields for electronic structure. Theor Chem Accounts. 2002;107:90–102.
Chen, F, Chipman, DM. Boundary element methods for dielectric cavity construction and integration. J Chem Phys. 2003;119:10289–97.
Holst, M, Saied, F. Multigrid solution of the Poisson–Boltzmann equation. J Comput Chem. 1993;14:105–13.
Holst, MJ, Saied, F. Numerical solution of the nonlinear Poisson–Boltzmann equation: developing more robust and efficient methods. J Comput Chem. 1995;16:337–64.
Holst, M, Baker, N, Wang, F. Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples. J Comput Chem. 2000;21:1319–42. Erratum: J. Comput. Chem., 22, 45 (2001).
Lu, BZ, Zhou, YC, Holst, MJ, McCammon, JA. Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications. Commun Comput Phys. 2008;3:973–1009.
Wang, J, Luo, R. Assessment of linear finite‐difference Poisson–Boltzmann solvers. J Comput Chem. 2010;31:1689–98.
Yap, E‐H, Head‐Gordon, T. New and efficient Poisson–Boltzmann solver for interaction of multiple proteins. J Chem Theory Comput. 2010;6:2214–24.
Boschitsch, AH, Fenley, MO. A fast and robust Poisson–Boltzmann solver based on adaptive Cartesian grids. J Chem Theory Comput. 2011;7:1524–40.
Holst, M, McCammon, JA, Yu, Z, Zhou, YC. Adaptive finite element modeling techniques for the Poisson–Boltzmann equation. Commun Comput Phys. 2012;11:179–214.
Li, C, Li, L, Petukh, M, Alexov, E. Progress in developing Poisson–Boltzmann equation solvers. Mol Based Math Biol. 2013;1:42–62.
Geng, W, Krasny, R. A treecode‐accelerated boundary integral Poisson–Boltzmann solver for electrostatics of solvated biomolecules. J Comput Phys. 2013;247:62–78.
Sakalli, I, Schöberl, J, Knapp, EW. mFES: a robust molecular finite element solver for electrostatic energy computations. J Chem Theory Comput. 2014;10:5095–112.
Fisicaro, G, Genovese, L, Andreussi, O, Marzari, N, Goedecker, S. A generalized Poisson and Poisson–Boltzmann solver for electrostatic environments. J Chem Phys. 2016;144:014103.
Ringe, S, Oberhofer, H, Hille, C, Matera, S, Reuter, K. Function‐space‐based solution scheme for the size‐modified Poisson–Boltzmann equation in full‐potential DFT. J Chem Theory Comput. 2016;12:4052–66.
Womack, JC, Anton, L, Dziedzic, J, Hasnip, PJ, Probert, MIJ, Skylaris, C‐K. DL_MG: a parallel multigrid Poisson and Poisson–Boltzmann solver for electronic structure calculations in vacuum and solution. J Chem Theory Comput. 2018;14:1412–32.
Luzhkov, V, Warshel, A. Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies. J Comput Chem. 1992;13:199–213.
Florián, J, Warshel, A. Langevin dipoles model for ab initio calculations of chemical processes in solution: parameterization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution. J Phys Chem B. 1997;101:5583–95.
Papazyan, A, Warshel, A. Continuum and dipole‐lattice models of solvation. J Phys Chem B. 1997;101:11254–64.
Langlet, J, Claverie, P, Caillet, J, Pullman, A. Improvements of the continuum model. 1. Application to the calculation of the vaporization of thermodynamic quantities of nonassociated liquids. J Phys Chem. 1988;92:1617–31.
Constanciel, R. Theoretical basis of the empirical reaction field approximations through continuum model. Theor Chem Accounts. 1986;69:505–23.
Bardhan, JP. Numerical solution of boundary‐integral equations for molecular electrostatics. J Chem Phys. 2009;130:094102.
Cancès, E. Integral equation approaches for continuum models. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 29–48.
Cossi, M, Scalmani, G, Rega, N, Barone, V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys. 2002;117:43–54.
Tomasi, J, Mennucci, B, Cancès, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (THEOCHEM). 1999;464:211–26.
Cancés, E, Mennucci, B, Tomasi, J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys. 1997;107:3032–41.
Mennucci, B, Cancès, E, Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B. 1997;101:10506–17.
Cancès, E, Mennucci, B. New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals. J Math Chem. 1998;23:309–26.
Cancès, E, Mennucci, B. Comment on ‘reaction field treatment of charge penetration’. J Chem Phys. 2001;114:4744–5.
Davis, ME, McCammon, JA. Solving the finite difference linearized Poisson–Boltzmann equation: a comparison of relaxation and conjugate gradient methods. J Comput Chem. 1989;10:386–91.
Luty, BA, Davis, ME, McCammon, JA. Solving the finite‐difference non‐linear Poisson–Boltzmann equation. J Comput Chem. 1992;13:1114–8.
Wang, J, Cai, Q, Xiang, Y, Luo, R. Reducing grid dependence in finite‐difference Poisson–Boltzmann calculations. J Chem Theory Comput. 2012;8:2741–51.
Xiao, L, Cai, Q, Ye, X, Wang, J, Luo, R. Electrostatic forces in the Poisson–Boltzmann systems. J Chem Phys. 2013;139:094106.
Xiao, L, Wang, C, Luo, R. Recent progress in adapting Poisson–Boltzmann methods to molecular simulations. J Theor Comput Chem. 2014;13:1430001.
Chipman, DM. Solution of the linearized Poisson–Boltzmann equation. J Chem Phys. 2004;120:5566–75.
Lipparini, F, Stamm, B, Cancès, E, Maday, Y, Mennucci, B. Fast domain decomposition algorithm for continuum solvation models: energy and first derivatives. J Chem Theory Comput. 2013;9:3637–48.
Lipparini, F, Lagardère, L, Scalmani, G, Stamm, B, Cancès, E, Maday, Y, et al. Quantum calculations in solution for large to very large molecules: a new linear scaling QM/continuum approach. J Phys Chem Lett. 2014;5:953–8.
Lipparini, F, Scalmani, G, Lagardère, L, Stamm, B, Cancès, E, Maday, Y, et al. Quantum, classical, and hybrid QM/MM calculations in solution: general implementation of the ddCOSMO linear scaling strategy. J Chem Phys. 2014;141:184108.
Caprasecca, S, Jurinovich, S, Lagardère, L, Stamm, B, Lipparini, F. Achieving linear scaling in computational cost for a fully polarizable MM/continuum embedding. J Chem Theory Comput. 2015;11:694–704.
Klamt, A, Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans. 1993;2:799–805.
Andzelm, J, Kölmel, C, Klamt, A. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J Chem Phys. 1995;103:9312–20.
Klamt, A, Jonas, V. Treatment of the outlying charge in continuum solvation models. J Chem Phys. 1996;105:9972–81.
Klamt, A. The COSMO and COSMO‐RS solvation models. WIREs Comput Mol Sci. 2018;8:e1338.
Barone, V, Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A. 1998;102:1995–2001.
Cossi, M, Rega, N, Scalmani, G, Barone, V. Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. J Comput Chem. 2003;24:669–81.
Stefanovich, EV, Truong, TN. Optimized atomic radii for quantum dielectric continuum solvation models. Chem Phys Lett. 1995;244:65–74.
Truong, TN, Stefanovich, EV. A new method for incorporating solvent effects into the classical, ab initio molecular orbital and density functional theory frameworks for arbitrary cavity shape. Chem Phys Lett. 1995;240:253–60.
Truong, TN, Stefanovich, EV. Analytical first and second energy derivatives of the generalized conductorlike screening model for free energy of solvation. J Chem Phys. 1995;103:3709–17.
Truong, TN, Nguyen, UN, Stefanovich, EV. Generalized conductor‐like screening model (GCOSMO) for solvation: an assessment of its accuracy and applicability. Int J Quantum Chem Symp. 1996;60:1615–22.
Schäfer, A, Klamt, A, Sattel, D, Lohrenz, JCW, Eckert, F. COSMO implementation in TURBOMOLE: extension of an efficient quantum chemical code towards liquid systems. Phys Chem Chem Phys. 2000;2:2187–93.
Andrade do Monte, S, Müller, T, Dallos, M, Lischka, H, Diedenhofen, M, Klamt, A. Solvent effects in electronically excited states using the continuum solvation model COSMO in combination with multireference configuration interaction with singles and doubles (MR‐CISD). J Mol Struct (THEOCHEM). 2004;111:78–89.
Klamt, A, Diedenhofen, M. A refined cavity construction algorithm for the conductor‐like screening model. J Comput Chem. 2018;39:1648–55.
Pye, CC, Ziegler, T. An implementation of the conductor‐like screening model of solvation within the Amsterdam density functional package. Theor Chem Accounts. 1999;101:396–408.
Diedenhofen, M. Conductor‐like screening model COSMO. In: Grotendorst, J, editor. High performance computing in chemistry. NIC series. Volume 25. Jülich: John von Neumann Institute for Computing; 2005; (chapter 6). p. 133–49.
Křž, K, Řezáč, J. Reparameterization of the COSMO solvent model for semiempirical methods PM6 and PM7. J Chem Inf Model. 2019;59:229–35.
Klamt, A, Moya, C, Palomar, J. A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach. J Chem Theory Comput. 2015;11:4220–5.
Cancès, E, Mennucci, B. The escaped charge problem in solvation continuum models. J Chem Phys. 2001;115:6130–5.
Cammi, R, Tomasi, J. Analytical derivatives for molecular solutes. I. Hartree–Fock energy first derivatives with respect to external parameters in the polarizable continuum model. J Chem Phys. 1994;100:7495–502.
Cammi, R, Tomasi, J. Remarks on the use of apparent surface charges (ASC) methods in solvation problems: iterative versus matrix‐inversion procedures and the renormalization of the apparent surface charges. J Comput Chem. 1995;16:1449–58.
Baldridge, K, Klamt, A. First principles implementation of solvent effects without outlying charge error. J Chem Phys. 1997;106:6622–33.
Mennucci, B, Tomasi, J. Continuum solvation models: a new approach to the problem of solute`s charge distribution and cavity boundaries. J Chem Phys. 1997;106:5151–8.
Cammi, R, Cossi, M, Tomasi, J. Analytical derivatives for molecular solutes. III. Hartree–Fock static polarizabilities in the polarizable continuum model. J Chem Phys. 1996;104:4611–20.
Gauss, J. Molecular properties. In: Grotendorst, J, editor. Modern methods and algorithms of quantum chemistry. NIC series. Volume 3 of. 2nd ed. Jülich: John von Neumann Institute for Computing; 2000. p. 541–92.
Rizzo, A, Coriani, S, Ruud, K. Response function theory computational approaches to linear and nonlinear optical spectroscopy. In: Barone, V, editor. Computational strategies for spectroscopy: from small molecules to nano systems. 1st ed. Hoboken, NJ: John Wiley %26 Sons; 2012; (chapter 2). p. 77–136.
Helgaker, T, Coriani, S, Jørgensen, P, Kristensen, K, Olsen, J, Ruud, K. Recent advances in wave function‐based methods of molecular‐property calculations. Chem Rev. 2012;112:543–631.
Jurrus, E, Engel, D, Star, K, Monson, K, Brandi, J, Felberg, LE, et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018;27:112–28.
You, Z‐Q, Mewes, J‐M, Dreuw, A, Herbert, JM. Comparison of the Marcus and Pekar partitions in the context of non‐equilibrium, polarizable‐continuum reaction‐field solvation models. J Chem Phys. 2015;143:204107.
Silla, E, Villar, F, Nilsson, O, Pascual‐Ahuir, JL, Tapia, O. Molecular volumes and surfaces of biomacromolecules via GEPOL: a fast and efficient algorithm. J Mol Graph. 1990;8:168–72.
Pascual‐Ahuir, JL, Silla, E. GEPOL: an improved description of molecular surfaces. I. Building the spherical surface set. J Comput Chem. 1990;11:1047–60.
Silla, E, Tuñon, I, Pascual‐Ahuir, JL. GEPOL: an improved description of molecular surfaces. II. Computing the molecular area and volume. J Comput Chem. 1991;12:1077–88.
Pascual‐Ahuir, JL, Silla, E, Tuñon, I. GEPOL: an improved description of molecular surfaces. III. A new algorithm for the computation of a solvent‐excluding surface. J Comput Chem. 1994;15:1127–38.
Scalmani, G, Rega, N, Cossi, M, Barone, V. Finite elements molecular surfaces in continuum solvent models for large chemical systems. J Comput Methods Sci Eng. 2002;2:469–74.
Liotard, DA, Hawkins, GD, Lynch, GC, Cramer, CJ, Truhlar, DG. Improved methods for semiempirical solvation models. J Comput Chem. 1995;16:422–40.
