Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–71.

Mardirossian, N, Head‐Gordon, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys. 2017;115:2315–72.

Jones, RO. Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys. 2015;87:897–923.

Peverati, R, Truhlar, DG. Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos Trans R Soc A. 2014;372:20120476.

Savin, A, Flad, HJ. Density functionals for the Yukawa electron–electron interaction. Int J Quant Chem. 1995;56:327–32.

Savin, A. On degeneracy, near‐degeneracy and density functional theory. In: Seminario, JM, editor. Recent developments and applications of modern density functional theory. Theoretical and computational chemistry. Volume 4. Amsterdam: Elsevier; 1996. p. 327–57 Available from: https://www.sciencedirect.com/science/article/pii/S1380732396800914

Perdew, JP, Savin, A, Burke, K. Escaping the symmetry dilemma through a pair‐density interpretation of spin‐density functional theory. Phys Rev A. 1995;51:4531–41.

Stoll, H, Savin, A. Density functionals for correlation energies of atoms and molecules. In: Dreizler, RM, da Providência, J, editors. Density functional methods in physics. Boston, MA: Springer US; 1985. p. 177–207.

Savin, A. Beyond the Kohn‐Sham determinant. Singapore: World Scientific; 1995.

Levy, M. Universal variational functionals of electron densities, first‐order density matrices, and natural spin–orbitals and solution of the v‐representability problem. Proc Natl Acad Sci U S A. 1979;76:6062–5.

Leininger, T, Stoll, H, Werner, HJ, Savin, A. Combining long‐range configuration interaction with short‐range density functionals. Chem Phys Lett. 1997;275:151–60.

Toulouse, J. Review of approximations for the exchange‐correlation energy in density‐functional theory. arXiv preprint arXiv:210302645; 2021.

Toulouse, J, Colonna, F, Savin, A. Long‐range–short‐range separation of the electron–electron interaction in density‐functional theory. Phys Rev A. 2004;70:062505.

Toulouse, J, Savin, A, Flad, HJ. Short‐range exchange‐correlation energy of a uniform electron gas with modified electron–electron interaction. Int J Quant Chem. 2004;100:1047–56.

Gill, PM, Adamson, RD. A family of attenuated Coulomb operators. Chem Phys Lett. 1996;261:105–10.

Song, JW, Tokura, S, Sato, T, Watson, MA, Hirao, K. An improved long‐range corrected hybrid exchange‐correlation functional including a short‐range Gaussian attenuation (LCgau‐BOP). J Chem Phys. 2007;127:154109.

Toulouse, J. Personal communication; 2021.

Goll, E, Werner, HJ, Stoll, H. A short‐range gradient‐corrected density functional in long‐range coupled‐cluster calculations for rare gas dimers. Phys Chem Chem Phys. 2005;7:3917–23. https://doi.org/10.1039/B509242F

Pollet, R, Savin, A, Leininger, T, Stoll, H. Combining multideterminantal wave functions with density functionals to handle near‐degeneracy in atoms and molecules. J Chem Phys. 2002;116:1250–8.

Toulouse, J, Colonna, F, Savin, A. Short‐range exchange and correlation energy density functionals: beyond the local‐density approximation. J Chem Phys. 2005;122:014110.

Goll, E, Werner, HJ, Stoll, H, Leininger, T, Gori‐Giorgi, P, Savin, A. A short‐range gradient‐corrected spin density functional in combination with long‐range coupled‐cluster methods: application to alkali‐metal rare‐gas dimers. Chem Phys. 2006;329:276–82.

Gerber, IC, Angyán, JG. Hybrid functional with separated range. Chem Phys Lett. 2005;415:100–5.

Curtiss, LA, Raghavachari, K, Redfern, PC, Pople, JA. Assessment of Gaussian‐2 and density functional theories for the computation of enthalpies of formation. J Chem Phys. 1997;106:1063–79. https://doi.org/10.1063/1.473182

Fromager, E, Toulouse, J, Jensen, HJA. On the universality of the long‐/short‐range separation in multiconfigurational density‐functional theory. J Chem Phys. 2007;126:074111.

Fromager, E, Réal, F, Wåhlin, P, Wahlgren, U, Jensen, HJA. On the universality of the long‐/short‐range separation in multiconfigurational density‐functional theory. II. Investigating $f0$ actinide species. J Chem Phys. 2009;131:054107.

