Domcke, W, Stock, G. Theory of ultrafast nonadiabatic excited‐state processes and their spectroscopic detection in real time. Adv Chem Phys. 1997;100:1–169.

Wang, H, Thoss, M. Multilayer formulation of the multiconfiguration time‐dependent Hartree theory. J Chem Phys. 2003;119(3):1289–99.

Oseledets, I, Tyrtyshnikov, E. Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J Sci Comput. 2009;31(5):3744–59.

Tanimura, Y. Numerically “exact” approach to open quantum dynamics: the hierarchical equations of motion (HEOM). J Chem Phys. 2020;153(2):020901.

Kreisbeck, C, Kramer, T, Rodríguez, M, Hein, B. High‐performance solution of hierarchical equations of motion for studying energy transfer in light‐harvesting complexes. J Chem Theory Comput. 2011;7(7):2166–74.

Yao, Y, Sun, K‐W, Luo, Z, Ma, H. Full quantum dynamics simulation of a realistic molecular system using the adaptive time‐dependent density matrix renormalization group method. J Phys Chem Lett. 2018;9(2):413–9.

Thoss, M, Evers, F. Theory of quantum transport in molecular junctions. J Chem Phys. 2018;148(3):030901.

Li, W, Ren, J, Shuai, Z. Finite‐temperature TD‐DMRG for the carrier mobility of organic semiconductors. J Phys Chem Lett. 2020;11(13):4930–6.

Borrelli, R, Gelin, MF. Quantum electron‐vibrational dynamics at finite temperature: thermo field dynamics approach. J Chem Phys. 2016;145(22):224101.

Borrelli, R, Gelin, MF. Simulation of quantum dynamics of Excitonic Systems at Finite Temperature: an efficient method based on thermo field dynamics. Sci Rep. 2017;7(1):9127.

Borrelli, R. Theoretical study of charge‐transfer processes at finite temperature using a novel thermal Schrödinger equation. Chem Phys. 2018;515:236–41.

Borrelli, R. Density matrix dynamics in twin‐formulation: an efficient methodology based on tensor‐train representation of reduced equations of motion. J Chem Phys. 2019;150(23):234102.

Beck, MH, Jackle, A, Worth, GA, Meyer, HD. The multiconfiguration time‐dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys Rep. 2000;324(1):1–105.

Burghardt, I, Giri, K, Worth, GA. Multimode quantum dynamics using Gaussian wavepackets: the Gaussian‐based multiconfiguration time‐dependent Hartree (G‐MCTDH) method applied to the absorption spectrum of pyrazine. J Chem Phys. 2008;129(17):174104.

Wang, H. Multilayer multiconfiguration time‐dependent Hartree theory. J Phys Chem A. 2015;119(29):7951–65.

White, SR, Adrian, E. Feiguin real‐time evolution using the density matrix renormalization group. Phys Rev Lett. 2004;93(7):076401.

Wang, H, Song, X, Chandler, D, Miller, WH. Semiclassical study of electronically nonadiabatic dynamics in the condensed‐phase: spin‐boson problem with Debye spectral density. J Chem Phys. 1999;110(10):4828–40.

Kondov, I, Thoss, M, Wang, H. Theoretical study of ultrafast heterogeneous electron transfer reactions at dye‐semiconductor interfaces: Coumarin 343 at titanium oxide. J Phys Chem A. 2006;110(4):1364–74.

Borrelli, R, Di Donato, M, Peluso, A. Quantum dynamics of electron transfer from bacteriochlorophyll to pheophytin in bacterial reaction centers. J Chem Theory Comput. 2007;3(3):673–80.

Wang, H, Thoss, M. Theoretical study of ultrafast photoinduced electron transfer processes in mixed‐valence systems. J Phys Chem A. 2003;107(13):2126–36.

Umezawa, H, Matsumoto, H, Tachiki, M. Thermofield dynamics and condenced states. Amsterdam: North‐Holland Publishing Company; 1982.

Takahashi, Y, Umezawa, H. Thermo field dynamics. Int J Mod Phys B. 1996;10:1755–805.

Kosov, DS. Nonequilibrium Fock space for the electron transport problem. J Chem Phys. 2009;131(17):171102.

Dzhioev, AA, Kosov, DS. Nonequilibrium configuration interaction method for transport in correlated quantum systems. J Phys A: Math Theor. 2014;47(9):095002.