Cossi, M, Mennucci, B, Cammi, R. Analytical first derivatives of molecular surfaces with respect to nuclear coordinates. J Comput Chem. 1996;17:57–73.
York, DM, Karplus, M. Smooth solvation potential based on the conductor‐like screening model. J Phys Chem A. 1999;103:11060–79.
Gregersen, BA, York, DM. High‐order discretization schemes for biochemical applications of boundary element solvation and variational electrostatic projection methods. J Chem Phys. 2005;122:194110.
Khandogin, J, Gregersen, BA, Thiel, W, York, DM. Smooth solvation method for d‐orbital semiempirical calculations of biological reactions. 1. Implementation. J Phys Chem B. 2005;109:9799–809.
Murray, CW, Handy, NC, Laming, GJ. Quadrature schemes for integrals of density functional theory. Mol Phys. 1993;78:997–1014.
Gill, PMW, Johnson, BG, Pople, JA. A standard grid for density‐functional calculations. Chem Phys Lett. 1993;209:506–12.
Chien, S‐H, Gill, PMW. SG‐0: a small standard grid for DFT quadrature on large systems. J Comput Chem. 2006;27:730–9.
Dasgupta, S, Herbert, JM. Standard grids for high‐precision integration of modern density functionals: SG‐2 and SG‐3. J Comput Chem. 2017;38:869–82.
Liu, J, Liang, W. Analytical second derivatives of excited‐state energy within the time‐dependent density functional theory coupled with a conductor‐like polarizable continuum model. J Chem Phys. 2013;138:024101.
Wawak, RJ, Gibson, KD, Scheraga, HA. Gradient discontinuities in calculations involving molecular surface area. J Math Chem. 1994;15:207–32.
Li, H, Jensen, JH. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: new energy gradients and molecular surface tessellation. J Comput Chem. 2004;25:1449–62.
Su, P, Li, H. Continuous and smooth potential energy surface for conductor‐like screening solvation model using fixed points with variable areas. J Chem Phys. 2009;130:074109.
Delley, B. The conductor‐like screening model for polymers and surfaces. Mol Phys. 2006;32:117–23.
Krylov, AI, Gill, PMW. Q‐Chem: an engine for innovation. WIREs Comput Mol Sci. 2013;3:317–26.
Scalmani, G, Frisch, MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys. 2010;132:114110.
Garcia‐Ratès, M, Neese, F. Effect of the solute cavity on the solvation energy and its derivatives within the framework of the Gaussian charge scheme. J Comput Chem. 2020;41:922–39.
Harbrecht, H, Randrianarivony, M. Wavelet BEM on molecular surfaces: parameterization and implementation. Computing. 2009;86:1–22.
Weijo, V, Randrianarivony, M, Harbrecht, H, Frediani, L. Wavelet formulation of the polarizable continuum model. J Comput Chem. 2010;31:1469–77.
Bugeanu, M, Di Remigio, R, Mozgawa, K, Reine, SS, Harbrecht, H, Frediani, L. Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements. Phys Chem Chem Phys. 2015;17:31566–81.
Bugeanu, M, Harbrecht, H. Parametric representation of molecular surfaces. Int J Quantum Chem. 2019;119:e25695.
Beck, TL. The influence of water interfacial potentials on ion hydration in bulk water and near interfaces. Chem Phys Lett. 2013;561–562:1–13.
Marenich, AV, Cramer, CJ, Truhlar, DG. Perspective on foundations of solvation modeling: the electrostatic contribution to the free energy of solvation. J Chem Theory Comput. 2008;4:877–87.
Zhan, C‐G, Chipman, DM. Reaction field effects on nitrogen shielding. J Chem Phys. 1999;110:1611–22.
Tjong, H, Zhou, H‐X. On the dielectric boundary in Poisson–Boltzmann calculations. J Chem Theory Comput. 2008;4:507–14.
Acevedo, O, Jorgensen, WL. Solvent effects and mechanism for a nucleophilic aromatic substitution from QM/MM simulations. Org Lett. 2004;6:2881–4.
Miguel, ELM, Santos, CIL, Silva, CM, Pliego, JR Jr. How accurate is the SMD model for predicting free energy barriers for nucleophilic substitution reactions in polar protic and dipolar aprotic solvents? J Braz Chem Soc. 2016;27:2055–61.
Lorensen, WE, Cline, HE. Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph. 1987;21:163–9.
Rajon, DA, Bolch, WE. Marching cubes algorithm: review and trilinear interpolation adaptation for image‐based dosimetric models. Comput Med Imaging Graph. 2003;27:411–35.
Yu, Z, Jacobson, MP, Friesner, R. What role do surfaces play in GB models? A new‐generation of surface‐generalized Born model based on a novel Gaussian surface for biomolecules. J Comput Chem. 2005;27:72–89.
Zhou, B, Agarwal, M, Wong, CF. Variable atomic radii for continuum‐solvent electrostatics calculation. J Chem Phys. 2008;129:014509.
Fattebert, J‐L, Gygi, F. Density functional theory for efficient ab initio molecular dynamics simulations in solution. J Comput Chem. 2002;23:662–6.
Fattebert, J‐L, Gygi, F. First‐principles molecular dynamics simulations in a continuum solvent. Int J Quantum Chem. 2003;93:139–47.
Scherlis, DA, Fattebert, J‐L, Gygi, F, Cococcioni, M, Marzari, N. A unified electrostatic and cavitation model for first‐principles molecular dynamics in solution. J Chem Phys. 2006;124:074103.
Dziedzic, J, Helal, HH, Skylaris, C‐K, Mostofi, AA, Payne, MC. Minimal parameter implicit solvent model for ab initio electronic‐structure calculations. Europhys Lett. 2011;95:43001.
Andreussi, O, Dabo, I, Marzari, N. Revised self‐consistent continuum solvation in electronic‐structure calculations. J Chem Phys. 2012;136:064102.
Mathew, K, Sundararaman, R, Letchworth‐Weaver, K, Arias, TA, Hennig, RG. Implicit solvation model for density‐functional study of nanocrystal surfaces and reaction pathways. J Chem Phys. 2014;140:084106.
Sánchez, VM, Sued, M, Scherlis, DA. First‐principles molecular dynamics simulations at solid–liquid interfaces with a continuum solvent. J Chem Phys. 2009;131:174108.
Im, W, Beglov, D, Roux, B. Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson–Boltzmann equation. Comput Phys Commun. 1998;111:59–75.
Grant, JA, Pickup, BT, Nicholls, A. A smooth permittivity function for Poisson–Boltzmann solvation methods. J Comput Chem. 2001;22:608–40.
Basilevsky, MV, Grigoriev, FV, Nikitina, EA, Leszczynski, J. Implicit electrostatic solvent model with continuous dielectric permittivity function. J Phys Chem B. 2010;114:2457–66.
Nattino, F, Truscott, M, Marzari, N, Andreussi, O. Continuum models of the electrochemical diffuse layer in electronic‐structure calculations. J Chem Phys. 2019;150:041722.
Andreussi, O, Hörmann, NG, Nattino, F, Fisicaro, G, Goedecker, S, Marzari, N. Solvent‐aware interfaces in continuum solvation. J Chem Theory Comput. 2019;15:1996–2009.
Sundararaman, R, Schwarz, K. Evaluating continuum solvation models for the electrode‐electrolyte interface: challenges and strategies for improvement. J Chem Phys. 2017;146:084111.
Sundararaman, R, Letchworth‐Weaver, K, Schwarz, KA. Improving accuracy of electrochemical capacitance and solvation energetics in first‐principles calculations. J Chem Phys. 2018;148:144105.
Schwarz, K, Sundararaman, R. The electrochemical interface in first‐principles calculations. Surf Sci Rep. 2020;75:100492.
Bramley, G, Nguyen, M‐T, Glezakou, V‐A, Rousseau, R, Sylaris, C‐K. Reconciling work functions and adsorption enthalpies for implicit solvent models: a Pt(111)/water interface case study. J Chem Theory Comput. 2020;16:2703–15.
Bhandari, A, Anton, L, Dziedzic, J, Peng, C, Kramer, D, Skylaris, C‐K. Electronic structure calculations in electrolyte solutions: methods for neutralization of extended charged interfaces. J Chem Phys. 2020;153:124101.
Booth, F. The dielectric constant of water and the saturation effect. J Chem Phys. 1951;19:391–4.
Daniels, L, Scott, M, Mišković, ZL. The role of Stern layer in the interplay of dielectric saturation and ion steric effects for the capacitance of graphene in aqueous electrolytes. J Chem Phys. 2017;146:094101.
Davis, ME, McCammon, JA. Dielectric boundary smoothing in finite difference solutions of the Poisson equation: an approach to improve accuracy and convergence. J Comput Chem. 1991;12:909–12.
Gilson, MK, Davis, ME, Luty, BA, McCammon, JA. Computation of electrostatic forces on solvated molecules using the Poisson–Boltzmann equation. J Phys Chem. 1993;97:3591–600.
Lu, B, Zhang, D, McCammon, JA. Computation of electrostatic forces between solvated molecules determined by the Poisson–Boltzmann equation using a boundary element method. J Chem Phys. 2005;122:214102.
Wang, J, Tan, C, Chanco, E, Luo, R. Quantitative analysis of Poisson–Boltzmann implicit solvent in molecular dynamics. Phys Chem Chem Phys. 2010;12:1194–202.
Cai, Q, Ye, X, Wang, J, Luo, R. Dielectric boundary force in numerical Poisson–Boltzmann methods: theory and numerical strategies. Chem Phys Lett. 2011;514:368–73.
Rega, N, Cossi, M, Barone, V. Towards linear scaling in continuum solvent models. A new iterative procedure for energies and geometry optimizations. Chem Phys Lett. 1998;293:221–9.
Scalmani, G, Barone, V, Kudin, KN, Pomelli, CS, Scuseria, GE, Frisch, MJ. Achieving linear‐scaling computational cost for the polarizable continuum model of solvation. Theor Chem Accounts. 2004;111:90–100.
Lindgren, EB, Stace, AJ, Polack, E, Maday, Y, Stamm, B, Besley, E. An integral equation approach to calculate electrostatic interactions in many‐body dielectric systems. J Comput Phys. 2018;371:712–31.
Cancès, E, Maday, Y, Stamm, B. Domain decomposition for implicit solvation models. J Chem Phys. 2013;139:054111.
Gatto, P, Lipparini, F, Stamm, B. Computation of forces arising from the polarizable continuum model within the domain‐decomposition paradigm. J Chem Phys. 2017;147:224108.
Stamm, B, Lagardère, L, Scalmani, G, Gatto, P, Cancès, E, Piquemal, J‐P, et al. How to make continuum solvation incredibly fast in a few simple steps: a practical guide to the domain decomposition paradigm for the conductor‐like screening model. Int J Quantum Chem. 2019;119:e25669.
Nottoli, M, Stamm, B, Scalmani, G, Lipparini, F. Quantum calculations in solution of energies, structures, and properties with a domain decomposition polarizable continuum model. J Chem Theory Comput. 2019;15:6061–73.
Lagardère, L, Jolly, L‐H, Lipparini, F, Aviat, F, Stamm, B, Jing, ZF, et al. Tinker‐HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chem Sci. 2018;9:956–72.
Lipparini, F, Lagardère, L, Raynaud, C, Stamm, B, Cancès, E, Mennucci, B, et al. Polarizable molecular dynamics in a polarizable continuum solvent. J Chem Theory Comput. 2014;11:623–34.
Casasnovas, R, Fernández, D, Ortega‐Castro, J, Frau, J, Donoso, J, Muñoz, F. Avoiding gas‐phase calculations in theoretical pKa predictions. Theor Chem Accounts. 2011;130:1–13.
Sastre, S, Casasnovas, R, Muñoz, F, Frau, J. Isodesmic reaction for pKa calculations of common organic molecules. Theor Chem Accounts. 2013;132:1310.
Casasnovas, R, Ortega‐Castro, J, Frau, J, Donoso, J, Muñoz, F. Theoretical pKa calculations with continuum model solvents, alternative protocols to thermodynamic cycles. Int J Quantum Chem. 2014;114:1350–63.
Ho, J, Coote, ML. First‐principles prediction of acidities in the gas and solution phase. WIREs Comput Mol Sci. 2011;1:649–60.
Ho, J. Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials? Phys Chem Chem Phys. 2015;17:2859–68.
Ho, J, Ertem, MZ. Calculating free energy changes in continuum solvation models. J Phys Chem B. 2016;120:1319–29.
Ho, J, Klamt, A, Coote, ML. Comment on the correct use of continuum solvent models. J Phys Chem A. 2010;114:13442–4.
Ribeiro, RF, Marenich, AV, Cramer, CJ, Truhlar, DG. Use of solution‐phase vibrational frequencies in continuum models for the free energy of solvation. J Phys Chem B. 2011;115:14556–62.