Kananenka, AA, Zgid, D. Combining density functional theory and Green`s function theory: range‐separated, nonlocal, dynamic, and orbital‐dependent hybrid functional. J Chem Theory Comput. 2017;13:5317–31.

Franck, O, Mussard, B, Luppi, E, Toulouse, J. Basis convergence of range‐separated density‐functional theory. J Chem Phys. 2015;142:074107.

Paziani, S, Moroni, S, Gori‐Giorgi, P, Bachelet, GB. Local‐spin‐density functional for multideterminant density functional theory. Phys Rev B. 2006;73:155111.

Vosko, SH, Wilk, L, Nusair, M. Accurate spin‐dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys. 1980;58:1200–11.

Gori‐Giorgi, P, Savin, A. Properties of short‐range and long‐range correlation energy density functionals from electron‐electron coalescence. Phys Rev A. 2006;73:032506.

Becke, A, Savin, A, Stoll, H. Extension of the local‐spin‐density exchange‐correlation approximation to multiplet states. Theor Chim Acta. 1995;91:147–56.

Freeman, DL. Coupled‐cluster expansion applied to the electron gas: inclusion of ring and exchange effects. Phys Rev B. 1977;15:5512–21.

Heyd, J, Scuseria, GE, Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118:8207–15.

Lieb, EH, Oxford, S. Improved lower bound on the indirect Coulomb energy. Int J Quant Chem. 1981;19:427–39.

Goll, E, Ernst, M, Moegle‐Hofacker, F, Stoll, H. Development and assessment of a short‐range meta‐GGA functional. J Chem Phys. 2009;130:234112.

Tao, J, Perdew, JP, Staroverov, VN, Scuseria, GE. Climbing the density functional ladder: nonempirical meta‐generalized gradient approximation designed for molecules and solids. Phys Rev Lett. 2003;91:146401. https://doi.org/10.1103/PhysRevLett.91.146401

Garza, AJ, Bulik, IW, Henderson, TM, Scuseria, GE. Range separated hybrids of pair coupled cluster doubles and density functionals. Phys Chem Chem Phys. 2015;17:22412–22.

Garza, AJ, Bulik, IW, Alencar, AGS, Sun, J, Perdew, JP, Scuseria, GE. Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions. Mol Phys. 2016;114:997–1018.

Mussard, B, Toulouse, J. Fractional‐charge and fractional‐spin errors in range‐separated density‐functional theory. Mol Phys. 2017;115:161–73.

Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8.

Toulouse, J, Gori‐Giorgi, P, Savin, A. A short‐range correlation energy density functional with multi‐determinantal reference. Theor Chem Acc. 2005;114:305–8.

Ferté, A, Giner, E, Toulouse, J. Range‐separated multideterminant density‐functional theory with a short‐range correlation functional of the on‐top pair density. J Chem Phys. 2019;150:084103.

Stoyanova, A, Teale, AM, Toulouse, J, Helgaker, T, Fromager, E. Alternative separation of exchange and correlation energies in multi‐configuration range‐separated density‐functional theory. J Chem Phys. 2013;139:134113.

Paquier, J, Toulouse, J. Four‐component relativistic range‐separated density‐functional theory: short‐range exchange local‐density approximation. J Chem Phys. 2018;149:174110.

Paquier, J, Toulouse, J. Short‐range correlation energy of the relativistic homogeneous electron gas. arXiv preprint arXiv:210207761 [Physics.chem‐ph]; 2021.

Paquier, J, Giner, E, Toulouse, J. Relativistic short‐range exchange energy functionals beyond the local‐density approximation. J Chem Phys. 2020;152:214106.

Toulouse, J. Extension multidéterminantale de la méthode de Kohn‐Sham en théorie de la fonctionnelle de la densité par décomposition de l`interaction électronique en contributions de longue portée et de courte portée [Theses]. Université Pierre et Marie Curie – Paris VI; 2005.

Kato, T. On the eigenfunctions of many‐particle systems in quantum mechanics. Commun Pure Appl Math. 1957;10:151–77.

Goll, E, Stoll, H, Thierfelder, C, Schwerdtfeger, P. Improved dipole moments by combining short‐range gradient‐corrected density‐functional theory with long‐range wave‐function methods. Phys Rev A. 2007;76:032507.

Goll, E, Werner, HJ, Stoll, H. Short‐range density functionals in combination with local long‐range ab initio methods: application to non‐bonded complexes. Chem Phys. 2008;346:257–65.