Harsha, G, Henderson, TM, Scuseria, GE. Thermofield theory for finite‐temperature quantum chemistry. J Chem Phys. 2019;150(15):154109.

Harsha, G, Henderson, TM, Scuseria, GE. Thermofield theory for finite‐temperature coupled cluster. J Chem Theory Comput. 2019;15(11):6127–36.

Ritschel, G, Suess, D, Möbius, S, Strunz, WT, Eisfeld, A. Non‐Markovian quantum state diffusion for temperature‐dependent linear spectra of light harvesting aggregates. J Chem Phys. 2015;142(3):034115.

Reddy, CS, Prasad, MD. Finite temperature vibronic spectra of harmonic surfaces: a time‐dependent coupled cluster approach. Mol Phys. 2015;113(19–20):3023–30.

Greene, SM, Batista, VS. Tensor‐train split‐operator fourier transform (TT‐SOFT) method: multidimensional nonadiabatic quantum dynamics. J Chem Theory Comput. 2017;13(9):4034–42.

Ren, J, Shuai, Z, Chan, GK‐L. Time‐dependent density matrix renormalization group algorithms for nearly exact absorption and fluorescence spectra of molecular aggregates at both zero and finite temperature. J Chem Theory Comput. 2018;14(10):5027–39.

Jiang, T, Li, W, Ren, J, Shuai, Z. Finite temperature dynamical density matrix renormalization group for spectroscopy in frequency domain. J Phys Chem Lett. 2020;11(10):3761–8.

Xie, X, Liu, Y, Yao, Y, Schollwöck, U, Liu, C, Ma, H. Time‐dependent density matrix renormalization group quantum dynamics for realistic chemical systems. J Chem Phys. 2019;151(22):224101.

Begušić, T, Vaníček, J. On‐the‐fly ab initio semiclassical evaluation of vibronic spectra at finite temperature. J Chem Phys. 2020;153(2):024105.

Orús, R. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann Phys Rehabil Med. 2014;349:117–58.

Oseledets, I. Tensor‐train decomposition. SIAM J Sci Comput. 2011;33(5):2295–317.

Lubich, C, Oseledets, I, Vandereycken, B. Time integration of tensor trains. SIAM J Numer Anal. 2015;53(2):917–41.

Tanimura, Y, Kubo, R. Time evolution of a quantum system in contact with a nearly Gaussian‐Markoffian noise bath. J Phys Soc Jpn. 1989;58(1):101–14.

Arimitsu, T, Umezawa, H. A general formulation of nonequilibrium thermo field dynamics. Prog Theor Phys. 1985;74(2):429–32.

Suzuki, M. Density matrix formalism, double‐space and thermo field dynamics in non‐equilibrium dissipative systems. Int J Mod Phys B. 1991;05(11):1821–42.

Suzuki, M. Thermo field dynamics in equilibrium and non‐equilibrium interacting quantum systems. J Phys Soc Jpn. 1985;54(12):4483–5.

Schmutz, M. Real‐time green`s functions in many body problems. Z Phys B. 1978;30(1):97–106.

Fano, U. Description of states in quantum mechanics by density matrix and operator techniques. Rev Mod Phys. 1957;29(1):74–93.

Mukamel, S. Principles of nonlinear optical spectroscopy. New York: Oxford University Press; 1995.

Arimitsu, T, Umezawa, H. Non‐equilibrium thermo field dynamics. Prog Theor Phys. 1987;77(1):32–52.

Suzuki, M. Quantum analysis, nonequilibrium density matrix and entropy operator. Int J Mod Phys B. 1996;10:1637–47.

Chernyak, V, Mukamel, S. Collective coordinates for nuclear spectral densities in energy transfer and femtosecond spectroscopy of molecular aggregates. J Chem Phys. 1996;105(11):4565–83.

Mukamel, S, Abramavicius, D. Many‐body approaches for simulating coherent nonlinear spectroscopies of electronic and vibrational excitons. Chem Rev. 2004;104(4):2073–98.

Huynh, TD, Sun, K‐W, Gelin, M, Zhao, Y. Polaron dynamics in two‐dimensional photon‐echo spectroscopy of molecular rings. J Chem Phys. 2013;139(10):104103.