Jensen, JH. Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods. Phys Chem Chem Phys. 2015;17:12441–51.
Thompson, JD, Cramer, CJ, Truhlar, DG. New universal solvation model and comparison of the accuracy of the SM5.42R, SM5.43R, C‐PCM, D‐PCM, and IEF‐PCM continuum solvation models for aqueous and organic solvation free energies and for vapor pressures. J Phys Chem A. 2004;108:6532–42.
Kelly, CP, Cramer, CJ, Truhlar, DG. SM6: a density functional theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions, and solute–water clusters. J Chem Theory Comput. 2005;1:1133–52.
Marenich, AV, Cramer, CJ, Truhlar, DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113:6378–96.
Marenich, AV, Cramer, CJ, Truhlar, DG. Generalized Born solvation model SM12. J Chem Theory Comput. 2013;9:609–20.
Marenich, AV, Olson, RM, Kelly, CP, Cramer, CJ, Truhlar, DG. Self‐consistent reaction field model for aqueous and nonaqueous solutions based on accurate polarized partial charges. J Chem Theory Comput. 2007;3:2011–33.
Cramer, CJ, Truhlar, DG. A universal approach to solvation modeling. Acc Chem Res. 2008;41:760–8.
Cramer, CJ, Truhlar, DG. Reply to comment on ‘a universal approach to solvation modeling’. Acc Chem Res. 2009;42:493–7.
Amado, AM, Fiuza, SM, Batista de Carvalho, LAE, Ribeiro‐Ciaro, PJA. On the effects of changing Gaussian program version and SCRF defining parameters: isopropylamine as a case study. Bull Chem Soc Jpn. 2012;85:962–75.
Wen, M, Jiang, J, Wang, Z‐X, Wu, C. How accurate are the popular PCM/GB continuum solvation models for calculating the solvation energies of amino acid side‐chain analogs? Theor Chem Accounts. 2014;133:1471.
Shields, GC, Seybold, PG. Computational approaches for the prediction of pKa values. Boca Raton, FL: CRC Press; 2014.
Giles, J. Software company bans competitive users. Nature. 2004;429:231.
Pliego, JR Jr, Riveros, JM. Gibbs energy of solvation of organic ions in aqueous and dimethyl sulfoxide solutions. Phys Chem Chem Phys. 2002;4:1622–7.
Liu, J, Kelly, CP, Goren, AC, Marenich, AV, Cramer, CJ, Truhlar, DG, et al. Free energies of solvation with surface, volume, and local electrostatic effects and atomic surface tensions to represent the first solvation shell. J Chem Theory Comput. 2010;6:1109–17.
You, Z‐Q, Herbert, JM. Reparameterization of an accurate, few‐parameter implicit solvation model for quantum chemistry: composite method for implicit representation of solvent, CMIRS v. 1.1. J Chem Theory Comput. 2016;12:4338–46.
Dupont, C, Andreussi, O, Marzari, N. Self‐consistent continuum solvation (SCCS): the case of charged systems. J Chem Phys. 2013;139:214110.
Fisicaro, G, Genovese, L, Andreussi, O, Mandai, S, Nair, NN, Marzari, N, et al. Soft‐sphere continuum solvation in electronic‐structure calculations. J Chem Theory Comput. 2017;13:3829–45.
Tissandier, MD, Cowen, KA, Feng, WY, Gundlach, E, Cohen, MH, Earhart, AD, et al. The proton`s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster‐ion solvation data. J Phys Chem A. 1998;102:7787–94.
Tuttle, TR Jr, Malaxos, S, Coe, JV. A new cluster pair method of determining absolute single ion solvation energies demonstrated in water and applied to ammonia. J Phys Chem A. 2002;106:925–32.
Vlcek, L, Chialvo, AA, Simonson, JM. Correspondence between cluster‐ion and bulk solution thermodynamic properties: on the validity of the cluster‐pair‐based approximation. J Phys Chem A. 2013;117:11328–38.
Malloum, A, Fifen, JJ, Conradie, J. Determination of the absolute solvation free energy and enthalpy of the proton in solutions. J Mol Liq. 2021;322:114919.
Ashbaugh, HS, Asthagiri, D. Single ion hydration free energies: a consistent comparison between experiment and classical molecular simulation. J Chem Phys. 2008;129:204501.
Hünenberger, P, Reif, M. Single‐ion solvation: experimental and theoretical approaches to elusive thermodynamic quantities. Cambridge: Royal Society of Chemistry; 2011.
Vlcek, L, Chialvo, AA. Single‐ion hydration thermodynamics from clusters to bulk solutions: recent insights from molecular modeling. Fluid Phase Equilib. 2016;407:58–75.
Hofer, TS, Hünenberger, PH. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free‐energy simulations of sodium and potassium hydration. J Chem Phys. 2018;148:222814.
Zhan, C‐G, Dixon, DA. Absolute hydration free energy of the proton from first‐principles electronic structure calculations. J Phys Chem A. 2001;105:11534–40.
Grabowski, P, Riccardi, D, Gomez, MA, Asthagiri, D, Pratt, LR. Quasi‐chemical theory and the standard free energy of H+(aq). J Phys Chem A. 2002;106:9145–8.
Kelly, CP, Cramer, CJ, Truhlar, DG. Aqueous solvation free energies of ions and ion–water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B. 2006;110:16066–81.
Kelly, CP, Cramer, CJ, Truhlar, DG. Single‐ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide. J Phys Chem B. 2007;111:408–22.
Pollard, TP, Beck, TL. The thermodynamics of proton hydration and the electrochemical surface potential of water. J Chem Phys. 2014;141:18C512.
Palascak, MW, Shields, GC. Accurate experimental values for the free energies of hydration of H+, OH−, and H3O+. J Phys Chem A. 2004;108:3692–4.
Bazhin, NM. Standard values of the thermodynamic functions of the formation of ions in an aqueous solution and their change during solvation. J Phys Chem A. 2020;124:11051–60.
Tomaník, L, Muchová, E, Slavíček, P. Solvation energies of ions with ensemble cluster‐continuum approach. Phys Chem Chem Phys. 2020;22:22357–68.
Fawcett, WR. The ionic work function and its role in estimating absolute electrode potentials. Langmuir. 2008;24:9868–75.
Carvalho, NF, Pliego, JR Jr. Cluster‐continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single‐ion free energy scale. Phys Chem Chem Phys. 2015;17:26745–54.
Rossini, E, Knapp, E‐W. Proton solvation in protic and aprotic solvents. J Comput Chem. 2016;37:1082–91. Erratum: J. Comput. Chem., 37, 2163–2164 (2016).
Pliego, JR Jr, Miguel, ELM. Absolute single‐ion solvation free energy scale in methanol determined by the lithium cluster‐continuum approach. J Phys Chem B. 2013;117:5129–35.
Lin, Y‐L, Aleksandrov, A, Simonson, T, Roux, B. An overview of electrostatic free energy computations for solutions and proteins. J Chem Theory Comput. 2014;10:2690–709.
Pollard, T, Beck, TL. Quasichemical analysis of the cluster‐pair approximation for the thermodynamics of proton hydration. J Chem Phys. 2014;140:224507.
Duignan, TT, Baer, MD, Schenter, GK, Mundy, CJ. Real single ion solvation free energies with quantum mechanical simulation. Chem Sci. 2017;8:6131–40.
Zhang, H, Jiang, Y, Yan, H, Yin, C, Tan, T, van der Spoel, D. Free‐energy calculations of ionic hydration consistent with the experimental hydration free energy of the proton. J Phys Chem Lett. 2017;8:2705–12.
Shi, Y, Beck, TL. Absolute ion hydration free energy scale and the surface potential of water via quantum simulation. Proc Natl Acad Sci U S A. 2020;117:30151–8.
Pliego, JR, Riveros, JM. The cluster‐continuum model for the calculation of the solvation free energy of ionic species. J Phys Chem A. 2001;105:7241–7.
Bryantsev, VS, Diallo, MS, Goddard, WA III. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J Phys Chem B. 2008;112:9709–19.
Pliego, JR Jr, Riveros, JM. Theoretical calculation of pKa using the cluster‐continuum model. J Phys Chem A. 2002;106:7434–9.
Eckert, F, Diedenhofen, M, Klamt, A. Towards a first principles prediction of pKa: COSMO‐RS and the cluster‐continuum approach. Mol Phys. 2010;108:229–41.
Marenich, AV, Ding, W, Cramer, CJ, Truhlar, DG. Resolution of a challenge for solvation modeling: calculation of dicarboxylic acid dissociation constants using mixed discrete‐continuum solvation models. J Phys Chem Lett. 2012;3:1437–42.
Abramson, R, Baldridge, KK. Defined‐sector explicit solvent in the continuum model approach for computational prediction of pKa. Mol Phys. 2012;110:2401–12.
Abramson, R, Baldridge, KK. Defined‐sector explicit solvent in continuum cluster model for computational prediction of pKa: consideration of secondary functionality and higher degree of solvation. J Chem Theory Comput. 2013;9:1027–35.
Ho, J. Predicting pKa in implicit solvents: current status and future directions. Aust J Chem. 2014;67:1441–60.
Thapa, B, Schlegel, HB. Calculations of pKa`s and redox potentials of nucleobases with explicit waters and polarizable continuum solvation. J Phys Chem A. 2015;119:5134–44.
Thapa, B, Schlegel, HB. Density functional theory calculation of pKa`s of thiols in aqueous solution using explicit water molecules and the polarizable continuum model. J Phys Chem A. 2016;120:5726–35.
Alongi, KS, Shields, GC. Theoretical calculations of acid dissociation constants: a review article. Annu Rep Comput Chem. 2010;6:113–38.
Riccardi, D, Guo, H‐B, Parks, JM, Gu, B, Liang, L, Smith, JC. Cluster‐continuum calculations of hydration free energies of anions and group 12 divalent cations. J Chem Theory Comput. 2013;9:555–69.
Dhillon, S, East, AL. Challenges in predicting ΔrxnG in solution: hydronium, hydroxide, and water autoionization. Int J Quantum Chem. 2018;118:e25703.
Patel, DH, East, ALL. Semicontinuum (cluster‐continuum) modeling of acid‐catalyzed aqueous reactions: alkene hydration. J Phys Chem A. 2020;124:9088–104.
Pratt, LR, LaViolette, RA. Quasi‐chemical theories of associated liquids. Mol Phys. 1998;94:909–15.
Pratt, LR, Rempe, SD. Quasi‐chemical theory and implicit solvent models for simulations. In: Pratt, LR, Hummer, G, editors. Simulation and theory of electostatic interactions in solution. AIP conference proceedings. Volume 492. American Institute of Physics, Woodbury, NY: American Institute of Physics; 1999. p. 172–201.
Asthagiri, D, Pratt, LR, Ashbaugh, HS. Absolute hydration free energies of ions, ion–water clusters, and quasichemical theory. J Chem Phys. 2003;119:2702–8.
Asthagiri, D, Pratt, LR, Paulaitis, ME, Rempe, SB. Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row metals. J Am Chem Soc. 2004;126:1285–9.
Rempe, SB, Asthagiri, D, Pratt, LR. Inner‐shell definition and absolute hydration free energy of K+(aq) on the basis of quasi‐chemical theory and ab initio molecular dynamics. Phys Chem Chem Phys. 2004;6:1966–9.
Beck, TL, Paulaitis, ME, Pratt, LR. Quasi‐chemical theory. The potential distribution theorem and models of molecular solutions. Cambridge: Cambridge University Press; 2006; (chapter 7). p. 142–71.
Rogers, DM, Jiao, D, Pratt, LR, Rempe, SB. Structural models and molecular thermodynamics of hydration of ions and small molecules. Annu Rep Comput Chem. 2012;8:71–127.
Muralidharan, A, Pratt, LR, Chaudhari, MI, Rempe, SB. Quasi‐chemical theory with cluster sampling from ab initio molecular dynamics: fluoride (F−) anion hydration. J Phys Chem A. 2018;122:9806–12.
Maldonado, AM, Basdogan, Y, Berryman, JT, Rempe, SB, Keith, JA. First‐principles modeling of chemistry in mixed solvents: where to go from here? J Chem Phys. 2020;152:130902.
Bachs, M, Luque, FJ, Orozco, M. Optimization of solute cavities and van der Waals parameters in ab initio MST‐SCRF calculations of neutral molecules. J Comput Chem. 1994;15:446–54.
Luque, FJ, Bachs, M, Alemán, C. Extension of MST/SCRF method to organic solvents: ab initio and semiempirical parametrization for neutral solutes in CCl4. J Comput Chem. 1996;17:806–20.
Luque, FJ, Bidon‐Chanall, A, Muñoz‐Muriedas, J, Soteras, I, Curutchet, C, Morreale, A, et al. Solute–solvent interactions from QM SCRF methods: analysis of group contributions to solvation. In: Brändas, EJ, Kryachko, ES, editors. Fundamental world of quantum chemistry. Volume III. Kluwer, Dordrecht: Kluwer Academic Publishers; 2004. p. 475–95.