Toulouse, J, Zhu, W, Ángyán, JG, Savin, A. Range‐separated density‐functional theory with the random‐phase approximation: detailed formalism and illustrative applications. Phys Rev A. 2010;82:032502.

Ángyán, JG, Gerber, IC, Savin, A, Toulouse, J. van der Waals forces in density functional theory: Perturbational long‐range electron‐interaction corrections. Phys Rev A. 2005;72:012510.

Fromager, E, Jensen, HJA. Analysis of self‐consistency effects in range‐separated density‐functional theory with Møller–Plesset perturbation theory. J Chem Phys. 2011;135:034116.

Heßelmann, A, Ángyán, J. Assessment of a range‐separated orbital‐optimised random‐phase approximation electron correlation method. Theor Chem Acc. 2018;137:1–13.

Toulouse, J, Gerber, IC, Jansen, G, Savin, A, Ángyán, JG. Adiabatic‐connection fluctuation–dissipation density‐functional theory based on range separation. Phys Rev Lett. 2009;102:096404.

Zhu, W, Toulouse, J, Savin, A, Ángyán, JG. Range‐separated density‐functional theory with random phase approximation applied to noncovalent intermolecular interactions. J Chem Phys. 2010;132:244108.

Iikura, H, Tsuneda, T, Yanai, T, Hirao, K. A long‐range correction scheme for generalized‐gradient‐approximation exchange functionals. J Chem Phys. 2001;115:3540–4. https://doi.org/10.1063/1.1383587

Tsuneda, T, Hirao, K. Long‐range correction for density functional theory. WIREs Comput Mol Sci. 2014;4:375–90.

Hedegård, ED. Chapter 3. Multi‐configurational density functional theory: progress and challenges. Hoboken, NJ: John Wiley %26 Sons, Ltd; 2020. p. 47–75.

Casanova, D. Short‐range density functional correlation within the restricted active space CI method. J Chem Phys. 2018;148:124118.

Fromager, E, Cimiraglia, R, Jensen, HJA. Merging multireference perturbation and density‐functional theories by means of range separation: potential curves for Be_{2}, Mg_{2}, and Ca_{2}. Phys Rev A. 2010;81:024502.

Hapka, M, Pastorczak, E, Krzemińska, A, Pernal, K. Long‐range‐corrected multiconfiguration density functional with the on‐top pair density. J Chem Phys. 2020;152:094102.

Goll, E, Leininger, T, Manby, FR, Mitrushchenkov, A, Werner, HJ, Stoll, H. Local and density fitting approximations within the short‐range/long‐range hybrid scheme: application to large non‐bonded complexes. Phys Chem Chem Phys. 2008;10:3353–7.

Pernal, K. Long‐range density‐matrix‐functional theory: application to a modified homogeneous electron gas. Phys Rev A. 2010;81:052511.

Rohr, DR, Toulouse, J, Pernal, K. Combining density‐functional theory and density‐matrix‐functional theory. Phys Rev A. 2010;82:052502.

Hedegård, ED, Knecht, S, Kielberg, JS, Jensen, HJA, Reiher, M. Density matrix renormalization group with efficient dynamical electron correlation through range separation. J Chem Phys. 2015;142:224108.

Aidas, K, Angeli, C, Bak, KL, Bakken, V, Bast, R, Boman, L, et al. The Dalton quantum chemistry program system. WIREs Comput Mol Sci. 2014;4:269–84.

Olsen, JMH, Reine, S, Vahtras, O, Kjellgren, E, Reinholdt, P, Hjorth Dundas, KO, et al. Dalton project: a Python platform for molecular‐ and electronic‐structure simulations of complex systems. J Chem Phys. 2020;152:214115. https://doi.org/10.1063/1.5144298

Werner, HJ, Knowles, PJ, Knizia, G, Manby, FR, Schütz, M. Molpro: a general‐purpose quantum chemistry program package. WIREs Comput Mol Sci. 2012;2:242–53.

Werner, HJ, Knowles, PJ, Manby, FR, Black, JA, Doll, K, Heßelmann, A, et al. The Molpro quantum chemistry package. J Chem Phys. 2020;152:144107.

Shao, Y, Gan, Z, Epifanovsky, E, Gilbert, ATB, Wormit, M, Kussmann, J, et al. Advances in molecular quantum chemistry contained in the Q‐Chem 4 program package. Mol Phys. 2015;113:184–215.