Köppel, H, Domcke, W, Cederbaum, LS. Multimode molecular dynamics beyond the born‐Oppenheimer approximation. Advances in chemical physics. Volume 57. Hoboken, NJ: John Wiley %26 Sons, Inc; 1984. p. 59–246.

Bunker, PR, Jensen, P. Molecular symmetry and spectroscopy. Ottawa: NRC Research Press; 1998.

Gelin, MF, Borrelli, R. Thermal Schrödinger equation: efficient tool for simulation of many‐body quantum dynamics at finite temperature. Ann Phys. 2017;529(12):1700200.

Crawford, JA. An alternative method of quantization: the existence of classical fields. Nuovo Cim. 1958;10(4):698–713.

Barnett, SM, Knight, PL. Thermofield analysis of squeezing and statistical mixtures in quantum optics. J Opt Soc Am B. 1985;2(3):467.

Matzkies, F, Manthe, U. A multi‐configurational time‐dependent Hartree approach to the direct calculation of thermal rate constants. J Chem Phys. 1997;106(7):2646–53.

Matzkies, F, Manthe, U. Accurate reaction rate calculations including internal and rotational motion: a statistical multi‐configurational time‐dependent Hartree approach. J Chem Phys. 1999;110(1):88–96.

Wang, H, Thoss, M. Quantum‐mechanical evaluation of the Boltzmann operator in correlation functions for large molecular systems: a multilayer multiconfiguration time‐dependent Hartree approach. J Chem Phys. 2006;124(3):034114.

Louisell, WH. Quantum statistical properties of radiation. New York, NY: Wiley; 1973.

Bogoljubov, NN. On a new method in the theory of superconductivity. Nuovo Cim. 1958;7(6):794–805.

Ojima, I. Gauge fields at finite temperatures— “thermo field dynamics” and the KMS condition and their extension to gauge theories. Ann Phys Rehabil Med. 1981;137(1):1–32.

Caldeira, AO, Leggett, AJ. Quantum tunnelling in a dissipative system. Ann Phys. 1983;149(2):374–456.

Barnett, SM, Knight, PL. Comment on “obtainment of thermal noise from a pure quantum state”. Phys Rev A. 1988;38(3):1657–8.

Zhao, Y, Yokojima, S, Chen, GH. Reduced density matrix and combined dynamics of electrons and nuclei. J Chem Phys. 2000;113(10):4016–27.

Marcus, RA. Nonadiabatic processes involving quantum‐like and classical‐like coordinates with applications to nonadiabatic electron transfers. J Chem Phys. 1984;81(10):4494–500.

Borrelli, R, Capobianco, A, Landi, A, Peluso, A. Vibronic couplings and coherent electron transfer in bridged systems. Phys Chem Chem Phys. 2015;17(46):30937–45.

Holtz, S, Rohwedder, T, Schneider, R. On manifolds of tensors of fixed TT‐rank. Numer Math. 2011;120(4):701–31.

Paeckel, S, Köhler, T, Swoboda, A, Manmana, SR, Schollwöck, U, Hubig, C. Time‐evolution methods for matrix‐product states. Ann Phys Rehabil Med. 2019;411:167998.

Sergey, VD. A tensor decomposition algorithm for large ODEs with conservation Laws. Comput Methods Appl Math. 2019;19(1):23–38.

Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys Rev Lett. 2003;91(14):147902.

Verstraete, F, García‐Ripoll, JJ, Cirac, JI. Matrix product density operators: simulation of finite‐temperature and dissipative systems. Phys Rev Lett. 2004;93(20):207204.

Wall, ML, Carr, LD. Out‐of‐equilibrium dynamics with matrix product states. New J Phys. 2012;14(12):125015.

Jutho Haegeman, J, Cirac, I, Osborne, TJ, Pižorn, I, Verschelde, H, Verstraete, F. Time‐dependent Variational principle for quantum lattices. Phys Rev Lett. 2011;107(7):070601.

Haegeman, J, Lubich, C, Oseledets, I, Vandereycken, B, Verstraete, F. Unifying time evolution and optimization with matrix product states. Phys Rev B. 2016;94(16):165116.

Haegeman, J, Osborne, TJ, Verstraete, F. Post‐matrix product state methods: to tangent space and beyond. Phys. Rev. B. 2013;88(7):075133.