Soteras, I, Morreale, A, López, JM, Orozco, M, Luque, FJ. Group contributions to the solvation free energy from MST continuum calculations. Braz J Phys. 2004;34:48–57.
Soteras, I, Curutchet, C, Bidon‐Chanal, A, Orozco, M, Luque, FJ. Extension of the MST model to the IEF formalism: HF and B3LYP parameterizations. J Mol Struct (THEOCHEM). 2005;727:29–40.
Curutchet, C, Orozco, M, Luque, FJ, Mennucci, B, Tomasi, J. Dispersion and repulsion contributions to the solvation free energy: comparison of quantum mechanical and classical approaches in the polarizable continuum model. J Comput Chem. 2006;27:1769–80.
Klamt, A, Mennucci, B, Tomasi, J, Barone, V, Curutchet, C, Orozco, M, et al. On the performance of continuum solvation methods. A comment on ‘universal approaches to solvation modeling’. Acc Chem Res. 2009;42:489–92.
Pomogaeva, A, Thompson, DW, Chipman, DM. Modeling short‐range contributions to hydration energies with minimal parameterization. Chem Phys Lett. 2011;511:161–5.
Pomogaeva, A, Chipman, DM. Field‐extremum model for short‐range contributions to hydration free energy. J Chem Theory Comput. 2011;7:3952–60.
Pomogaeva, A, Chipman, DM. New implicit solvation models for dispersion and exchange energies. J Phys Chem A. 2013;117:5812–20.
Pomogaeva, A, Chipman, DM. Hydration energy from a composite method for implicit representation of the solvent. J Chem Theory Comput. 2014;10:211–9.
Pomogaeva, A, Chipman, DM. Composite method for implicit representation of solvent in dimethyl sulfoxide and acetonitrile. J Phys Chem A. 2015;119:5173–80.
Klamt, A. Conductor‐like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem. 1995;99:2224–35.
Klamt, A, Jonas, V, Bürger, T, Lohrenz, JCW. Refinement and parameterization of COSMO‐RS. J Phys Chem A. 1998;102:5074–85.
Eckert, F, Klamt, A. Fast solvent screening via quantum chemistry: COSMO‐RS approach. AIChE J. 2002;48:369–85.
Klamt, A. COSMO‐RS: from quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, Amsterdam: Elsevier; 2005.
Klamt, A, Eckert, F, Arlt, W. COSMO‐RS: an alternative to simulation for calculating thermodynamic properties of mixtures. Annu Rev Chem Biomol Eng. 2010;1:101–22.
Sandler, SI, Sum, AK, Lin, S‐T. Some chemical engineering applications of quantum chemical calculations. Adv Chem Eng. 2001;28:315–51.
Lei, Z, Chen, B, Li, C, Liu, H. Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. Chem Rev. 2008;108:1419–55.
Gmehling, J. Present status and potential of group contribution methods for process development. J Chem Thermodyn. 2009;41:731–47.
Gmehling, J, Constantinescu, D, Schmid, B. Group contribution methods for phase equilibrium calculations. Annu Rev Chem Biomol Eng. 2015;6:267–92.
Lin, S‐T, Sandler, SI. A priori phase equilibrium predictions from a segment contribution solvation model. Ind Eng Chem Res. 2002;41:899–913. Erratum: Ind. Eng. Chem. Res., 43, 1322 (2004).
Klamt, A. Comments on ‘a priori phase equilibrium prediction from a segment contribution solvation model’. Ind Eng Chem Res. 2002;41:2330–1.
Lin, S‐T, Sandler, SI. Reply to comments on ‘a priori phase equilibrium prediction from a segment contribution solvation model’. Ind Eng Chem Res. 2002;41:2332–4.
Neiman, M, Cheng, H, Parekh, V, Peterson, B, Klier, K. A critical assessment on two predictive models of binary vapor–liquid equilibrium. Phys Chem Chem Phys. 2004;6:3474–83.
Klamt, A. Comment on ‘a critical assessment on two predictive models of binary vapor–liquid equilibrium’. Phys Chem Chem Phys. 2004;6:5081.
Cheng, H, Parekh, V, Peterson, BK. Response to ‘comment on ‘a critical assessment on two predictive models of binary vapor–liquid equilibrium’. Phys Chem Chem Phys. 2004;6:5082.
Grensemann, H, Gmehling, J. Performance of a conductor‐like screening model for real solvents model in comparison to classical group contribution methods. Ind Eng Chem Res. 2005;44:1610–24.
Klamt, A. Comments on ‘performance of a conductor‐like screening model for real solvents model in comparison to classical group contribution methods’. Ind Eng Chem Res. 2005;44:7042.
Grensemann, H, Gmehling, J. Rebuttal to the comments of Andreas Klamt on ‘performance of a COSMO‐RS model in comparison to classical group contribution methods’. Ind Eng Chem Res. 2005;44:7043–4.
Wang, S, Lin, S‐T, Chang, J, Goddard, WA, Sandler, SI. Application of the COSMO‐SAC‐BP solvation model to predictions of normal boiling temperatures for environmentally significant substances. Ind Eng Chem Res. 2006;45:5426–34.
Klamt, A, Eckert, F. Comment on ‘application of the COSMO‐SAC‐BP solvation model to predictions of normal boiling temperatures for environmentally significant substances’. Ind Eng Chem Res. 2006;45:3766.
Wang, S, Lin, S‐T, Chang, J, Goddard, WA, Sandler, SI. Reply to the comment on ‘application of the COSMO‐SAC‐BP solvation model to predictions of normal boiling temperatures for environmentally significant substances’. Ind Eng Chem Res. 2006;45:3767.
Mu, T, Rarey, J, Gmehling, J. Performance of COSMO‐RS with sigma profiles from different model chemistries. Ind Eng Chem Res. 2007;46:6612–29.
Klamt, A. Comments on ‘performance of COSMO‐RS with sigma profiles from different model chemistries’. Ind Eng Chem Res. 2008;47:987–8.
Mu, T, Rarey, J, Gmehling, J. Reply to “comments on ‘performance of COSMO‐RS with sigma profiles from different model chemistries’”. Ind Eng Chem Res. 2008;47:989.
Sakuratani, Y, Kasai, K, Noguchi, Y, Yamada, J. Comparison of predictivities of log P calculation models based on experimental data for 134 simple organic compounds. QSAR Comb Sci. 2007;26:109–16.
Wittekindt, C, Klamt, A. Comment on ‘comparison of predictivities of log P calculation models based on experimental data for 134 simple organic compounds’. QSAR Comb Sci. 2008;27:232–3.
Sakuratani, Y. Reply to the ‘comment on comparison of predictivities of log P calculation models based on experimental data for 134 simple organic compounds’. QSAR Comb Sci. 2008;27:231.
Wang, S, Sandler, SI, Chen, C‐C. Refinement of COSMO‐SAC and the applications. Ind Eng Chem Res. 2007;46:7275–88.
Klamt, A, Eckert, F. Comment on ‘refinement of COSMO‐SAC and the applications’. Ind Eng Chem Res. 2008;47:1351–2.
Sandler, SI, Wang, S, Lin, ST, Goddard, WA. Reply to “comments on ‘refinement of COSMO‐SAC and the applications’”. Ind Eng Chem Res. 2008;47:1353–4.
Lin, S‐T, Hsieh, M‐K, Hsieh, C‐M, Hsu, C‐C. Towards the development of theoretically correct liquid activity coefficient models. J Chem Thermodyn. 2009;41:1145–53.
Klamt, A, Krooshof, GJP, Taylor, R. Comment on ‘towards the development of theoretically correct liquid activity coefficients models’. J Chem Thermodyn. 2009;41:1312–3.
Lin, S‐T, Hsieh, M‐K, Hsieh, C‐M, Hsu, C‐C. Reply to “comment on ‘towards the development of theoretically correct liquid activity coefficient models’”. J Chem Thermodyn. 2009;41:1314–6.
Xue, Z, Mu, T, Gmehling, J. Comparison of the a priori COSMO‐RS models and group contribution methods: original UNIFAC, modified UNIFAC(Do), and modified UNIFAC(Do) consortium. Ind Eng Chem Res. 2012;51:11809–17. Erratum: Ind. Eng. Chem. Res., 51, 16163 (2012).
Klamt, A. Comment on ‘comparison of the a priori COSMO‐RS models and group contribution methods: original UNIFAC, modified UNIFAC(Do), and modified UNIFAC(Do) consortium’. Ind Eng Chem Res. 2012;51:13538–40.
Gmehling, J, Xue, Z, Mu, T. Reply to “comments on ‘comparison of the a priori COSMO‐RS models and group contribution methods: original UNIFAC, modified UNIFAC(Do), and modified UNIFAC(Do) consortium’”. Ind Eng Chem Res. 2012;51:13541–3.
Xiong, R, Sandler, SI, Burnett, RI. An improvement to COSMO‐SAC for predicting thermodynamic properties. Ind Eng Chem Res. 2014;53:8265–78.
Klamt, A. Comment on ‘an improvement to COSMO‐SAC for predicting thermodynamic properties’. Ind Eng Chem Res. 2014;53:8935.
Xiong, R, Sandler, SI, Burnett, RI. Reply to “comment on ‘an improvement to COSMO‐SAC for predicting thermodynamic properties’”. Ind Eng Chem Res. 2014;53:8936.
Pye, CC, Ziegler, T, van Lenthe, E, Louwen, JN. An implementation of the conductor‐like screening model of solvation within Amsterdam density functional package—part II. COSMO for real solvents. Can J Chem. 2009;87:790–7.
Chamberlin, AC, Cramer, CJ, Truhlar, DG. Performance of SM8 on a test to predict small‐molecule solvation free energies. J Phys Chem B. 2008;112:8651–5.
Marenich, AV, Cramer, CJ, Truhlar, DG. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small‐molecule solvation free energies. J Phys Chem B. 2009;113:4538–43.
Bashford, D, Case, DA. Generalized Born models of macromolecular solvation effects. Annu Rev Phys Chem. 2000;51:129–52.
Onufriev, AV, Case, DA. Generalized Born implicit solvent models for biomolecules. Annu Rev Biophys. 2019;48:275–96.
Cramer, CJ, Truhlar, DG. Generalized parameterized SCF model for free energies of solvation in aqueous solution. J Am Chem Soc. 1991;113:8305–11.
Still, WC, Tempczyk, A, Hawley, RC, Hendrickson, T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc. 1990;112:6127–9.
Onufriev, A, Bashford, D, Case, DA. Modification of the generalized Born models suitable for macromolecules. J Phys Chem B. 2000;104:3712–20.
Onufriev, A, Case, DA, Bashford, D. Effective Born radii in the generalized Born model approximation: the importance of being perfect. J Comput Chem. 2002;23:1297–304.
Mongan, J, Svrcek‐Seiler, WA, Onufriev, A. Analysis of integral expressions for effective Born radii. J Chem Phys. 2007;127:185101.
Lee, MS, Salsbury, FR Jr, Brooks, CL III. Novel generalized Born methods. J Chem Phys. 2002;116:10606–14.
Salsbury, FR Jr. Analysis of errors in Still`s equation for macromolecular electrostatic solvation energies. Mol Phys. 2006;104:1299–309.
Scarsi, M, Apostolakis, J, Caflisch, A. Continuum electrostatics energies of macromolecules in aqueous solutions. J Phys Chem A. 1997;101:8098–106.
Pierotti, RA. A scaled particle theory of aqueous and nonaqueous solutions. Chem Rev. 1976;76:717–26.
Floris, FM, Selmi, M, Tani, A, Tomasi, J. Free energy and entropy for inserting cavities in water: comparison of Monte Carlo simulation and scaled particle theory results. J Chem Phys. 1997;107:6353–65.
Cossi, M, Rega, N. First and second derivatives of the free energy in solution. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 313–22.
Floris, FM, Tomasi, J, Ahuir, JLP. Dispersion and repulsion contributions to the solvation energy: refinements to a simple computational model in the continuum approximation. J Comput Chem. 1991;12:784–91.
Gallicchio, E, Levy, RM. AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high‐resolution modeling. J Comput Chem. 2004;25:479–99.
Hou, T, Wang, J, Li, Y, Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2011;51:69–82.
Hou, T, Wang, J, Li, Y, Wang, W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics generalized/Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem. 2011;32:866–77.
Xu, L, Sun, H, Li, Y, Wang, J, Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J Phys Chem B. 2013;117:8408–21.
Sun, H, Li, Y, Shen, M, Tian, S, Xu, L, Pan, P, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys. 2014;16:22035–45.
Sun, H, Li, Y, Tian, S, Xu, L, Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys. 2014;16:15719–6729.