Garniron, Y, Applencourt, T, Gasperich, K, Benali, A, Ferté, A, Paquier, J, et al. Quantum package 2.0: an open‐source determinant‐driven suite of programs. J Chem Theory Comput. 2019;15:3591–609.

Saue, T, Bast, R, Gomes, ASP, Jensen, HJA, Visscher, L, Aucar, IA, et al. The DIRAC code for relativistic molecular calculations. J Chem Phys. 2020;152:204104.

Ghosh, S, Verma, P, Cramer, CJ, Gagliardi, L, Truhlar, DG. Combining wave function methods with density functional theory for excited states. Chem Rev. 2018;118:7249–92.

Marian, CM, Heil, A, Kleinschmidt, M. The DFT/MRCI method. WIREs Comput Mol Sci. 2019;9:e1394.

Janesko, BG, Henderson, TM, Scuseria, GE. Long‐range‐corrected hybrids including random phase approximation correlation. J Chem Phys. 2009;130:081105.

Janesko, BG, Scuseria, GE. Coulomb‐only second‐order perturbation theory in long‐range‐corrected hybrid density functionals. Phys Chem Chem Phys. 2009;11:9677–86.

Paier, J, Janesko, BG, Henderson, TM, Scuseria, GE, Grüneis, A, Kresse, G. Hybrid functionals including random phase approximation correlation and second‐order screened exchange. J Chem Phys. 2010;132:094103.

Toulouse, J, Zhu, W, Savin, A, Jansen, G, Ángyán, JG. Closed‐shell ring coupled cluster doubles theory with range separation applied on weak intermolecular interactions. J Chem Phys. 2011;135:084119.

Pedersen, JK. Description of correlation and relativistic effects in calculations of molecular properties [PhD Thesis]. University of Southern Denmark; 2004.

Pernal, K, Chatterjee, K, Kowalski, PH. How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches. J Chem Phys. 2014;140:014101.

Bulik, IW, Henderson, TM, Scuseria, GE. Can single‐reference coupled cluster theory describe static correlation? J Chem Theory Comput. 2015;11:3171–9. https://doi.org/10.1021/acs.jctc.5b00422

Sun, J, Ruzsinszky, A, Perdew, JP. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett. 2015;115:036402. https://doi.org/10.1103/PhysRevLett.115.036402

Vydrov, OA, Scuseria, GE. Assessment of a long‐range corrected hybrid functional. J Chem Phys. 2006;125:234109. https://doi.org/10.1063/1.2409292

Lie, GC, Clementi, E. Study of the electronic structure of molecules. XXII. Correlation energy corrections as a functional of the Hartree–Fock type density and its application to the homonuclear diatomic molecules of the second row atoms. J Chem Phys. 1974;60:1288–96. https://doi.org/10.1063/1.1681193

Sharkas, K, Savin, A, Jensen, HJA, Toulouse, J. A multiconfigurational hybrid density‐functional theory. J Chem Phys. 2012;137:044104.

Giner, E, Scemama, A, Loos, PF, Toulouse, J. A basis‐set error correction based on density‐functional theory for strongly correlated molecular systems. J Chem Phys. 2020;152:174104.

Śmiga, S, Grabowski, I, Witkowski, M, Mussard, B, Toulouse, J. Self‐consistent range‐separated density‐functional theory with second‐order perturbative correction via the optimized‐effective‐potential method. J Chem Theory Comput. 2020;16:211–23.

Scuseria, GE, Henderson, TM, Sorensen, DC. The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. J Chem Phys. 2008;129:231101.

Janesko, BG, Scuseria, GE. The role of the reference state in long‐range random phase approximation correlation. J Chem Phys. 2009;131:154106.

Irelan, RM, Henderson, TM, Scuseria, GE. Long‐range‐corrected hybrids using a range‐separated Perdew–Burke–Ernzerhof functional and random phase approximation correlation. J Chem Phys. 2011;135:094105.

