Jobsis, FF. Noninvasive infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters. Science 1977, 198:1264–1267.
Meek, JH, Firbank, M, Elwell, CE, Atkinson, J, Braddick, O, Wyatt, JS. Regional haemodynamic responses to visual stimulation in awake infants. Pediatr Res 1998, 43:840–843.
Mather, M, Cacioppo, JT, Kanwisher, N. How fMRI can inform cognitive theories. Perspect Psychol Sci 2013, 8:108–113. doi:10.1177/1745691612469037.
Poldrack, RA. Can cognitive processing be inferred from neuroimaging data? Trends Cogn Sci 2006, 10:59–63. doi:10.1016/j.tics.2005.12.004.
Machery, E. In defense of reverse inference. Brit J Phil Sci 2014, 65:251–267. doi:10.1093/bjps/axs044.
Aslin, R. Questioning the questions that have been asked about the infant brain using near‐infrared spectroscopy. Cogn Neuropsy 2012, 29:7–33. doi:10.1080/02643294.2012.654773.
Karmiloff‐Smith, A. Neuroimaging of the developing brain: taking “developing” seriously. Hum Brain Mapp 2010, 31:934–941. doi:10.1002/hbm.21074.
Pettito, LA, Berens, MS, Kovelman, I, Dubins, MH, Jasinka, K, Shalinsky, M. The “perceptual wedge hypothesis” as the basis for bilingual babies` phonetic processing advantage: new insights from fNIRS brain imaging. Brain Lang 2012, 121:130–143. doi:10.1016/j.bandl.2011.05.003.
Sevy, ABG, Bortfeld, H, Huppert, TJ, Beauchamp, MS, Tonini, RE, Oghali, JS. Neuroimaging with near‐infrared spectroscopy demonstrates speech‐evoked activity in the auditory cortex of deaf children following cochlear implantation. Hear Res 2010, 270:39–47. doi:10.1016/j.heares.2010.09.010.
Gervain, J, Macagno, F, Cogoi, S, Pena, M, Mehler, J. The neonate brain detects speech structure. Proc Natl Acad Sci USA 2008, 105:14222–14227.
Wilcox, T, Hirshkowitz, A, Hawkins, L, Boas, DA. The effect of color priming on infant brain and behavior. Neuroimage 2014, 85:302–313. doi:10.1016/j.neuroimage.2013.08.045.
Chance, B, Zhuang, Z, Unah, C, Alter, C, Lipton, L. Cognition‐activated low‐frequency modulation of light absorption in human brain. Proc Natl Acad Sci USA 1993, 90:3770–3774.
Hoshi, Y, Tamura, M. Dynamic multichannel near‐infrared optical imaging of human brain activity. J Appl Physiol 1993, 75:1842–1846.
Villringer, A, Planck, J, Hock, C, Schleinkofer, L, Dirnagl, U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 1993, 154:101–104.
Kato, T, Kamei, A, Takashima, S, Ozaki, T. Human visual cortical function during photic stimulation monitoring by means of near‐infrared spectroscopy. J Cereb Blood Flow Metab 1993, 13:516–520.
Boas, DA, Dale, AM, Franceschini, MA. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage 2004, 23:S275–S288. doi:10.1016/j.neuroimage.2004.07.011.
Strangman, G, Franceschini, MA, Boas, DA. Factors affecting the accuracy of near‐infrared spectroscopy concentration calculations for focal changes in oxygenation parameters. Neuroimage 2003, 18:865–879.
Sato, H, Kiguchi, M, Kawaguchi, F, Maki, A. Practicality of wavelength selection to improve signal‐to‐noise ratio in infrared spectroscopy. Neuroimage 2004, 21:1554–1562.
Gratton, G, Goodman‐Wood, MR, Fabiani, M. Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study. Hum Brain Mapp 2001, 13:13–25.
Kleinschmidt, A, Obrig, H, Requardt, M, Merboldt, KD, Dirnagl, U, Villringer, A, Frahm, J. Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near‐infrared spectroscopy. J Cerebr Blood F Met 1996, 16:817–826.
Strangman, G, Culver, JP, Thompson, JH, Boas, DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 2002, 17:719–731.
Villringer, A, Chance, B. Non‐invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 1997, 20:435–442.
Huppert, TJ, Hoge, RD, Diamond, SG, Franceschini, MA, Boas, DA. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 2006, 29:368–382.16303317
Franceschini, AG, Boas, DA. Noninvasive measure of neuronal activity with near‐infrared optical imaging. Neuroimage 2004, 21:372–386. doi:10.1016/j.neuroimage.2003.09.040.