Chen, F, Liu, H, Sun, H, Pan, P, Li, Y, Li, D, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re‐rank binding poses generated by protein–protein docking. Phys Chem Chem Phys. 2016;18:22129–39.
Sun, H, Duan, L, Chen, F, Liu, H, Wang, Z, Pan, P, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end‐point binding free energy calculation approaches. Phys Chem Chem Phys. 2018;20:14450–60.
Weng, G, Wang, E, Chen, F, Sun, H, Wang, Z, Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction of reliability of binding affinities and binding poses for protein–peptide complexes. Phys Chem Chem Phys. 2019;21:10135–45.
Wang, E, Weng, G, Sun, H, Du, H, Zhu, F, Chen, F, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 10. Impacts of enhanced sampling and variable dielectric model on protein–protein interactions. Phys Chem Chem Phys. 2019;21:18958–69.
Wang, C, Greene, D, Xiao, L, Qi, R, Luo, R. Recent developments and applications of the MMPBSA method. Front Mol Biosci. 2018;4:87.
Genheden, S, Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand‐binding affinities. Expert Opin Drug Discovery. 2015;10:449–61.
Wang, E, Sun, H, Wang, J, Wang, Z, Liu, H, Zhang, JZH, et al. End‐point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev. 2019;119:9478–508.
Poli, G, Granchi, C, Rizzolio, F, Tuccinardi, T. Applications of MM‐PBSA methods in virtual screening. Molecules. 2020;25:1971.
Li, J, Zhu, T, Cramer, CJ, Truhlar, DG. New class IV charge model for extracting accurate partial charges from wave functions. J Phys Chem A. 1998;102:1820–31.
Winget, P, Thompson, JD, Xidos, JD, Cramer, CJ, Truhlar, DG. Charge model 3: a class IV charge model based on hybrid density functional theory with variable exchange. J Phys Chem A. 2002;106:10707–17.
Olson, RM, Marenich, AV, Cramer, CJ, Truhlar, DG. Charge model 4 and intramolecular charge polarization. J Chem Theory Comput. 2007;3:2046–54.
Marenich, AV, Jerome, SV, Cramer, CJ, Truhlar, DG. Charge model 5: an extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theory Comput. 2012;8:527–41.
Davidson, ER, Chakravorty, S. A test of the Hirshfeld definition of atomic charges and moments. Theor Chem Accounts. 1992;83:319–30.
Chamberlin, AC, Cramer, CJ, Truhlar, DG. Predicting aqueous free energies of solvation as functions of temperature. J Phys Chem B. 2006;110:5665–75.
Chamberlin, AC, Cramer, CJ, Truhlar, DG. Extension of a temperature‐dependent aqueous solvation model to compounds containing nitrogen, fluorine, chlorine, bromine, and sulfur. J Phys Chem B. 2008;112:3024–39.
Abraham, MH. Scales of solute hydrogen‐bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev. 1993;22:73–83.
Vassetti, D, Labat, F. Evaluation of the performances of different atomic charge and nonelectrostatic models in the finite‐difference Poisson–Boltzmann approach. Int J Quantum Chem. 2020;121:e26560.
Zhang, H, Jiang, Y, Yan, H, Cui, Z, Yin, C. Comparative assessment of computational methods for free energy calculations of ionic hydration. J Chem Inf Model. 2017;57:2763–75.
Dearden, JC. Partitioning and lipophilicity in quantitative structure–activity relationships. Environ Health Perspect. 1985;61:203–28.
Amézqueta, S, Subirats, X, Fuguet, E, Rosés, M, Ràfols, C. Octanol–water partition constant. In: Poole, CF, editor. Liquid‐phase extraction. Amsterdam: Elsevier; 2020; (chapter 6). p. 183–208.
Ginex, T, Vazquez, J, Gilbert, E, Herrero, E, Luque, FJ. Lipophilicity in drug design: an overview of lipophilicity descriptors in 3D‐QSAR studies. Future Med Chem. 2019;11:1177–93.
Sahoo, S, Adhikari, C, Kuanar, M, Mishra, BK. A short review of the generation of molecular descriptors and their applications in quantitative structure property/activity relationships. Curr Comput Aided Drug Des. 2016;12:181–205.
Tsopelas, F, Giaginis, C, Tsantili‐Kakoulidou, A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin Drug Discovery. 2017;12:885–96.
Hermens, JLM, de Bruijn, JHM, Brooke, DN. The octanol–water partition coefficient: strengths and limitations. Environ Toxicol Chem. 2013;32:732–3.
Işik, M, Bergazin, TD, Fox, T, Rizzi, A, Chodera, JD, Mobley, DL. Assessing the accuracy of octanol–water partition coefficient predictions in the SAMPL6 part II log P challenge. J Comput Aided Mol Des. 2020;34:335–70.
Ouimet, JA, Paluch, AS. Predicting octanol/water partition coefficients for the SAMPL6 challenge using the SM12, SM8, and SMD solvation models. J Comput Aided Mol Des. 2020;34:575–88.
Chipman, DM. Anion electric field is related to hydration energy. J Chem Phys. 2003;118:9937–42.
Chipman, DM, Chen, F. Cation electric field is related to hydration energy. J Chem Phys. 2006;124:144507.
Voityuk, AA, Vyboishchikov, SF. A simple COSMO‐based method for calculation of hydration energies of neutral molecules. Phys Chem Chem Phys. 2019;21:18706–13.
Voityuk, AA, Vyboishchikov, SF. Fast and accurate calculation of hydration energies of molecules and ions. Phys Chem Chem Phys. 2020;22:14591–8.
Hille, C, Ringe, S, Deimel, M, Kunkel, C, Acree, WE, Reuter, K, et al. Generalized molecular solvation in non‐aqueous solutions by a single parameter implicit solvation scheme. J Chem Phys. 2019;150:041710.
Amovilli, C. Calculation of the dispersion energy contribution to the solvation free energy. Chem Phys Lett. 1994;229:244–9.
Amovilli, C, Mennucci, B. Self‐consistent‐field calculation of Pauli repulsion and dispersion contributions to the solvation free energy in the polarizable continuum model. J Phys Chem B. 1997;101:1051–7.
Weijo, V, Mennucci, B, Frediani, L. Toward a general formulation of dispersion effects for solvation continuum models. J Chem Theory Comput. 2010;6:3358–64.
Cupellini, L, Amovilli, C, Mennucci, B. Electronic excitations in nonpolar solvents: can the polarizable continuum model accurately reproduce solvent effects? J Phys Chem B. 2015;119:8984–91.
Duignan, TT, Parsons, DF, Ninham, BW. A continuum solvent model of the multipolar dispersion solvation energy. J Phys Chem B. 2013;117:9412–20.
Duignan, TT, Parsons, DF, Ninham, BW. A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions. J Phys Chem B. 2013;117:9421–9.
Huron, M‐J, Claverie, P. Calculation of the interaction energy of one molecule with its whole surrounding. I. Method and application to pure nonpolar compounds. J Phys Chem. 1972;76:2123–33.
Floris, F, Tomasi, J. Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation. J Comput Chem. 1989;10:616–27.
Floris, FM, Tani, A, Tomasi, J. Evaluation of dispersion–repulsion contributions to the solvation energy. Calibration of the uniform approximation with the aid of RISM calculations. Chem Phys. 1993;169:11–20.
Truong, TN. Quantum modelling of reactions in solution: an overview of the dielectric continuum methodology. Int Rev Phys Chem. 1998;17:525–46.
McLachlan, AD. Retarded dispersion forces between molecules. Proc R Soc Lond A. 1963;271:387–401.
McWeeny, R. Weak interactions between molecules. Croat Chem Acta. 1984;57:865–78.
Jaszunski, M, McWeeny, R. Time‐dependent Hartree–Fock calculations of dispersion energy. Mol Phys. 1985;55:1275–86.
McWeeny, R. Electron density and response theory. J Mol Struct (THEOCHEM). 1985;123:231–42.
Amovilli, C, McWeeny, M. A matrix partitioning approach to the calculation of intermolecular potentials. General theory and some examples. Chem Phys. 1990;140:343–61.
McWeeny, R. Methods of molecular quantum mechanics. 2nd ed. New York: Academic Press; 1992.
Tang, KT. Dynamic polarizabilities and van der Waals coefficients. Phys Rev. 1969;177:108–14.
Langhoff, PW, Karplus, M. Application of Padé approximants to dispersion force and optical polarizability computations. In: Baker, GA Jr, Gammel, JL, editors. The Padé approximant in theoretical physics. Mathematics in science and engineering. Volume 71. New York: Academic Press; 1970; (chapter 2). p. 41–97.
Szabo, A, Ostlund, NS. The correlation energy in the random phase approximation: intermolecular forces between closed‐shell systems. J Chem Phys. 1977;67:4351–60.
Kaplan, IG, Rodimova, OB. Intermolecular interactions. Sov Phys Usp. 1978;21:918–43.
Buhmann, SY, Welsch, D‐G. Dispersion forces in macroscopic quantum electrodynamics. Prog Quantum Electron. 2007;31:51–130.
London, F. Zur Theorie und Systematik der Molekularkräfte. Z Phys. 1930;63:245–79.
Longuet‐Higgins, HC. Intermolecular forces. Discuss Faraday Soc. 1965;40:7–18.
Norman, P, Ruud, K. Microscopic theory of nonlinear optics. In: Papadopoulos, MG, Sadlej, AJ, Leszczynski, J, editors. Non‐linear optical properties of matter. Challenges and advances in computational chemistry and physics. Volume 1 of. Dordrecht: Springer; 2006; (chapter 1). p. 1–49.
Rösch, N, Zerner, MC. Calculation of dispersion energy shifts in molecular electronic spectra. J Phys Chem. 1994;98:5817–23.
Dyzaloshinskii, IE, Lifshitz, EM, Pitaevskii, LP. The general theory of van der Waals forces. Adv Phys. 1961;10:165–209.
Zaremba, E, Kohn, W. Van der Waals interaction between an atom and a solid surface. Phys Rev B. 1976;13:2270–85.
Parsegian, VA. Van der Waals forces: a handbook for biologists, chemists, engineers, and physicists. New York: Cambridge University Press; 2006.
Vydrov, OA, Van Voorhis, T. Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism. J Chem Phys. 2009;130:104105.
Vydrov, OA, Van Voorhis, T. Nonlocal van der Waals density functional theory made simple. Phys Rev Lett. 2009;103:063004.
Vydrov, OA, Van Voorhis, T. Nonlocal van der Waals density functional: the simpler the better. J Chem Phys. 2010;133:244103.
Vydrov, OA, Van Voorhis, T. Nonlocal van der Waals density functionals based on local response models. In: Marques, MAL, Maitra, NT, Nogueira, FMS, Gross, EKU, Rubio, A, editors. Fundamentals of time‐dependent density functional theory. Lecture notes in physics. Volume 837 of. Berlin: Springer‐Verlag; 2012; (chapter 23). p. 443–56.
Calbo, J, Ortí, E, Sancho‐García, JC, Aragó, J. The nonlocal correlation density function VV10: a successful attempt to accurately capture noncovalent interactions. Annu Rep Comput Chem. 2015;11:37–102.
Langreth, DC, Dion, M, Rydberg, H, Schröder, E, Hyldgaard, P, Lundqvist, BI. Van der Waals density functional theory with applications. Int J Quantum Chem. 2005;101:599–610.
Dion, M, Rydberg, H, Schröder, E, Langreth, DC, Lundqvist, BI. Van der Waals density functional for general geometries. Phys Rev Lett. 2004;92:246401.
Langreth, DC, Lundqvist, BI, Chakarova‐Käck, SD, Cooper, VR, Dion, M, Hyldgaard, P, et al. A density functional for sparse matter. J Phys Condens Matter. 2009;21:084203.
Lee, K, Murray, ÉD, Kong, L, Lundqvist, BI, Langreth, DC. Higher‐accuracy van der Waals density functional. Phys Rev B. 2010;82:081101.
Herring, C, Flicker, M. Asymptotic exchange coupling of two hydrogen atoms. Phys Rev. 1964;134:A362–6.
Cammi, R, Verdolino, V, Mennucci, B, Tomasi, J. Towards the elaboration of a QM method to describe molecular solutes under the effect of a very high pressure. Chem Phys. 2008;344:135–41.
Cammi, R, Cappelli, C, Mennucci, B, Tomasi, J. Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: methodology and diborane as a test case. J Chem Phys. 2012;137:154112.
Chen, B, Hoffmann, R, Cammi, R. The effect of pressure on organic reactions in fluids—a new theoretical perspective. Angew Chem Int Ed Engl. 2017;56:11126–42.