Lynch, BJ, Truhlar, DG. Small representative benchmarks for thermochemical calculations. J Phys Chem A. 2003;107:8996–9. https://doi.org/10.1021/jp035287b

Lynch, BJ, Truhlar, DG. Small representative benchmarks for thermochemical calculations. J Phys Chem A. 2004;108:1460. https://doi.org/10.1021/jp0379190

Zhao, Y, Lynch, BJ, Truhlar, DG. Development and assessment of a new hybrid density functional model for thermochemical kinetics. J Phys Chem A. 2004;108:2715–9. https://doi.org/10.1021/jp049908s

Zhao, Y, González‐García, N, Truhlar, DG. Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. J Phys Chem A. 2005;109:2012–8. https://doi.org/10.1021/jp045141s

Zhao, Y, González‐García, N, Truhlar, DG. Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. J Phys Chem A. 2006;110:4942–2. https://doi.org/10.1021/jp061040d

Ess, DH, Houk, KN. Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS‐QB3 methods for the prediction of activation barriers and reaction energetics of 1,3‐dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions. J Phys Chem A. 2005;109:9542–53. https://doi.org/10.1021/jp052504v

Mussard, B, Reinhardt, P, Ángyán, JG, Toulouse, J. Spin‐unrestricted random‐phase approximation with range separation: benchmark on atomization energies and reaction barrier heights. J Chem Phys. 2015;142:154123.

Mussard, B, Reinhardt, P, Ángyán, JG, Toulouse, J. Erratum: “Spin‐unrestricted random‐phase approximation with range separation: benchmark on atomization energies and reaction barrier heights” [J. Chem. Phys. 142, 154123 (2015)]. J Chem Phys. 2015;142:219901. https://doi.org/10.1063/1.4921987

Fast, PL, Corchado, J, Sanchez, ML, Truhlar, DG. Optimized parameters for scaling correlation energy. J Phys Chem A. 1999;103:3139–43. https://doi.org/10.1021/jp9900382

Zheng, J, Zhao, Y, Truhlar, DG. The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights. J Chem Theory Comput. 2009;5:808–21. https://doi.org/10.1021/ct800568m

Szabo, A, Ostlund, NS. The correlation energy in the random phase approximation: intermolecular forces between closed‐shell systems. J Chem Phys. 1977;67:4351–60. https://doi.org/10.1063/1.434580

Ángyán, JG, Liu, RF, Toulouse, J, Jansen, G. Correlation energy expressions from the adiabatic‐connection fluctuation–dissipation theorem approach. J Chem Theory Comput. 2011;7:3116–30. https://doi.org/10.1021/ct200501r

Goerigk, L, Grimme, S. A general database for main group thermochemistry, kinetics, and noncovalent interactions – assessment of common and reparameterized (meta‐)GGA density functionals. J Chem Theory Comput. 2010;6:107–26. https://doi.org/10.1021/ct900489g

Weymuth, T, Couzijn, EPA, Chen, P, Reiher, M. New benchmark set of transition‐metal coordination reactions for the assessment of density functionals. J Chem Theory Comput. 2014;10:3092–103.

Chabbal, S, Stoll, H, Werner, HJ, Leininger, T. Analytic gradients for the combined sr‐DFT/lr‐MP2 method: application to weakly bound systems. Mol Phys. 2010;108:3373–82.

Mussard, B, Szalay, PG, Ángyán, JG. Analytical energy gradients in range‐separated hybrid density functional theory with random phase approximation. J Chem Theory Comput. 2014;10:1968–79.

Zhao, Y, Truhlar, DG. Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theory Comput. 2005;1:415–32. https://doi.org/10.1021/ct049851d

Chabbal, S, Jacquemin, D, Adamo, C, Stoll, H, Leininger, T. Communication: bond length alternation of conjugated oligomers: another step on the fifth rung of Perdew`s ladder of functional. J Chem Phys. 2010;133:151104.

Schwerdtfeger, P, Pernpointner, M, Laerdahl, JK. The accuracy of current density functionals for the calculation of electric field gradients: a comparison with ab initio methods for HCl and CuCl. J Chem Phys. 1999;111:3357–64. https://doi.org/10.1063/1.479620

Söhnel, T, Hermann, H, Schwerdtfeger, P. Solid state density functional calculations for the group 11 monohalides. J Phys Chem B. 2005;109:526–31. https://doi.org/10.1021/jp046085y

Giner, E, Pradines, B, Ferté, A, Assaraf, R, Savin, A, Toulouse, J. Curing basis‐set convergence of wave‐function theory using density‐functional theory: a systematically improvable approach. J Chem Phys. 2018;149:194301.

Loos, PF, Pradines, B, Scemama, A, Giner, E, Toulouse, J. Density‐based basis‐set incompleteness correction for GW methods. J Chem Theory Comput. 2020;16:1018–28.

Kohn, W, Meir, Y, Makarov, DE. van der Waals energies in density functional theory. Phys Rev Lett. 1998;80:4153–6.