Jasdzewski, G, Strangman, G, Wagner, J, Kwong, KK, Poldrack, RA, Boas, DA. Differences in the hemodynamic response to event‐related motor and visual paradigms as measured by near‐infrared spectroscopy. Neuroimage 2003, 20:479–488.
Fransson, P, Skiold, B, Engstrom, M, Hallberg, B, Mosskin, M, Aden, U, Lagercrantz, H, Blennow, M. Spontaneous brain activity in the newborn brain during natural sleep—an fMRI study in infants born at full term. Pediatr Res 2009, 66:301–305.
Tsuzuki, D, Dan, I. Spatial registration for functional near‐infrared spectroscopy: from channel position on the scalp to cortical location in individual and group analyses. Neuroimage 2014, 85:92–103. doi:10.1016/j.neuroimage.2013.07.025.
Okamoto, M, Dan, H, Sakamoto, K, Takeo, K, Shimizu, K, Kohno, S, Oda, I, Isobe, S, Suzuki, T, Kohyama, K, et al. Three‐dimensional probabilistic anatomical cranio‐cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 2004, 21:99–111. doi:10.1016/j.neuroimage.2003.08.026.
Minagawa‐Kawai, Y, Mori, K, Hebden, JC, Dupoux, E. Optical imaging of infants` neurocognitive development: recent advances and perspectives. Dev Neurobiol 2008, 68:712–728. doi:10.1002/dneu.20618.
Wolf, M, Ferrari, M, Quaresima, V. Progress of near‐infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt 2007, 12:062104.
Scholkmann, F, Kleiser, S, Metz, AJ, Zimmermann, R, Pavia, JM, Wolf, U, Wolf, M. A review on continuous wave functional near‐infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85:6–27. doi:10.1016/j.neuroimage.2013.05.004.
Torricelli, A, Contini, D, Pifferi, A, Caffini, M, Re, R, Zucchelli, L, Spinelli, L. Time domain functional NIRS imaging for human brain mapping. Neuroimage 2014, 85:28–50. doi:10.1016/j.neuroimage.2013.05.106.
Hyde, DC, Boas, DA, Blair, C, Carey, S. Near‐infrared spectroscopy shows right parietal specialization for number in pre‐verbal infants. Neuroimage 2010, 53:647–652. doi:10.1016/j.neuroimage.2010.06.030.
Taga, G, Asakawa, K. Selectivity and localization of cortical response to auditory and visual stimulation in awake infants aged 2 to 4 months. Neuroimage 2007, 36:1246–1252. doi:10.1016/j.neuroimage.2007.04.037.
Watanabe, H, Homae, F, Nakano, T, Taga, G. Functional activation in diverse regions of the developing brain of human infants. Neuroimage 2008, 43:346–357.
Krekelberg, B, Boynton, GM, Wezel, RJA. Adaptation: from single cells to BOLD signals. Trends Neurosci 2006, 29:250–256.
Lloyd‐Fox, S, Blasi, A, Volein, A, Everdell, N, Elwell, C, Johnson, MH. Social perception in infancy: a near infrared spectroscopy study. Child Dev 2009, 80:986–999.
Lloyd‐Fox, S, Blasi, A, Elwell, CE. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 2010, 34:269–284. doi:10.1016/j.neubiorev.2009.07.008.
Pena, M, Maki, A, Kovacic, D, Dehaene‐Lambertz, G, Koizumi, H, Bouquet, F, Mehler, J. Sounds and silence: an optical topography study of language recognition at birth. Proc Natl Acad Sci USA 2003, 100:11702–11705. doi:10.1073/pnas.1934290100.
Wilcox, T, Bortfeld, H, Woods, R, Wruck, E, Boas, DA. Using near‐infrared spectroscopy to assess neural activation during object processing in infants. J Biomed Opt 2005, 10:011010. doi:10.1117/1.1852551.
Grossmann, T, Johnson, MH, Lloyd‐Fox, S, Blasi, A, Delganni, F, Elwell, C, Csibra, G. Early cortical specialization for face‐to‐face communication in human infants. Proc R Soc B 2008, 275:2803–2811. doi:10.1098/rspb.2008.0986.
Csibra, G, Tucker, L, Johnson, MH. Differential frontal cortex activation before anticipatory and reactive saccades in infants. Infancy 2001, 2:159–174.
