Heitler, W,London, F.Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik.Z Phys1927,44:455–472.
Schwarz, WHE.Chemical bonding: state of the art in conceptual quantum chemistry. An introduction.Theor Chem Acc2001,105:271–275.
Shaik, S.Is my chemical universe localized or delocalized? Is there a future for chemical concepts?New J Chem2007,31:2105–2028.
Frenking, G,Krapp, A.Unicorns in the world of chemical bonding models.J Comput Chem2007,28:15–24.
Lewis, GN.The Atom and the molecule.J Am Chem Soc1916,38:762–785.
A discussion of the impact and importance of the work of G. N. Lewis to the theory of chemistry is presented in a special issue edited by Frenking G and Shaik S. 90 Years of chemical bonding.J Comput Chem2007,28, Issue 1.
Pauling, L.The Nature of the Chemical Bond and the Structure of Molecules and Crystals.3rd ed.Ithaca, New York: Cornell University Press;1960.
Morokuma, K.Molecular orbital studies of hydrogen bonds.J Chem Phys1971,55:1236–1244.
Ziegler, T,Rauk, A.On the calculation of bonding energies by the Hartree–Fock Slater method.Theoretica Chimica Acta1977,46:1–10.
Bader, RFW,Atoms in Molecules. A Quantum Theory.Oxford, UK: Oxford University Press1990.
Frenking, G,von Hopffgarten, M.Calculation of bonding properties. In:Solomon EI,,Scott RA,,King RB,, eds.Computational Inorganic and Bioinorganic Chemistry.New York: Wiley;2009,3–16.
Bickelhaupt, FM,Baerends, EJ.Kohn Sham density functional theory: Predicting and understanding chemistry. In:Lipkowitz, KB,Boyd, BD, eds.Reviews in Computational Chemistry;2000,1–86.
Grimme, S.Accurate description of van Der Waals complexes by density functional theory including empirical corrections.J Comput Chem2004,25:1463–1473.
Grimme, S.Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction.J Comput Chem2006,27:1787–1799.
Esterhuysen, C,Frenking, G.The nature of the chemical bond revisited. An energy decomposition analysis of diatomic molecules E2 (E = N‐Bi, F‐I), CO and BF.Theor Chem Acc2004,111:381–389.
Spackman, MA,Maslen, EN.Chemical properties from the promolecule.J Phys Chem1986,90:2020–2027.
Kovács, A,Esterhuysen, C,Frenking, G.The nature of the chemical bond revisited: an energy partitioning analysis of nonpolar bonds.Chem—A Eur J2005,11:1813–1823.
Krapp, A,Bickelhaupt, FM,Frenking, G.Orbital overlap and chemical bonding.Chem—A Eur J2006,12:9196–9216.
Loschen, C,Voigt, K,Frunzke, J,Diefenbach, A,Diedenhofen, M,Frenking, G.Quantum chemical investigations of the phosphane complexes X3B–PY3 and X3Al–PY3 (X = H, F, Cl; Y = F, Cl, Me, CN).Z Allg Anorg Chem2002,628:1294–1304.
Bessac, F,Frenking, G.Chemical bonding in phosphane and amine complexes of main group elements and transition metals.Inorg Chem2003,42:7990–7994.
Frenking, G,Wichmann, K,Fröhlich, N,Loschen, C,Lein, M,Frunzke, J,Rayón, VM.Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes.Coord Chem Rev2003,238–239:55–82.
Hückel, E.Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen.Z Phys1931,70:204–286.
Hückel, E.Quantentheoretische Beiträge zum Benzolproblem. II. Quantentheorie der induzierten Polaritäten.Z Phys1931,72:310–337.
Hückel, E.Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III.Z Phys1932,76:628–648.
Hückel, E.Die freien Radikale der organischen Chemie. Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. IV.Z Phys1933,83:632–668.
von, E.Doering, W,Detert, FL.Cycloheptatrienylium oxide.J Am Chem Soc1951,73:876–877.
The theoretical treatment of aromaticity is topic of a special issue entitled “Aromaticity”.Chem Rev2001,101, Issue 5.
Aromaticity and delocalization is a topic of a special issue entitled “Delocalization‐pi and sigma.”Chem Rev2005,105, Issue 10.
Cappel, D,Tüllmann, S,Krapp, A,Frenking, G.Direct estimate of the conjugative and hyperconjugative stabilization in diynes, dienes and related compounds.Angew Chem Int Ed2005,44:3617–3620;Angew Chem117:3683–3686.
Fernández, I,Frenking, G.Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method.Chem—A Eur J2006,12:3617–3629.