Chałasiński, G, Szczęśniak, MM. On the connection between the supermolecular Møller–Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces. Mol Phys. 1988;63:205–24.

Gerber, IC, Ángyán, JG. London dispersion forces by range‐separated hybrid density functional with second order perturbational corrections: the case of rare gas complexes. J Chem Phys. 2007;126:044103.

Dunning, TH. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90:1007–23. https://doi.org/10.1063/1.456153

Woon, DE, Dunning, TH. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys. 1993;98:1358–71. https://doi.org/10.1063/1.464303

Janesko, BG, Henderson, TM, Scuseria, GE. Long‐range‐corrected hybrid density functionals including random phase approximation correlation: application to noncovalent interactions. J Chem Phys. 2009;131:034110.

Pernal, K. Electron correlation from the adiabatic connection for multireference wave functions. Phys Rev Lett. 2018;120:013001. https://doi.org/10.1103/PhysRevLett.120.013001

Pastorczak, E, Pernal, K. Correlation energy from the adiabatic connection formalism for complete active space wave functions. J Chem Theory Comput. 2018;14:3493–503. https://doi.org/10.1021/acs.jctc.8b00213

Kullie, O, Saue, T. Range‐separated density functional theory: a 4‐component relativistic study of the rare gas dimers He_{2}, Ne_{2}, Ar_{2}, Kr_{2}, Xe_{2}, Rn_{2} and Uuo_{2}. Chem Phys. 2012;395:54–62.

Shee, A, Knecht, S, Saue, T. A theoretical benchmark study of the spectroscopic constants of the very heavy rare gas dimers. Phys Chem Chem Phys. 2015;17:10978–86.

Gerber, IC, Ángyán, JG. Potential curves for alkaline‐earth dimers by density functional theory with long‐range correlation corrections. Chem Phys Lett. 2005;416:370–5.

Bender, CF, Davidson, ER. Studies in configuration interaction: the first‐row diatomic hydrides. Phys Rev. 1969;183:23–30. https://doi.org/10.1103/PhysRev.183.23

Huron, B, Malrieu, JP, Rancurel, P. Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions. J Chem Phys. 1973;58:5745–59. https://doi.org/10.1063/1.1679199

Liu, RF, Franzese, CA, Malek, R, Żuchowski, PS, Ángyán, JG, Szczęśniak, MM, et al. Aurophilic interactions from wave function, symmetry‐adapted perturbation theory, and rangehybrid approaches. J Chem Theory Comput. 2011;7:2399–407. https://doi.org/10.1021/ct200243s

Pyykkö, P. Strong closed‐shell interactions in inorganic chemistry. Chem Rev. 1997;97:597–636. https://doi.org/10.1021/cr940396v

Schwerdtfeger, P, Bruce, AE, Bruce, MRM. Theoretical studies on the photochemistry of the cis‐to‐trans conversion in dinuclear gold halide bis(diphenylphosphino)ethylene complexes. J Am Chem Soc. 1998;120:6587–97. https://doi.org/10.1021/ja973741h

Alam, MM, Fromager, E. Metallophilic interactions in A‐frame molecules [S(MPH_{3})_{2}] (M = Cu, Ag, Au) from range‐separated density‐functional perturbation theory. Chem Phys Lett. 2012;554:37–42.

Patkowski, K. Chapter one – benchmark databases of intermolecular interaction energies: design, construction, and significance. In: Dixon, DA, editor. Annu Rep Comput Chem. Volume 13. Amsterdam: Elsevier; 2017. p. 3–91.

Pulay, P. Localizability of dynamic electron correlation. Chem Phys Lett. 1983;100:151–4. Available from: https://www.sciencedirect.com/science/article/pii/0009261483807039

Jurečka, P, Šponer, J, Černý, J, Hobza, P. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys. 2006;8:1985–93. https://doi.org/10.1039/B600027D

Takatani, T, Hohenstein, EG, Malagoli, M, Marshall, MS, Sherrill, CD. Basis set consistent revision of the S22 test set of noncovalent interaction energies. J Chem Phys. 2010;132:144104. https://doi.org/10.1063/1.3378024

Eshuis, H, Furche, F. A parameter‐free density functional that works for noncovalent interactions. J Phys Chem Lett. 2011;2:983–9. https://doi.org/10.1021/jz200238f

Heßelmann, A. Random‐phase‐approximation correlation method including exchange interactions. Phys Rev A. 2012;85:012517. https://doi.org/10.1103/PhysRevA.85.012517

Weigend, F, Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297–305. https://doi.org/10.1039/B508541A

Sansone, G, Civalleri, B, Usvyat, D, Toulouse, J, Sharkas, K, Maschio, L. Range‐separated double‐hybrid density‐functional theory applied to periodic systems. J Chem Phys 2015;143:102811.