Cederbaum, LS, Gindensperger, E, Burghardt, I. Short‐time dynamics through conical intersections in macrosystems. Phys Rev Lett. 2005;94(11):113003.

Gindensperger, E, Burghardt, I, Lorenz, S. Cederbaum. Short‐time dynamics through conical intersections in macrosystems. II. Applications. J Chem Phys. 2006;124(14):144104.

Chin, AW, Rivas, Á, Huelga, SF, Plenio, MB. Exact mapping between system‐reservoir quantum models and semi‐infinite discrete chains using orthogonal polynomials. J Math Phys. 2010;51(9):092109.

Rams, MM, Zwolak, M. Breaking the entanglement barrier: tensor network simulation of quantum transport. Phys Rev Lett. 2020;124(13):137701.

Makri, N. The linear response approximation and its lowest order corrections: an influence functional approach. J Phys Chem B. 1999;103(15):2823–9.

Tang, Z, Ouyang, X, Gong, Z, Wang, H, Jianlan, W. Extended hierarchy equation of motion for the spin‐boson model. J Chem Phys. 2015;143(22):224112.

Garg, A, Onuchic, JN, Ambegaokar, V. Effect of friction on electron transfer in biomolecules. J Chem Phys. 1985;83(9):4491–503.

Maxim, F, Gelin, DE, Domcke, W. Strong and long makes short: strong‐pump strong‐probe spectroscopy. J Phys Chem Lett. 2011;2(2):114–9.

Moix, J, Wu, J, Huo, P, Coker, D, Cao, J. Efficient energy transfer in light‐harvesting systems, III: the influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO. J Phys Chem Lett. 2011;2(24):3045–52.

Kreisbeck, C, Kramer, T. Long‐lived electronic coherence in dissipative exciton dynamics of light‐harvesting complexes. J Phys Chem Lett. 2012;3(19):2828–33.

Schulze, J, Shibl, MF, Al‐Marri, MJ, Kühn, O. Multi‐layer multi‐configuration time‐dependent Hartree (ML‐MCTDH) approach to the correlated exciton‐vibrational dynamics in the FMO complex. J Chem Phys. 2016;144(18):185101.

Schulze, J, Kühn, O. Explicit correlated exciton‐vibrational dynamics of the FMO complex. J Phys Chem B. 2015;119(20):6211–6.

Wendling, M, Pullerits, T, Przyjalgowski, MA, Vulto, SIE, Aartsma, TJ, van Grondelle, R, et al. Electron‐vibrational coupling in the Fenna‐Matthews‐Olson complex of Prosthecochloris aestuarii determined by temperature‐dependent absorption and fluorescence line‐narrowing measurements. J Phys Chem B. 2000;104(24):5825–31.

Ishizaki, A, Fleming, GR. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. PNAS. 2009;106(41):17255–60.

Nalbach, P, Braun, D, Thorwart, M. Exciton transfer dynamics and quantumness of energy transfer in the Fenna‐Matthews‐Olson complex. Phys Rev E. 2011;84(4):041926.

Chorošajev, V, Rancova, O, Abramavicius, D. Polaronic effects at finite temperatures in the B850 ring of the LH2 complex. Phys Chem Chem Phys. 2016;18(11):7966–77.

Borrelli, R, Thoss, M, Wang, H, Domcke, W. Quantum dynamics of electron‐transfer reactions: Photoinduced intermolecular electron transfer in a porphyrin–quinone complex. Mol Phys. 2012;110(9–10):751–63.

Borrelli, R, Ellena, S, Barolo, C. Theoretical and experimental determination of the absorption and emission spectra of a prototypical indolenine‐based squaraine dye. Phys Chem Chem Phys. 2014;16(6):2390–8.

Borrelli, R, Peluso, A. The vibrational progressions of the N→V electronic transition of ethylene: a test case for the computation of Franck‐Condon factors of highly flexible photoexcited molecules. J Chem Phys. 2006;125(19):194308.

Borrelli, R, Capobianco, A, Peluso, A. Franck–Condon factors—computational approaches and recent developments. Can J Chem. 2013;91(7):495–504.

Capobianco, A, Borrelli, R, Noce, C, Peluso, A. Franck–Condon factors in curvilinear coordinates: the photoelectron spectrum of ammonia. Theor Chem Acc. 2012;131(3):1181.