Cammi, R. Quantum chemistry at the high pressures: the eXtreme pressure polarizable continuum model (XP‐PCM). In: Wójcik, MJ, Nakatsuji, H, Kirtman, B, Ozaki, Y, editors. Frontiers of quantum chemistry. Singapore: Springer Nature; 2018; (chapter 12). p. 273–88.
Fecko, CJ, Eaves, JD, Loparo, JJ, Tokmakoff, A, Geissler, PL. Ultrafast hydrogen‐bond dynamics in the infrared spectroscopy of water. Science. 2003;301:1698–702.
Corcelli, SA, Lawrence, CP, Skinner, JL. Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O. J Chem Phys. 2004;120:8107–17.
Smith, JD, Cappa, CD, Wilson, KR, Cohen, RC, Geissler, PL, Saykally, RJ. Unified description of temperature‐dependent hydrogen‐bond rearrangements in liquid water. Proc Natl Acad Sci U S A. 2005;102:14171–4.
Klamt, A, Reinisch, J, Eckert, F, Hellweg, A, Diedenhofen, M. Polarization charge densities provide a predictive quantification of hydrogen bond energies. Phys Chem Chem Phys. 2012;14:955–63.
Klamt, A, Reinisch, J, Eckert, F, Graton, J, Le Questel, J‐Y. Interpretation of experimental hydrogen‐bond enthalpies and entropies from COSMO polarisation charge densities. Phys Chem Chem Phys. 2013;15:7147–54.
Silva, NM, Deglmann, P, Pliego, JR Jr. CMIRS solvation model for methanol: parameterization, testing, and comparison with SMD, SM8, and COSMO‐RS. J Phys Chem B. 2016;120:12660–8.
Pratt, LR, Chaudhari, MI, Rempe, SB. Statistical analyses of hydrophobic interactions: a mini‐review. J Phys Chem B. 2016;120:6455–60.
He, S, Biedermann, F, Vankova, N, Zhechkov, L, Heine, T, Hoffman, RE, et al. Cavitation energies can outperform dispersion interactions. Nat Chem. 2018;10:1252–7.
Ansari, N, Laio, A, Hassanali, A. Spontaneously forming dendritic voids in liquid water can host small polymers. J Phys Chem Lett. 2019;10:5585–91.
Böttcher, CJF, Bordewijk, P. Theory of electric polarization. Vol 2. Amsterdam: Elsevier; 1978.
Vaughan, WE. Dielectric relaxation. Annu Rev Phys Chem. 1979;30:103–24.
Feldman, Y, Puzenko, A, Ryabov, Y. Dielectric relaxation phenomena in complex materials. Adv Chem Phys. 2006;133:1–125.
Feldman, Y, Ishai, PB, Puzenko, A, Raicu, V. Elementary theory of the interaction of electromagnetic fields with dielectric materials. In: Raicu, V, Feldman, Y, editors. Dielectric relaxation in biological systems. 1st ed. Oxford: Oxford University Press; 2015. p. 33–59.
Kaatze, U. Complex permittivity of water as a function of frequency and temperature. J Chem Eng Data. 1989;34:371–4.
Kaatze, U. Dielectric spectroscopy of aqueous solutions. Hydration phenomena and hydrogen‐bonded networks. J Mol Liq. 1993;56:95–115.
Kaatze, U. Dielectric relaxation of water. In: Raicu, V, Feldman, Y, editors. Dielectric relaxation in biological systems. 1st ed. Oxford: Oxford University Press; 2015. p. 189–227.
Hsu, C‐P, Song, X, Marcus, RA. Time‐dependent Stokes shift and its calculation from solvent dielectric dispersion data. J Phys Chem B. 1997;101:2546–51.
Ingrosso, F, Mennucci, B, Tomasi, J. Quantum mechanical calculations coupled with a dynamical continuum model for the description of dielectric relaxation: time dependent Stokes shift of coumarin C153 in polar solvents. J Mol Liq. 2003;108:21–46.
Caricato, M, Mennucci, B, Tomasi, J, Ingrosso, F, Cammi, R, Corni, S, et al. Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J Chem Phys. 2006;124:124520.
Ding, F, Lingerfelt, DB, Mennucci, B, Li, X. Time‐dependent non‐equilibrium dielectric response in QM/continuum approaches. J Chem Phys. 2015;142:034120.
Wildman, A, Donati, G, Lipparini, F, Mennucci, B, Li, X. Nonequilibrium environment dynamics in a frequency‐dependent polarizable embedding model. J Chem Theory Comput. 2019;15:43–51.
Debye, PJW. Polar molecules. New York: The Chemical Catalog Company; 1929.
Gil, G, Pipolo, S, Delgado, A, Rozzi, CA, Corni, S. Nonequilibrium solvent polarization effects in real‐time electronic dynamics of solute molecules subject to time‐dependent electric fields: a new feature of the polarizable continuum model. J Chem Theory Comput. 2019;15:2306–19.
Goings, JJ, Lestrange, PJ, Li, X. Real‐time time‐dependent electronic structure theory. WIREs Comput Mol Sci. 2018;8:e1341.
Li, X, Govind, N, Isborn, C, DePrince, AE III, Lopata, K. Real‐time time‐dependent electronic structure theory. Chem Rev. 2020;120:9951–93.
Mistrik, J, Kasap, S, Ruda, HE, Koughia, C, Singh, J. Optical properties of electronic materials: fundamentals and characterization. In: Kasap, S, Capper, P, editors. Springer handbook of electronic and photonic materials. Springer International, Cham, Switzerland: Springer International Publishing; 2017; (chapter 3). p. 47–83.
Wohlfarth, C, Wohlfarth, B. Refractive indices of organic liquids. Landolt‐Börnstein, Group III Condensed Matter. Vol 38B. Springer‐Verlag, Berlin: Springer; 1996.
Hale, GM, Querry, MR. Optical constants of water in the 200‐nm to 200‐μm wavelength region. Appl Opt. 1973;12:555–63.
Cossi, M, Barone, V. Separation between fast and slow polarizations in continuum solvation models. J Phys Chem A. 2000;104:10614–22.
Dinpajooh, M, Newton, MD, Matyushov, DV. Free energy functionals for polarization fluctuations: Pekar factor revisited. J Chem Phys. 2017;146:064504.
Collie, CH, Hasted, JB, Ritson, DM. The dielectric properties of water and heavy water. Proc Phys Soc. 1948;60:145–60.
Rønne, C, Thrane, L, Åstrand, P‐O, Wallqvist, A, Mikkelsen, KV, Keiding, SR. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. J Chem Phys. 1997;107:5319–31.
Rønne, C, Keiding, SR. Low frequency spectroscopy of liquid water using THz‐time domain spectroscopy. J Mol Liq. 2002;101:199–218.
Nagai, M, Yada, H, Arikawa, T, Tanaka, K. Terahertz time‐domain attenuated total reflection spectroscopy in water and biological solution. Int J Infrared Milli. 2006;27:505–15.
Zhou, J, Rao, X, Liu, X, Li, T, Zhou, L, Zheng, Y, et al. Temperature dependent optical and dielectric properties of liquid water studied by terahertz time‐domain spectroscopy. AIP Adv. 2019;9:035346.
Popov, I, Ishai, PB, Khamzin, A, Feldman, Y. The mechanism of the dielectric relaxation of water. Phys Chem Chem Phys. 2016;18:13941–53.
Elton, DC. The origin of the Debye relaxation in liquid water and fitting the high frequency excess response. Phys Chem Chem Phys. 2017;19:18739–49.
Kaatze, U, Uhlendorf, V. The dielectric properties of water at microwave frequencies. Z Phys Chem Neue Folge. 1981;126:151–65.
Wohlfarth, C. Static dielectric constants of pure liquids and binary liquid mixtures. Landolt‐Börnstein, New Series IV. Vol 6. Springer‐Verlag, Berlin: Springer Science + Business Media; 1991.
Tilton, LW, Taylor, JK. Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60°C. J Res Natl Bur Stand. 1938;20:419–77.
Kittel, C. Introduction to solid state physics. 8th ed. Hoboken: John Wiley %26 Sons; 2005.
Wemple, SH, Didomenico, M Jr, Camlibel, I. Dielectric and optical properties of melt‐grown BaTiO3. J Phys Chem Solids. 1968;29:1797–803.
Mataga, N, Kaifu, Y, Koizumi, M. Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bull Chem Soc Jpn. 1956;29:465–70.
Lippert, E. Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z Electrochem. 1957;61:962–75.
Mataga, N, Chosrowjan, H, Taniguchi, S. Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: our early studies and recent developments. J Photochem Photobiol C. 2005;6:37–79.
Bayliss, NS. The effect of the electrostatic polarization of the solvent on electronic absorption spectra in solution. J Chem Phys. 1950;18:292–6.
Ooshika, Y. Absorption spectra of dyes in solution. J Phys Soc Jpn. 1954;9:594–602.
McRae, EG. Theory of solvent effects on molecular electronic spectra. Frequency shifts. J Phys Chem. 1957;61:562–72.
Bilot, L, Kawski, A. Zue Theorie des Einflusses von Lösungsmitteln auf die Electronenspektren der Moleküle. Z Naturforsch A. 1962;17:621–7.
Bakshiev, NG. Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions. Opt Spectrosc. 1964;16:821–32.
Liptay, W. Dipole moments of molecules in excited states and the effect of external electric fields on the optical absorption of molecules in solution. In: Sinanoğlu, O, editor. Modern quantum chemistry: Istanbul lectures. Part III. Action of light and organic crystals. New York: Academic Press; 1965. p. 45–66.
Abe, T. Theory of solvent effects on molecular electronic spectra. Frequency shifts. Bull Chem Soc Jpn. 1965;38:1314–8.
Chamma, A, Viallet, P. Determination du moment dipolaire d`une molecule dans un etat excite singulet. Sci Paris Ser C. 1970;270:1901–4.
Brady, JE, Carr, PW. An analysis of dielectric models of solvatochromism. J Phys Chem. 1985;89:5759–66.
Józefowicz, M, Milart, P, Heldt, JR. Determination of ground and excited state dipole moments of 4,5′‐diamino[1,1′:3′,1″‐terphenyl]‐4′,6′‐dicarbonitrile using solvatochromic method and quantum‐chemical calculations. Spectrochim Acta A. 2009;74:959–63.
Siddlingeshwar, R, Hanagodimath, SM. Estimation of the ground and the first excited singlet‐state dipole moments of 1,4‐disubstituted anthraquinone dyes by the solvatochromic method. Spectrochim Acta A. 2010;75:1203–10.
Manohara, SR, Kumar, VU, Shivakumaraiah,, Gerward, G. Estimation of ground and excited‐state dipole moments of 1,2‐diazines by solvatochromic method and quantum‐chemical calculation. J Mol Liq. 2013;181:97–104.
Demissie, EG, Mengesha, ET, Woyessa, GW. Modified solvatochromic equations for better determination of ground and excited state dipole moments of p‐aminobenzoicacid (PABA): accounting for real shape over hypothetical spherical solvent shell. J Photochem Photobiol A. 2017;337:184–91.
Kumari, R, Varghese, A, George, L, Sudhaker, YN. Effect of solvent polarity on the photophysical properties of chalcone derivatives. RSC Adv. 2017;7:24204–14.
Renuka, CG, Nadaf, YF, Sriprakash, G, Prasad, SR. Solvent dependence on structure and electronic properties of 7‐(diethylamino)‐2H‐1‐benzopyran‐2‐one (C‐466) laser dye. J Fluoresc. 2018;28:839–54.
Divac, VM, Šakić, D, Weitner, T, Gabričević, M. Solvent effects on the absorption and fluorescence spectra of Zaleplon: determination of ground and excited state dipole moments. Spectrochim Acta A. 2019;212:356–62.
Marcus, RA. On the theory of oxidation‐reduction reactions involving electron transfer. I. J Chem Phys. 1956;24:966–78.
Marcus, RA. Chemical and electrochemical electron‐transfer theory. Annu Rev Phys Chem. 1964;15:155–96.
Marcus, RA, Sutin, N. Electron transfers in chemistry and biology. Biochim Biophys Acta. 1985;811:265–322.
Newton, MD. The role of solvation in electron transfer: theoretical and computational aspects. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 389–413.
Li, X‐Y. An overview of continuum models for nonequilibrium solvation: popular theories and new challenge. Int J Quantum Chem. 2015;115:700–21.
Hsu, C‐P. Reorganization energies and spectral densities for electron transfer problems in charge transporting materials. Phys Chem Chem Phys. 2020;22:21630–41.
Cramer, CJ, Truhlar, DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev. 1999;99:2161–200.
Kim, HJ, Hynes, JT. Equilibrium and nonequilibrium solvation and solute electronic structure. I. Formulation. J Chem Phys. 1990;93:5194–210.
Aguilar, MA, Olivares del Valle, FJ, Tomasi, J. Nonequilibrium solvation: an ab initio quantum‐mechanical method in the continuum cavity model approximation. J Chem Phys. 1993;98:7375–84.