Taylor, DE, Ángyán, JG, Galli, G, Zhang, C, Gygi, F, Hirao, K, et al. Blind test of density‐functional‐based methods on intermolecular interaction energies. J Chem Phys. 2016;145:124105.

Lee, K, Murray, ED, Kong, L, Lundqvist, BI, Langreth, DC. Higher‐accuracy van der Waals density functional. Phys Rev B. 2010;82:081101. https://doi.org/10.1103/PhysRevB.82.081101

Zhao, Y, Truhlar, DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06‐class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–41. https://doi.org/10.1007/s00214-007-0310-x

Peverati, R, Truhlar, DG. Improving the accuracy of hybrid meta‐GGA density functionals by range separation. J Phys Chem Lett. 2011;2:2810–7. https://doi.org/10.1021/jz201170d

Grimme, S, Antony, J, Ehrlich, S, Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu. J Chem Phys. 2010;132:154104. https://doi.org/10.1063/1.3382344

Jansen, G. Symmetry‐adapted perturbation theory based on density functional theory for noncovalent interactions. WIREs Comput Mol Sci. 2014;4:127–44.

Becke, AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52. https://doi.org/10.1063/1.464913

Pernal, K, Podeszwa, R, Patkowski, K, Szalewicz, K. Dispersionless density functional theory. Phys Rev Lett. 2009;103:263201. https://doi.org/10.1103/PhysRevLett.103.263201

Van Leeuwen, R. Mapping from densities to potentials in time‐dependent density‐functional theory. Phys Rev Lett. 1999;82:3863–6.

Van Leeuwen, R. Key concepts in time‐dependent density‐functional theory. Int J Mod Phys B. 2001;15:1969–2023.

Pernal, K. Excitation energies from range‐separated time‐dependent density and density matrix functional theory. J Chem Phys. 2012;136:184105.

Fromager, E, Knecht, S, Jensen, HJA. Multi‐configuration time‐dependent density‐functional theory based on range separation. J Chem Phys. 2013;138:084101.

Runge, E, Gross, EK. Density‐functional theory for time‐dependent systems. Phys Rev Lett. 1984;52:997–1000.

Marques, M, Rubio, A, Gross, EK, Burke, K, Nogueira, F, Ullrich, CA. Time‐dependent density functional theory. Vol 706. Berlin: Springer Science %26 Business Media; 2006.

Dreuw, A, Head‐Gordon, M. Failure of time‐dependent density functional theory for long‐range charge‐transfer excited states: the zincbacteriochlorin‐bacteriochlorin and bacteriochlorophyll‐spheroidene complexes. J Am Chem Soc. 2004;126:4007–16.

Pernal, K, Giesbertz, KJ. Reduced density matrix functional theory (RDMFT) and linear response time‐dependent RDMFT (TD‐RDMFT). Top Curr Chem. 2015;368:125–83.

Hedegård, ED, Heiden, F, Knecht, S, Fromager, E, Jensen, HJA. Assessment of charge‐transfer excitations with time‐dependent, range‐separated density functional theory based on long‐range MP2 and multiconfigurational self‐consistent field wave functions. J Chem Phys. 2013;139:184308.

Hubert, M, Hedegård, ED, Jensen, HJA. Investigation of multiconfigurational short‐range density functional theory for electronic excitations in organic molecules. J Chem Theory Comput. 2016;12:2203–13.

Hubert, M, Jensen, HJA, Hedegård, ED. Excitation spectra of nucleobases with multiconfigurational density functional theory. J Phys Chem A. 2016;120:36–43.

Yanai, T, Tew, DP, Handy, NC. A new hybrid exchange–correlation functional using the Coulomb‐attenuating method (CAM‐B3LYP). Chem Phys Lett. 2004;393:51–7.

Cembran, A, González‐Luque, R, Altoè, P, Merchán, M, Bernardi, F, Olivucci, M, et al. Structure, spectroscopy, and spectral tuning of the gas‐phase retinal chromophore: the *β*‐ionone “handle” and alkyl group effect. J Phys Chem A. 2005;109:6597–605. https://doi.org/10.1021/jp052068c

Hedegård, ED, Olsen, JMH, Knecht, S, Kongsted, J, Jensen, HJA. Polarizable embedding with a multiconfiguration short‐range density functional theory linear response method. J Chem Phys. 2015;142:114113.