Brigadoi, S, Ceccherini, L, Cutini, S, Scarpa, F, Scatturin, P, Sleb, J, Gagnon, L, Boas, DA, Cooper, RJ. Motion artifacts in functional near‐infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. Neuroimage 2014, 85:181–191. doi:10.1016/j.neuroimage.2013.04.082.
Delpy, DT, Cope, M, van der Zee, P, Arridge, S, Wray, S, Wyatt, J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 1988, 33:1433–1442.
Tak, S, Ye, JC. Statistical analysis of fNIRS data: a comprehensive review. Neuroimage 2014, 85:72–91. doi:10.1016/j.neuroimage.2013.06.016.
Bar, M. A cortical mechanism for triggering top‐down facilitation in visual object recognition. J Cogn Neurosci 2003, 15:600–609.
Devlin, JT, Russell, RP, Davis, MH, Price, CJ, Moss, HE, Fadili, MJ, Tyler, LK. Is there an anatomical basis for category‐specificity? Semantic memory studies in PET and fMRI. Neuropsychologia 2002, 40:54–75.
Grill‐Spector, K. The neural basis of object perception. Curr Opin Neurobiol 2003, 13:159–166.
Haxby, JV, Gobbini, MI, Furey, ML, Ishai, A, Schouten, JL, Pietrini, P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001, 293:2425–2430. doi:10.1126/science.1063736.
Humphreys, GW, Price, CJ, Riddoch, MJ. From objects to names: a cognitive neuroscience approach. Psychol Res 1999, 1999:118–130.
Kanwisher, N. The ventral visual object pathway in humans: evidence from fMRI. In: Chalupa, L, Werner, J, eds. The Visual Neurosciences. Cambridge, MA: MIT Press; 2003, 1179–1189.
Kourtzi, Z, Connor, CE. Neural representations for object perception: structure, category, and adaptive coding. Annu Rev Neurosci 2011, 34:45–67. doi:10.1146/annurev-neuro-060909-153218.
Mahon, BH, Caramazza, A. What drives the organization of object knowledge in the brain? Trends Cogn Sci 2011, 15:97–103. doi:10.1016/j.tics.2011.01.004.
Baillargeon, R, Carey, S. Core cognition and beyond: the acquisition of physical and numerical knowledge. In: Pauen, S, ed. Early Childhood Development and Later Outcome. Cambridge, England: Cambridge University Press; 2012, 33–65.
Wilcox, T, Haslup, J, Boas, DA. Dissociation of processing of featural and spatiotemporal information in the infant cortex. Neuroimage 2010, 53:1256–1263. doi:10.1016/j.neuroimage.2010.06.064.
Wilcox, T, Stubbs, J, Hirshkowitz, A, Boas, DA. Object processing and functional organization of the infant cortex. Neuroimage 2012, 62:1833–1840. doi:10.1016/j.neuroimage.2012.05.039.
Wilcox, T, Bortfeld, H, Woods, R, Wruck, E, Boas, DA. Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration. Dev Sci 2008, 11:361–370. doi:10.1111/j.1467-7687.2008.00681.x.
Wilcox, T, Bortfeld, H, Armstrong, J, Woods, R, Boas, DA. Hemodynamic response to featural and spatiotemporal information in the infant brain. Neuropsychologia 2009, 47:657–662.
Wilcox, T. Object Individuation: Infants` use of shape, size, pattern, and color. Cognition 1999, 72:125–166.
Wilcox, T, Woods, R, Chapa, C, McCurry, S. Multisensory exploration and object individuation in infants. Dev Psychol 2007, 43:479–495.
Wilcox, T, Hawkins, L, Hirshkowitz, A, Boas, DA. Cortical activation to object shape and speed of motion during the first year. NeuroImage 2014, 99:129–141. doi:10.1016/j.neuroimage.2014.04.082.
Malach, R, Reppas, JB, Benson, RR, Kwong, KK, Jiang, H, Kennedy, WA, Ledden, PJ, Brady, TJ, Rosen, BR, Tootell, RBH. Object‐related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 1995, 92:8135–8139.
Honda, Y, Nakato, E, Otsuka, Y, Kanazawa, S, Kojima, S, Yamaguchi, MK, Kakigi, R. How do infants` perceive scrambled faces? a near‐infrared spectroscopic study. Brain Res 2010, 1308:137–146. doi:10.1016/j.brainres.2009.10.046.