Mennucci, B. Continuum models for excited states. In: Mennucci, B, Cammi, R, editors. Continuum solvation models in chemical physics. Chichester, UK: Wiley; 2007. p. 110–23.
Guido, CA, Caprasecca, S. On the description of the environment polarization response to electronic transitions. Int J Quantum Chem. 2019;119:e25711.
Mennucci, B, Cammi, R, Tomasi, J. Excited states and solvatochromatic shifts within a nonequilibrium solvation approach: a new formulation of the integral equation formalism method at the self‐consistent field, configuration interaction, and multiconfiguration self‐consistent field level. J Chem Phys. 1998;109:2798–807.
Cossi, M, Barone, V. Solvent effect on vertical electronic transitions by the polarizable continuum model. J Chem Phys. 2000;112:2427–35.
Chipman, DM. Vertical electronic excitation with a dielectric continuum model of solvation including volume polarization. I. Theory. J Chem Phys. 2009;131:014103.
Mewes, J‐M, You, Z‐Q, Wormit, M, Kriesche, T, Herbert, JM, Dreuw, A. Experimental benchmark data and systematic evaluation of two a posteriori, polarizable‐continuum corrections for vertical excitation energies in solution. J Phys Chem A. 2015;119:5446–64.
Mewes, J‐M, Herbert, JM, Dreuw, A. On the accuracy of the state‐specific polarizable continuum model for the description of correlated ground and excited states in solution. Phys Chem Chem Phys. 2017;19:1644–54.
Coons, MP, You, Z‐Q, Herbert, JM. The hydrated electron at the surface of neat liquid water appears to be indistinguishable from the bulk species. J Am Chem Soc. 2016;138:10879–86.
Cammi, R, Tomasi, J. Nonequilibrium solvation theory for the polarizable continuum model: a new formulation at the SCF level with application to the case of the frequency‐dependent linear electric response function. Int J Quantum Chem Symp. 1995;29:465–74.
Aguilar, MA. Separation of the electric polarization into fast and slow components: a comparison of two partition schemes. J Phys Chem A. 2001;105:10393–6.
Pekar, SI. Untersuchungen über die Elektronentheorie der Kristalle. Berlin: Akademie‐Verlag; 1954.
Pekar, SI. Research in electron theory of crystals. Technical Report AEC‐tr‐5575, U.S. Atomic Energy Commission, Division of Technical Information. 1963.
Bayliss, NS, McRae, EG. Solvent effects in organic spectra: dipole forces and the Franck–Condon principle. J Phys Chem. 1954;58:1002–6.
Basilevsky, MV, Chudinov, GE. Dynamics of charge transfer chemical reactions in a polar medium within the scope of the Born–Kirkwood–Onsager model. Chem Phys. 1991;157:327–44.
Houjou, H, Sakurai, M, Inoue, Y. Theoretical evaluation of medium effects on absorption maxima of molecular solutes. I. Formulation of a new method based on the self‐consistent reaction field theory. J Chem Phys. 1997;107:5652–60.
Cammi, R, Frediani, L, Mennucci, B, Tomasi, J, Ruud, K, Mikkelsen, KV. A second‐order, quadratically convergent multiconfigurational self‐consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. J Chem Phys. 2002;117:13–26.
Marenich, AV, Cramer, CJ, Truhlar, DG, Guido, CA, Mennucci, B, Scalmani, G, et al. Practical computation of electronic excitation in solution: vertical excitation model. Chem Sci. 2011;2:2143–61.
Jacobson, LD, Herbert, JM. A simple algorithm for determining orthogonal, self‐consistent excited‐state wave functions for a state‐specific Hamiltonian: application to the optical spectrum of the aqueous electron. J Chem Theory Comput. 2011;7:2085–93.
Lunkenheimer, B, Köhn, A. Solvent effects on electronically excited states using the conductor‐like screening model and the second‐order correlated method ADC(2). J Chem Theory Comput. 2013;9:977–94.
Winter, B, Faubel, M. Photoemission from liquid aqueous solutions. Chem Rev. 2006;106:1176–211.
Seidel, R, Thürmer, S, Winter, B. Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. J Phys Chem Lett. 2011;2:633–41.
Seidel, R, Winter, B, Bradforth, SE. Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy. Annu Rev Phys Chem. 2016;67:283–305.
Winter, B, Weber, R, Hertel, IV, Faubel, M, Jungwirth, P, Brown, EC, et al. Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J Am Chem Soc. 2005;127:7203–14.
Jacobson, LD, Herbert, JM. A one‐electron model for the aqueous electron that includes many‐body electron‐water polarization: bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum. J Chem Phys. 2010;133:154506.
Ghosh, D, Isayev, O, Slipchenko, LV, Krylov, AI. Effect of solvation on the vertical ionization energy of thymine: from microhydration to bulk. J Phys Chem A. 2011;115:6028–38.
Ghosh, D, Roy, A, Seidel, R, Winter, B, Bradforth, S, Krylov, AI. First‐principle protocol for calculating ionization energies and redox potentials of solvated molecules and ions: theory and application to aqueous phenol and phenolate. J Phys Chem B. 2012;116:7269–80.
Tazhigulov, RN, Gurunathan, PK, Kim, Y, Slipchenko, LV, Bravaya, KB. Polarizable embedding for simulating redox potentials of biomolecules. Phys Chem Chem Phys. 2019;21:11642–50.
Tóth, Z, Kubečka, J, Muchová, E, Slaviček, P. Ionization energies in solution with QM:QM approach. Phys Chem Chem Phys. 2020;22:10550–60.
Provorse, MR, Peev, T, Xiong, C, Isborn, CM. Convergence of excitation energies in mixed quantum and classical solvent: comparison of continuum and point charge models. J Phys Chem B. 2016;120:12148–59. Erratum: J. Phys. Chem. B, 121, 2372 (2017).
Paul, SK, Coons, MP, Herbert, JM. Erratum: ‘quantum chemistry in arbitrary dielectric environments: theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface’. J Chem Phys. 2019;151:189901.
Perry, CF, Zhang, P, Nunes, FB, Jordan, I, von Conta, A, Wörner, HJ. Ionization energy of liquid water revisited. J Phys Chem Lett. 2020;11:1789–94.
Luckhaus, D, Yamamoto, Y, Suzuki, T, Signorell, R. Genuine binding energy of the hydrated electron. Sci Adv. 2017;3:e1603224.
Herbert, JM. Structure of the aqueous electron. Phys Chem Chem Phys. 2019;21:20538–65.
Muñoz‐Losa, A, Markovitsi, D, Improta, R. A state‐specific PCM‐DFT method to include dynamic solvent effects in the calculation of ionization energies: application to DNA bases. Chem Phys Lett. 2015;634:20–4.
Khani, SK, Khah, AM, Hättig, C. Comparison of reaction field schemes for coupling continuum solvation models with wave function methods for excitation energies. J Chem Theory Comput. 2020;16:4554–64.
Thompson, MA, Schenter, GK. Excited states of the bacteriochlorophyll b dimer of Rhodopseudomonas viridis: a QM/MM study of the photosynthetic reaction center that includes MM polarization. J Phys Chem. 1995;99:6374–86.
Arora, P, Slipchenko, LV, Webb, SP, DeFusco, A, Gordon, MS. Solvent‐induced frequency shifts: configuration interaction singles combined with the effective fragment potential method. J Phys Chem A. 2010;114:6742–50.
Cammi, R, Corni, S, Mennucci, B, Tomasi, J. Electronic excitation energies of molecules in solution: state specific and linear response methods for nonequilibrium continuum solvation models. J Chem Phys. 2005;122:104513.
Improta, R, Barone, V, Scalmani, G, Frisch, MJ. A state‐specific polarizable continuum model time dependent density functional method for excited state calculations in solution. J Chem Phys. 2006;125:054103.
Improta, R, Scalmani, G, Frisch, MJ, Barone, V. Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. J Chem Phys. 2007;127:074504.
Furche, F, Ahlrichs, R. Adiabatic time‐dependent density functional methods for excited state properties. J Chem Phys. 2002;117:7433–47. Erratum: J. Chem. Phys., 121, 12772–12773 (2004).
Ronca, E, Angeli, C, Belpassi, L, De Angelis, F, Tarantelli, F, Pastore, M. Density relaxation in time‐dependent density functional theory: combining relaxed density natural orbitals and multireference perturbation theories for an improved description of excited states. J Chem Theory Comput. 2014;10:4014–24.
Maschietto, F, Campetella, M, Frisch, MJ, Scalmani, G, Adamo, C, Ciofini, I. How are the charge transfer descriptors affected by the quality of the underpinning electronic density? J Comput Chem. 2018;39:735–42.
Mennucci, B, Cappelli, C, Guido, CA, Cammi, R, Tomasi, J. Structures and properties of electronically excited chromophores in solution from the polarizable continuum model coupled to the time‐dependent density functional theory. J Phys Chem A. 2009;113:3009–20.
Amos, AT, Burrows, BL. Solvent‐shift effects on electronic spectra and excited‐state dipole moments and polarizabilities. Adv Quantum Chem. 1973;7:289–313.
Suppan, P. Solvent effects on the energy of electronic transitions: experimental observations and applications to structural problems of excited molecules. J Chem Soc A. 1968;3125–33.
Suppan, P. Polarizability of excited molecules from spectroscopic studies. Spectrochim Acta A. 1968;24:1161–5.
Amos, AT, Burrows, BL. Dispersion interactions and solvent‐shift effects. Theor Chem Accounts. 1973;29:139–50.
Marenich, AV, Cramer, CJ, Truhlar, DG. Uniform treatment of solute–solvent dispersion in the ground and excited electronic states of the solute based on a solvation model with state‐specific polarizability. J Chem Theory Comput. 2013;9:3649–59.
Marenich, AV, Cramer, CJ, Truhlar, DG. Electronic absorption spectra and solvatochromic shifts by the vertical excitation model: solvated clusters and molecular dynamics sampling. J Phys Chem B. 2015;119:958–67.
Jacquemin, D, Planchat, A, Adamo, C, Mennucci, B. TD‐DFT assessment of functionals for optical 0–0 transitions in solvated dyes. J Chem Theory Comput. 2012;8:2359–72.
Olivares del Valle, FJ, Tomasi, J. Electron correlation and solvation effects. I. Basic formulation and preliminary attempt to include the electron correlation in the quantum mechanical polarizable continuum model so as to study solvation phenomena. Chem Phys. 1991;150:139–50.
Aguilar, MA, Olivares del Valle, FJ, Tomasi, J. Electron correlation and solvation effects. II. The description of the vibrational properties of a water molecule in a dielectric given by the application of the polarizable continuum model with inclusion of correlation effects. Chem Phys. 1991;150:151–61.
Ángyán, J. Choosing between alternative MP2 algorithms in the self‐consistent reaction field theory of solvent effects. Chem Phys Lett. 1995;241:51–6.
Lipparini, F, Scalmani, G, Mennucci, B. Non covalent interactions in RNA and DNA base pairs: a quantum‐mechanical study of the coupling between solvent and electronic density. Phys Chem Chem Phys. 2009;11:11617–23.
Cammi, R. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives. J Chem Phys. 2009;131:164104.
Cammi, R, Tomasi, J. Quantum cluster theory for the polarizable continuum model (PCM). In: Leszczynski, J, Kaczmarek‐Kedziera, A, Puzyn, T, Papadopoulos, MG, Reis, H, Shukla, MK, editors. Handbook of computational chemistry. 2nd ed. Switzerland: Springer International Publishing; 2017; (chapter 34). p. 1517–56.
Caricato, M, Mennucci, B, Scalmani, G, Trucks, GW, Frisch, MJ. Electronic excitation energies in solution at equation of motion CCSD level within a state specific polarizable continuum model approach. J Chem Phys. 2010;132:084102.
Caricato, M. CCSD‐PCM: improving upon the reference reaction field approximation at no cost. J Chem Phys. 2011;135:074113.
Caricato, M. Coupled cluster theory in the condensed phase within the singles‐T density scheme for the environment response. WIREs Comput Mol Sci. 2020;10:e1463.
Khani, SK, Khah, AM, Hättig, C. COSMO‐RI‐ADC(2) excitation energies and excited state gradients. Phys Chem Chem Phys. 2018;20:16354–63.
Dreuw, A, Wormit, M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. WIREs Comput Mol Sci. 2015;5:82–95.
De Vetta, M, Menger, MFSJ, Nogueira, JJ, González, L. Solvent effects on electronically excited states: QM/continuum versus QM/explicit models. J Phys Chem B. 2018;122:2975–84.
Cossi, M, Barone, V. Time‐dependent density functional theory for molecules in liquid solutions. J Chem Phys. 2001;115:4708–17.
Cammi, R, Mennucci, B. Linear response theory for the polarizable continuum model. J Chem Phys. 1999;110:9877–86.