Olsen, JM, Aidas, K, Kongsted, J. Excited states in solution through polarizable embedding. J Chem Theory Comput. 2010;6:3721–34.

Hedegård, ED, Jensen, HJA, Kongsted, J. Polarizable embedding based on multiconfigurational methods: current developments and the road ahead. Int J Quant Chem. 2014;114:1102–7.

Schreiber, M, Silva‐Junior, MR, Sauer, SP, Thiel, W. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys. 2008;128:134110.

Hedegård, ED. Assessment of oscillator strengths with multiconfigurational short‐range density functional theory for electronic excitations in organic molecules. Mol Phys. 2017;115:26–38.

Kjellgren, ER, Hedegård, ED, Jensen, HJA. Triplet excitation energies from multiconfigurational short‐range density‐functional theory response calculations. J Chem Phys. 2019;151:124113.

Rohrdanz, MA, Martins, KM, Herbert, JM. A long‐range‐corrected density functional that performs well for both ground‐state properties and time‐dependent density functional theory excitation energies, including charge‐transfer excited states. J Chem Phys. 2009;130:054112.

Laurent, AD, Jacquemin, D. TD‐DFT benchmarks: a review. Int J Quant Chem. 2013;113:2019–39. https://doi.org/10.1002/qua.24438

Olsen, JMH, Hedegård, ED. Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution. Phys Chem Chem Phys. 2017;19:15870–5.

Van Gisbergen, S, Groeneveld, J, Rosa, A, Snijders, J, Baerends, E. Excitation energies for transition metal compounds from time‐dependent density functional theory. Applications to MnO_{4}^{−}, Ni(CO)_{4}, and Mn_{2}(CO)_{10}. J Phys Chem A. 1999;103:6835–44.

Rebolini, E, Savin, A, Toulouse, J. Electronic excitations from a linear‐response range‐separated hybrid scheme. Mol Phys. 2013;111:1219–34.

Rebolini, E, Toulouse, J. Range‐separated time‐dependent density‐functional theory with a frequency‐dependent second‐order Bethe‐Salpeter correlation kernel. J Chem Phys. 2016;144:094107.

Rebolini, E, Toulouse, J, Teale, AM, Helgaker, T, Savin, A. Excitation energies along a range‐separated adiabatic connection. J Chem Phys. 2014;141:044123.

Rebolini, E, Toulouse, J, Teale, AM, Helgaker, T, Savin, A. Excited states from range‐separated density‐functional perturbation theory. Mol Phys. 2015;113:1740–9.

Rebolini, E, Teale, AM, Helgaker, T, Savin, A, Toulouse, J. Excitation energies from Görling–Levy perturbation theory along the range‐separated adiabatic connection. Mol Phys. 2018;116:1443–51.

Hedegård, ED, Toulouse, J, Jensen, HJA. Multiconfigurational short‐range density‐functional theory for open‐shell systems. J Chem Phys. 2018;148:214103.

Rodríguez‐Jiménez, JA, Carreras, A, Casanova, D. Short‐range DFT energy correction to multiconfigurational wave functions for open‐shell systems. J Chem Phys. 2021;154:124116.

Franck, O, Fromager, E. Generalised adiabatic connection in ensemble density‐functional theory for excited states: example of the H_{2} molecule. Mol Phys. 2014;112:1684–701.

Senjean, B, Knecht, S, Jensen, HJA, Fromager, E. Linear interpolation method in ensemble Kohn–Sham and range‐separated density‐functional approximations for excited states. Phys Rev A. 2015;92:012518.

Goerigk, L, Grimme, S. Double‐hybrid density functionals. WIREs Comput Mol Sci. 2014;4:576–600.

Kalai, C, Toulouse, J. A general range‐separated double‐hybrid density‐functional theory. J Chem Phys. 2018;148:164105.

Kalai, C, Mussard, B, Toulouse, J. Range‐separated double‐hybrid density‐functional theory with coupled‐cluster and random‐phase approximations. J Chem Phys. 2019;151:074102.

Savin, A. Models and corrections: range separation for electronic interaction‐lessons from density functional theory. J Chem Phys. 2020;153:160901.