Fernández, I,Frenking, G.Direct estimate of conjugation and aromaticity in cyclic compounds with the EDA method.Faraday Discuss2007,135:403–421.
Mo, Y,von Ragué Schleyer, P.An energetic measure of aromaticity and antiaromaticity based on the Pauling–Wheland resonance energies.Chem—A Eur J2006,12:2009–2020.
Thorn, DL,Hoffmann, R.Delocalization in metallocycles.Nouveau J de Chim1979,3:39–45.
Fernández, I,Frenking, G.Aromaticity in metallabenzenes.Chem—A Eur J2007,13:5873–5884.
Pierrefixe, SCAH,Bickelhaupt, FM.Aromaticity: molecular‐orbital picture of an intuitive concept.Chem—A Eur J2007,13:6321–6328.
Pierrefixe, SCAH,Bickelhaupt, FM.Aromaticity and antiaromaticity in 4‐, 6‐, 8‐, and 10‐membered conjugated hydrocarbon rings.J Phys Chem A2008,12:12816–12822.
Shaik, SS,Hiberty, PC.When does electronic delocalization become a driving force of molecular shape and stability? 1. The aromatic sextet.J Am Chem Soc1985,107:3089–3095.
Dewar, MJS.A review of the π‐complex‐theory.Bulletin de la Sociêté Chimique de France1951,18C:74–79.
Chatt, J,Duncanson, LA.Olefin co‐ordination compounds. Part III. Infra‐red spectra and structure: attempted preparation of acetylene complexes.J Chem Soc1953,2939–2947.
Frenking, G.Understanding the nature of the bonding in transition metal complexes: from Dewar`s molecular orbital model to an energy partitioning analysis of the metal‐ligand bond.J Organometallic Chem2001,635:9–23.
Frenking, G.The Dewar–Chatt–Duncanson bonding model of transition metal–olefin complexes examined by modern quantum chemical methods. In:Leigh GJ,, Winterton N, eds.Modern Coordination Chemistry: The Legacy of Joseph Chatt.London: The Royal Society;2002, 111.
Diefenbach, A,Bickelhaupt, FM,Frenking, G.The nature of the transition metal‐carbonyl bond and the question about valence orbitals of transition metals. A bond‐energy decomposition analyses of TM(CO)6q (TMq = Hf2−, Ta−, W, Re+, Os2+, Ir3+).J Am Chem Soc2000,122:6449–6458.
Nechaev, MS,Rayòn, VM,Frenking, GF.Energy partitioning analysis of the bonding in ethylene and acetylene complexes of group 6, 8, and 11 metals: (CO)5TM‐C2Hx and Cl4TM‐C2Hx (TM = Cr, Mo, W), (CO)4TM‐C2Hx (TM = Fe, Ru, Os), and TM+‐C2Hx (TM = Cu, Ag, Au).J Phys Chem A2004,108:3134–3142.
Tonner, R,Heydenrych, G,Frenking, G.Bonding analysis of N‐heterocyclic carbene tautomers and phosphine ligands in transition metal complexes: a theoretical study.Chem—An Asian J2007,2:1555–1567.
Frenking, G,Wichmann, K,Fröhlich, N,Grobe, J,Golla, W,Van, DL,Krebs, B,Läge, M.Nature of the metal‐ligand bond in M(CO)5PX3 complexes (M = Cr, Mo, W; X = H, Me, F, Cl): synthesis, molecular structure, and quantum‐chemical calculations.Organometallics2002,21:2921–2930.
Heydenrych, G,von Hopffgarten, M,Stander, E,Schuster, O,Raubenheimer, HG,Frenking, G.The nature of the metal‐carbene bond in normal and abnormal pyridylidene, quinolylidene and isoquinolylidene complexes.Eur J Inorg Chem2009,1892–1904.
Nemcsok, D,Wichmann, K,Frenking, G.The significance of π interactions in group 11 complexes with N‐heterocyclic carbenes.Organometallics2004,23:3640–3646.
Miller, SA,Tebboth, JA,Tremaine, JF.Dicyclopentadienyliron.J Chem Soc1952,632–635.
Kealy, TJ,Pauson, PL.A new type of organo–iron compound.Nature1951,168:1039–1040.
Fischer, EO,Pfab, W.Zur Kristallstruktur der Di‐Cyclopentadienyl‐Verbindungen des zweiwertigen Eisens, Kobalts und Nickels.Z Naturforsch1952,7B:377–379.
Wilkinson, G,Rosenblum, M,Whiting, MC,Woodward, RB.The structure of iron bis‐cyclopentadienyl.J Am Chem Soc1952,74:2125–2126.
Elschenbroich, C.Organometallics.3rd ed.Weinheim: Wiley‐VCH;2006.