Reimers, JR. A practical method for the use of curvilinear coordinates in calculations of normal‐mode‐projected displacements and Duschinsky rotation matrices for large molecules. J Chem Phys. 2001;115:9103–9.

Borrelli, R, Peluso, A. Quantum dynamics of radiationless electronic transitions including normal modes displacements and Duschinsky rotations: a second‐order cumulant approach. J Chem Theory Comput. 2015;11(2):415–22.

Borrelli, R, Peluso, A. The temperature dependence of radiationless transition rates from ab initio computations. Phys Chem Chem Phys. 2011;13(10):4420.

Borrelli, R, Domcke, W. First‐principles study of photoinduced electron‐transfer dynamics in a mg–porphyrin–quinone complex. Chem Phys Lett. 2010;498:230–4.

Borrelli, R, Capobianco, A, Peluso, A. Generating function approach to the calculation of spectral band shapes of free‐base chlorin including Duschinsky and Herzberg‐teller effects. J Phys Chem A. 2012;116(40):9934–40.

Tanimura, Y, Kubo, R. Two‐time correlation functions of a system coupled to a heat Bath with a Gaussian‐Markoffian interaction. J Phys Soc Jpn. 1989;58(4):1199–206.

Tanimura, Y. Nonperturbative expansion method for a quantum system coupled to a harmonic‐oscillator bath. Phys Rev A. 1990;41(12):6676–87.

Tanimura, Y, Liouville, S. Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems. J Phys Soc Jpn. 2006;75(8):082001.

Takahashi, H, Tanimura, Y. Open quantum dynamics theory of spin relaxation: application to μSR and low‐field NMR spectroscopies. J Phys Soc Jpn. 2020;89(6):064710.

Tanaka, M, Tanimura, Y. Multistate electron transfer dynamics in the condensed phase: exact calculations from the reduced hierarchy equations of motion approach. J Chem Phys. 2010;132(21):214502.

Zhang, J, Borrelli, R, Tanimura, Y. Proton tunneling in a two‐dimensional potential energy surface with a non‐linear system– bath interaction: thermal suppression of reaction rate. J Chem Phys. 2020;152(21):214114.

Kato, A, Tanimura, Y. Quantum heat current under non‐perturbative and non‐Markovian conditions: applications to heat machines. J Chem Phys. 2016;145(22):224105.

Kubo, R. Generalized cumulant expansion method. J Phys Soc Jpn. 1962;17:1100.

Ishizaki, A, Calhoun, TR, Schlau‐Cohen, GS, Fleming, GR. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys Chem Chem Phys. 2010;12(27):7319–37.

Jones, FC, Birmingham, TJ. When is quasi‐linear theory exact? Plasma Phys. 1975;17(1):15.

Shi, Q, Chen, L, Nan, G, Xu, R‐X, Yan, YJ. Efficient hierarchical Liouville space propagator to quantum dissipative dynamics. J Chem Phys. 2009;130(8):084105.

Ishizaki, A, Tanimura, Y. Quantum dynamics of system strongly coupled to low‐temperature colored noise bath: reduced hierarchy equations approach. J Phys Soc Jpn. 2005;74(12):3131–4.

Landi, A, Borrelli, R, Capobianco, A, Velardo, A, Peluso, A. Second‐order Cumulant approach for the evaluation of anisotropic hole mobility in organic semiconductors. J Phys Chem C. 2018;122(45):25849–57.

Gelin, MF, Borrelli, R, Domcke, W. Origin of unexpectedly simple oscillatory responses in the excited‐state dynamics of disordered molecular aggregates. J Phys Chem Lett. 2019;10(11):2806–10.

McLachlan, AD. A variational solution of the time‐dependent Schrodinger equation. Mol Phys. 1964;8(1):39–44.

Heller, EJ. Time dependent variational approach to semiclassical dynamics. J Chem Phys. 1976;64(1):63–73.

Yan, Y, Xing, T, Shi, Q. A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes. J Chem Phys. 2020;153(20):204109.

Begušić, T, Vaníček, J. On‐the‐fly ab initio semiclassical evaluation of third‐order response functions for two‐dimensional electronic spectroscopy. J Chem Phys. 2020;153(18):184110.

Borrelli, R, Gelin, MF. Quantum dynamics of vibrational energy flow in oscillator chains driven by anharmonic interactions. N J Phys. 2020;22(12):123002.