Cammi, R, Mennucci, B, Tomasi, J. Fast evaluation of geometries and properties of excited molecules in solution: a Tamm–Dancoff model with application to 4‐dimethylaminobenzonitrile. J Phys Chem A. 2000;104:5631–7.
Corni, S, Tomasi, J. Excitation energies of a molecule close to a metal surface. J Chem Phys. 2002;117:7266–78.
Iozzi, MF, Mennucci, B, Tomasi, J, Cammi, R. Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM). J Chem Phys. 2004;120:7029–40.
Cammi, R, Cossi, M, Mennucci, B, Tomasi, J. Analytical Hartree–Fock calculation of the dynamical polarizabilities α, β, and γ of molecules in solution. J Chem Phys. 1996;105:10556–64.
Duchemin, I, Guido, CA, Jacquemin, D, Blase, X. The Bethe–Salpeter formalism with polarisable continuum embedding: reconciling linear‐response and state‐specific features. Chem Sci. 2018;9:4430–43.
Cammi, R. Coupled‐cluster theories for the polarizable continuum model. II. Analytical gradients for excited states of molecular solutes by the equation of motion coupled‐cluster method. Int J Quantum Chem. 2010;110:3040–52.
Cammi, R. Coupled‐cluster theory for the polarizable continuum model. III. A response theory for molecules in solution. Int J Quantum Chem. 2012;112:2547–60.
Caricato, M. A comparison between state‐specific and linear‐response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD‐PCM method. J Chem Phys. 2013;139:044116.
Caricato, M. Linear response coupled cluster theory with the polarizable continuum model within the singles approximation for the solvent response. J Chem Phys. 2018;148:134113.
Caricato, M. CCSD‐PCM excited state energy gradients with the linear response singles approximation to study the photochemistry of molecules in solution. ChemPhotoChem. 2019;3:747–54.
Helgaker, T, Jørgensen, P, Olsen, J. Molecular electronic‐structure theory. New York: Wiley; 2000.
Corni, S, Cammi, R, Mennucci, B, Tomasi, J. Electronic excitation energies of molecules in solution within continuum solvation models: investigating the discrepancy between state‐specific and linear‐response methods. J Chem Phys. 2005;123:134512.
Pedone, A. Role of solvent on charge transfer in 7‐aminocoumarin dyes: new hints from TD‐CAM‐B3LYP and state specific PCM calculations. J Chem Theory Comput. 2013;9:4087–96.
Minezawa, N. State‐specific solvation effect on the intramolecular charge transfer reaction in solution: a linear‐response free energy TDDFT method. Chem Phys Lett. 2014;608:140–4.
Bernini, C, Zani, L, Calamante, M, Reginato, G, Mordini, A, Taddei, M, et al. Excited state geometries and vertical emission energies of solvated dyes for DSSC: a PCM/TD‐DFT benchmark study. J Chem Theory Comput. 2014;10:3925–33.
Budzák, Š, Mach, P, Medved`, M, Kysel`, O. Critical analysis of spectral solvent shifts calculated by the contemporary PCM approaches of a representative series of charge‐transfer methylated benzenes. Phys Chem Chem Phys. 2015;17:17618–27.
Guido, CA, Jacquemin, D, Adamo, C, Mennucci, B. Electronic excitations in solution: the interplay between state specific approaches and a time‐dependent density functional theory description. J Chem Theory Comput. 2015;11:5782–90.
Guido, CA, Mennucci, B, Scalmani, G, Jacquemin, D. Excited state dipole moments in solution: comparison between state‐specific and linear‐response TD‐DFT values. J Chem Theory Comput. 2018;14:1544–53.
Klaumünzer, B, Kröner, D, Saalfrank, P. (TD‐)DFT calculation of vibrational and vibronic spectra of riboflavin in solution. J Phys Chem B. 2010;114:10826–34.
Bloino, J, Baiardi, A, Biczysko, M. Aiming at an accurate prediction of vibrational and electronic spectra for medium‐to‐large molecules: an overview. Int J Quantum Chem. 2016;116:1543–74.
García‐Iriepa, C, Zemmouche, M, Ponce‐Vargas, M, Navizet, I. The role of solvation models on the computed absorption and emission spectra: the case of fireflies oxyluciferin. Phys Chem Chem Phys. 2019;21:4613–23.
Chibani, S, Budzák, Š, Medved`, M, Mennucci, B, Jacquemin, D. Full cLR‐PCM calculations of the solvatochromic effects on emission energies. Phys Chem Chem Phys. 2014;16:26024–9.
Schwabe, T. General theory for environmental effects on (vertical) electron excitation energies. J Chem Phys. 2016;145:154105.
Mennucci, B, Cossi, M, Tomasi, J. A theoretical model of solvation in continuum anisotropic dielectrics. J Chem Phys. 1995;102:6837–45.
Mennucci, B, Cammi, R. Ab initio model to predict NMR shielding tensors for solutes in liquid crystals. Int J Quantum Chem. 2003;93:121–30.
Hoshi, H, Sakurai, M, Inoue, Y, Chûjô, R. Medium effects on the molecular electronic structure. I. The formulation of a theory for the estimation of a molecular electronic structure surrounded by an anisotropic medium. J Chem Phys. 1987;87:1107–15.
Ghosh, S, Horvath, S, Soudackov, AV, Hammes‐Schiffer, S. Electrochemical solvent reorganization energies in the framework of the polarizable continuum model. J Chem Theory Comput. 2014;10:2091–102.
Ghosh, S, Hammes‐Schiffer, S. Calculation of electrochemical reorganization energies for redox molecules at self‐assembled monolayer modified electrodes. J Phys Chem Lett. 2015;6:1–5.
Ghosh, S, Soudackov, AV, Hammes‐Schiffer, S. Electrochemical electron transfer and proton‐coupled electron transfer: effects of double layer and ionic environment on solvent reorganization energies. J Chem Theory Comput. 2016;12:2917–25.
Frediani, L, Mennucci, B, Cammi, R. Quantum‐mechanical continuum solvation study of the polarizability of halides at the water/air interface. J Phys Chem B. 2004;108:13796–806.
Frediani, L, Cammi, R, Corni, S, Tomasi, J. A polarizable continuum model for molecules at diffuse interfaces. J Chem Phys. 2004;120:3893–907.
Bondesson, L, Frediani, L, Ågren, H, Mennucci, B. Solvation of N3− at the water surface: the polarizable continuum model approach. J Phys Chem B. 2006;110:11361–8.
Iozzi, MF, Cossi, M, Improta, R, Rega, N, Barone, V. A polarizable continuum approach for the study of heterogeneous dielectric environments. J Chem Phys. 2006;124:184103.
Si, D, Li, H. Heterogeneous conductorlike solvation model. J Chem Phys. 2009;131:044123.
Wang, J‐B, Ma, J‐Y, Li, X‐Y. Polarizable continuum model associated with the self‐consistent‐reaction field for molecular adsorbates at the interface. Phys Chem Chem Phys. 2010;12:207–14.
Mozgawa, K, Mennucci, B, Frediani, L. Solvation at surfaces and interfaces: a quantum‐mechanical/continuum approach including nonelectrostatic contributions. J Phys Chem C. 2014;118:4715–25.
Mozgawa, K, Frediani, L. Electronic structure of small surfactants: a continuum solvation study. J Phys Chem C. 2016;120:17501–13.
Jungwirth, P, Tobias, DJ. Ions at the air/water interface. J Phys Chem B. 2002;106:6361–73.
Jungwirth, P, Tobias, DJ. Specific ion effects at the air/water interface. Chem Rev. 2006;106:1259–81.
Chaplin, M. Theory vs experiment: what is the surface charge of water? Water. 2009;1:1–28.
Duignan, TT, Parsons, DF, Ninham, BW. Ion interactions with the air–water interface using a continuum solvent model. J Phys Chem B. 2014;118:8700–10.
Duignan, TT, Parsons, DF, Ninham, BW. Hydronium and hydroxide at the air–water interface with a continuum solvent model. Chem Phys Lett. 2015;635:1–12.
Aksu, H, Paul, SK, Herbert, JM, Dunietz, BD. How well does a solvated octa‐acid capsule shield the embedded chromophore? A computational analysis based on an anisotropic dielectric continuum model. J Phys Chem B. 2020;124:6998–7004.
Herbert, JM, Coons, MP. The hydrated electron. Annu Rev Phys Chem. 2017;68:447–72.
Swanson, JMJ, Mongan, J, McCammon, JA. Limitations of atom‐centered dielectric functions in implicit solvent models. J Phys Chem B. 2005;109:14769–72.
Zhou, H‐X, Qin, S, Tjong, H. Modeling protein–protein and protein–nucleic acid interactions: structure, thermodynamics, and kinetics. Annu Rep Comput Chem. 2008;4:67–87.
Pang, X, Zhou, H‐X. Poisson–Boltzmann calculations: van der Waals or molecular surface? Commun Comput Phys. 2013;13:1–12.
Decherchi, S, Colmenares, J, Catalano, CE, Spagnuolo, M, Alexov, E, Rocchia, W. Between algorithm and model: different molecular surface definitions for the Poisson–Boltzmann based electrostatic characterization of biomolecules in solution. Commun Comput Phys. 2013;13:61–89.
Rajamani, S, Ghosh, T, Garde, S. Size dependent ion hydration, its asymmetry, and convergence to macroscopic hydration. J Chem Phys. 2004;120:4457–66.
Bardhan, JP, Jungwirth, P, Makowski, L. Affine‐response model of molecular solvation of ions: accurate predictions of asymmetric charging free energies. J Chem Phys. 2012;137:124101.
Mukhopadhyay, A, Fenley, AT, Tolokh, IS, Onufriev, AV. Charge hydration asymmetry: the basic principle and how to use it to test and improve water models. J Phys Chem B. 2012;116:9776–83.
Mukhopadhyay, A, Tolokh, IS, Onufriev, AV. Accurate evaluation of charge asymmetry in aqueous solvation. J Phys Chem B. 2015;119:6092–100.
Reif, MM, Hünenberger, PH. Origin of asymmetric solvation effects for ions in water and organic solvents investigated using molecular dynamics simulations: the Swain acity‐basity scale revisited. J Phys Chem B. 2016;120:8485–517.
Duignan, TT, Baer, MD, Schenter, GK, Mundy, CJ. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions. J Chem Phys. 2017;147:161716.
Mobley, DL, Barber, AE, Fennell, CJ, Dill, KA. Charge asymmetries in hydration of polar solutes. J Phys Chem B. 2008;112:2405–14. Erratum: J. Phys. Chem. B, 115, 15145 (2011).
Tabrizi, AM, Goossens, S, Rahimi, AM, Cooper, CD, Knepley, MG, Bardhan, JP. Extending the solvation‐layer interface condition continuum electrostatic model to a linearized Poisson–Boltzmann solvent. J Chem Theory Comput. 2017;13:2897–914.
Duignan, TT, Zhao, XS. The Born model can accurately describe electrostatic ion solvation. Phys Chem Chem Phys. 2020;22:25126–35.
Latimer, WM, Pitzer, KS, Slansky, CM. The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode. J Chem Phys. 1939;7:108–11.
Purisima, EO, Sulea, T. Restoring charge asymmetry in continuum electrostatics calculations of hydration free energies. J Phys Chem B. 2009;113:8206–9.
Mukhopadhyay, A, Aguilar, BH, Tolokh, IS, Onufriev, AV. Introducing charge hydration asymmetry into the generalized Born model. J Chem Theory Comput. 2014;10:1788–94.
Bardhan, JP, Knepley, MG. Communication: modeling charge‐sign asymmetric solvation free energies with nonlinear boundary conditions. J Chem Phys. 2014;141:131103.
Tabrizi, AM, Knepley, MG, Bardhan, JP. Generalising the mean spherical approximation as a multiscale, nonlinear boundary condition at the solute–solvent interface. Mol Phys. 2016;114:2558–67.
Tabrizi, AM, Goossens, S, Rahimi, AM, Knepley, M, Bardhan, JP. Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation‐layer interface condition. J Chem Phys. 2017;146:094103.
Rahimi, AM, Tabrizi, AM, Goossens, S, Knepley, MG, Bardhan, JP. Solvation thermodynamics of neutral and charged solutes using the solvation‐layer interface condition continuum dielectric model. Int J Quantum Chem. 2018;119:e25771.
Schaaf, C, Gekle, S. Dielectric response of the water hydration layer around spherical solutes. Phys Rev E. 2015;92:032718.
Truscott, M, Andreussi, O. Field‐aware interfaces in continuum solvation. J Phys Chem B. 2019;123:3513–24.
Hehre, WJ, Radom, L, Schleyer, P v R, Pople, JA. Ab initio molecular orbital theory. New York: Wiley‐Interscience; 1986.