Fischer, EO,Hafner, W. Di‐benzol‐chrom. Über Aromatenkomplexe von Metallen I.Z Naturforsch1955,10B:665–668.
Seyferth, D.Bis(benzene)chromium. 1. Franz Hein at the University of Leipzig and Harold Zeiss and Minoru Tsutsui at Yale.Organometallics2002,21:1520–1530.
Seyferth, D.Bis(benzene)chromium. 2. Its Discovery by E. O. Fischer and W. Hafner and subsequent work by the research groups of E. O. Fischer, H.‐H. Zeiss, F. Hein, C. Elschenbroich, and others.Organometallics2002,21:2800–2820.
Rayón, VM,Frenking, G.Bis(benzene)chromium is a δ‐bonded molecule and ferrocene is a π‐bonded molecule.Organometallics2003,22:3304–3308.
Lein, M,Frunzke, J,Timoshkin, A,Frenking, G.Iron bispentazole Fe(η5‐N5)2, a theoretically predicted high‐energy compound: structure, bonding analysis, metal‐ligand bond strength and a comparison with the isoelectronic ferrocene.Chem—A Eur J2001,7:4155–4163.
Frunzke, J,Lein, M,Frenking, G.Structures, metal‐ligand bond strength, and bonding analysis of ferrocene derivatives with group‐15 heteroligands Fe(η5‐E5)2 and FeCp(η5‐E5) (E = N, P, As, Sb). A theoretical study.Organometallics2002,21:3351–3359.
Lein, M,Frunzke, J,Frenking, G.Structures and bonding of the sandwich complexes [Ti(η5‐E5)2]2‐ (E = CH, N, P, As, Sb): a theoretical study.Inorg Chem2003,42:2504–2511.
Rayón, VM,Frenking, G.Structures, bond energies, heats of formation, and quantitative bonding analysis of main group metallocenes [E(Cp)2] (E = Be‐Ba, Zn, Si‐Pb) and [E(Cp)] (E = Li‐Cs, B‐Tl).Chem—A Eur J2002,8:4693–4707.
Resa, I,Carmona, E,Gutierrez‐Puebla, E,Monge, A.Decamethyldizincocene, a stable compound of Zn(I) with a ZnZn Bond.Science2004,305:1136–1138.
Velazquez, A,Fernández, I,Frenking, G,Merino, G.Multimetallocenes. A theoretical Study.Organometallics2007,26:4731–4736.
Cadenbach, T,Bollermann, T,Gemel, C,Fernández, I,von Hopffgarten, M,Frenking, G,Fischer, RA.Twelve One‐Electron Ligands Coordinating one Metal Center: Structure and Bonding of [Mo(ZnCH3)9(ZnCp*)3].Angew Chem Int Ed2008,47:9150–9154;Angew Chem2008,120:9290–9295.
Esenturk, EN,Fettinger, J,Lam, Y‐F,Eichhorn, B.[Pt@Pb12]2‐. Angew Chemie Int Ed2004,43:2132–2134;Angew Chem116:2184–2186.
Esenturk, EN,Fettinger, J,Eichhorn, B.The Pb122‐ and Pb102‐ Zintl Ions and the M@Pb122‐ and M@Pb102‐ cluster series where M = Ni, Pd, Pt.J Am Chem Soc2006,128:9178–9186.
Wade, K.Structural and bonding patterns in cluster chemistry.Adv Inorg Chem Radiochem1976,18:1–66.
Mingos, DMP.Polyhedral skeletal electron pair approach.Acc Chem Res1984,17:311–319.
Zhan, C‐G,Liu, F,Hu, Z‐M.Bond strength and bond angles for hybrid orbitals composed of arbitrary sets of orbital angular momentum quantum number.Int J Quantum Chem1987,32:13–18.
Firman, TK,Landis, CR.Structure and electron counting in ternary transition metal hydrides.J Am Chem Soc1998,120:12650–12656.
Fukui, K.The path of chemical reactions—the IRC approach.Acc Chem Res1981,14:363–372.
Bickelhaupt, FM,Baerends, EJ,Nibbering, NMM,Ziegler, T.Theoretical investigation on base‐induced 1,2‐eliminations in the model system F‐ + CH3CH2F. The role of the base as a catalyst.J Am Chem Soc1993,115:9160–9173.
Fernández, I,Frenking, G,Uggerud, E.The interplay of steric and electronic effects in SN2 reactions.Chem—A Eur J2009,15:2166–2175.
Bento, AP,Bickelhaupt, FM.Nucleophilicity and leaving‐group ability in frontside and backside SN2 reactions.J Organic Chem2008,73:7290–7299.
de Jong, GT,Bickelhaupt, FM.Transition state energy and position along the reaction coordinate in an extended activation strain model.Chem Phys Chem2007,8:1170–1181.
van Zeist, W‐J,Visser, R,Bickelhaupt, FM.The steric nature of the bite angle.Chem—A Eur J2009,15:6112–6115.
Bickelhaupt, FM,Ziegler, T,von Ragué Schleyer, P.Oxidative insertion as frontside SN2 substitution: a theoretical study of the model reaction system Pd + CH3Cl.Organometallics1995,14:2288–2296.
Diefenbach, A,Bickelhaupt, FM.Oxidative addition of Pd to CH, CC and CCl bonds: importance of relativistic effects in DFT calculations.J Chem Phys2001,115:4030–4040.
Diefenbach, A,Bickelhaupt, FM.Activation of HH, CH, CC, and CCl bonds by Pd(0). Insight from the activation strain model.J Phys Chem A2004,108:8460–8466.
Diefenbach, A,de Jong, GT,Bickelhaupt, FM.Activation of HH, CH, CC and CCl bonds by Pd and PdCl‐. Understanding anion assistance in CX bond activation.J Chem Theory Comput2005,1:286–298.
Diefenbach, A,Bickelhaupt, FM.Activation of CH, CC and CI bonds by Pd and cis‐Pd(CO)2I2. Catalyst–substrate adaption.J Organometallic Chem2005,690:2191–2199.
de Jong, GT,Bickelhaupt, FM.Catalytic carbon‐halogen activation: trends in reactivity, selectivity, and solvation.J Chem Theory Comput2007,3:514–529.
de Jong, GT,Visser, R,Bickelhaupt, FM.Oxidative addition to main group versus transition metals: insight from the activation strain model.J Organometallic Chem2006,691:4341–4349.
van Stralen, JNP,Bickelhaupt, FM.Oxidative addition versus dehydrogenation of methane, silane, and heavier AH4 congeners reacting with palladium.Organometallics2006,25:4260–4268.
Fernández, I,Bickelhaupt, FM,Cossío, FP.Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.Chem—A Eur J2009,15:13022–13032.
Bickelhaupt, FM.Understanding reactivity with Kohn–Sham molecular orbital theory: E2‐SN2 mechanistic spectrum and other concepts.J Comput Chem1999,20:114–128.
van Zeist, W‐J,Bickelhaupt, FM.The activation strain model of chemical reactivity.Org Biomole Chem2010,8:3118–3127.
Lein, M,Krapp, A,Frenking, G.Why do the heavy‐atom analogues of acetylene E2H2 (E = Si–Pb) exhibit unusual structures?J Am Chem Soc2005,127:6290–6299.
Pu, L,Twamley, B,Power, PP.Synthesis and characterization of 2,6‐Trip2H3C6PbPbC6H3–2,6‐Trip2 (Trip = C6H2–2,4,6‐i‐Pr3): a stable heavier group 14 element analogue of an alkyne.J Am Chem Soc2000,122:3524–3525.
Phillips, AD,Wright, RJ,Olmstead, MM,Power, PP.Synthesis and characterization of 2,6‐Dipp2‐H3C6SnSnC6H3–2,6‐Dipp2 (Dipp = C6H3–2,6‐Pri2): a tin analogue of an alkyne.J Am Chem Soc2002,124:5930–5931.
Stender, M,Phillips, AD,Wright, RJ,Power, PP.Synthesis and characterization of a digermanium analogue of an alkyne.Angew Chem Int Ed2002,41:1785–1787;Angew Chem2002,114:1863–1865.
Sekiguchi, A,Kinjo, R,Ichinohe, M.A stable compound containing a silicon‐silicon triple bond.Science2007,305:1755–1757.
Jacobsen, H,Ziegler, T.Nonclassical double bonds in ethylene analogues: influence of Pauli repulsion on trans bending and π bond strength. A density functional study.J Am Chem Soc1994,116:3667–3679.
Ziegler, T.Theoretical study of the triple metal bond in d3‐d3 binuclear complexes of chromium, molybdenum, and tungsten by the Hartree—Fock–Slater transition state method.J Am Chem Soc1983,105:7543–7549.
Ziegler, T.Theoretical study of multiple metal‐metal bonds in binuclear complexes of group 6D and group 7D transition elements with the general formula M2Cl4(PH3)4n+ (n = 0, 1, 2) by the Hartree–Fock–Slater transition state method.J Am Chem Soc1984,106:5901–5908.
Krapp, A,Lein, M,Frenking, G.The strength of the σ‐, π‐ and δ‐bonds in Re2Cl82‐.Theor Chem Acc2008,120:313–320.