Watanabe, H, Homae, F, Taga, G. General to specific development of functional activation in the cerebral cortexes of 2‐ to 3‐month‐old infants. Neuroimage 2010, 50:1536–1544.
Bachevalier, J, Mishkin, M. Effects of selective neonatal temporal lobe lesions on visual recognition in rhesus monkeys. J Neurosci 1994, 14:2128–2139.
Kourtzi, Z, Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 2001, 293:1506–1509.
Murray, SO, Schrater, P, Kersten, D. Perceptual group and the interactions between visual cortical areas. Neural Netw 2004, 17:695–705. doi:10.1016/j.neunet.2004.03.010.
Oliver, RT, Geiger, EJ, Lewandowski, BC, Thompson‐Schill, SL. Remembrance of things touched: how sensorimotor experience affects the neural instantiation of object form. Neuropsychologia 2009, 47:239–247.
Peuskens, H, Claeys, KG, Todd, JT, Norman, JF, Van Hecke, P, Orban, GA. Attention to 3‐D shape, 3‐D motion, and texture in 3‐D structure from motion displays. J Cogn Neurosci 2004, 16:665–682.
Thompson‐Schill, SL. Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia 2003, 41:280–292.
Aguiar, A, Baillargeon, R. Developments in young infants` reasoning about occluded objects. Cogn Psychol 2002, 45:267–336.
Schweinle, A, Wilcox, T. Sex differences in infants` ability to represent complex event sequences. Infancy 2004, 6:333–359.
Spelke, ES, Kestenbaum, R, Simons, DJ, Wein, D. Spatiotemporal continuity, smoothness of motion and object identity in infancy. Brit J Dev Psychol 1995, 13:113–143.
Wilcox, T, Schweinle, A. Infants` use of speed of motion to individuate objects in occlusion events. Infant Behav Dev 2003, 26:1833–1840.
Mondloch, CJ, Le Grand, R, Maurer, D. Chapter 3, Development of expertise in face recognition. In: Perceptual Expertise: Bridging Brain and Behaviour. New York: Oxford University Press; 2010, 67–106.
Frankenhuis, WE, Barrett, HC, Johnson, SP. Chapter 8, Developmental origins of biological motion perception. In: People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception. New York: Oxford University Press; 2013, 121–138.
Tomasello, M, Carpenter, M, Call, J, Behne, T, Moll, H. Undetstanding and sharing intentions: the origins of cultural cognition. Behav Brain Sci 2005, 28:675–735.
Duchaine, B, Yovel, G. Face Recognition. In: Basbaum, AI, Kaneko, A, Shepherd, GM, Westheimer, G, eds. The Senses: A Comprehensive Reference, Vol 2, Vision II. San Diego: Academic Press; 2008, 329–358.
Grossmann, T, Vaish, A. Reading faces in infancy: developing a multi‐level analysis of a social stimulus. In: Striano, T, Reid, V, eds. Social Cognition: Development, Neuroscience and Autism. Oxford: Blackwell; 2008, 167–180.
Righi, G, Nelson, CA. The neural architecture and developmental course of face processing. In: Rubenstein, JLR, Rakic, P, eds. Comprehensive Developmental Neuroscience: Neural Circuit Development and Function in the Healthy and Diseased Brain. Oxford: Academic Press; 2013, 331–350.
Otsuka, Y, Nakato, E, Kanazawa, S, Yamaguchi, MK, Watanabe, S, Kakagi, R. Neural activation to upright and inverted faces in infants measured by near infrared spectroscopy. Neuroimage 2007, 34:399–406. doi:10.1016/j.neuroimage.2006.08.013.
Ichikawa, H, Kanazawab, S, Yamaguchi, MK, Kakigi, R. Infant brain activity while viewing facial movement of point‐light displays as measured by near‐infrared spectroscopy (NIRS). Neurosci Lett 2010, 482:90–94.
Nakato, E, Otsuka, Y, Kanazawa, S, Yamaguchi, MK, Watanabe, S, Kakagi, R. When do infants differentiate profile face from frontal face? A near‐infrared spectroscopic study. Hum Brain Mapp 2009, 30:462–472.
Cohen, LB, Strauss, MS. Concept acquisition in the human infant. Child Dev 1979, 50:419–424.
Fagan, JF. Infants` recognition of invariant features of faces. Child Dev 1976, 47:627–638.
Pascalis, O, de Haan, M, Nelson, CA, de Schonen, S. Longterm recognition memory for faces assessed by visual paired comparison in 3‐ and 6‐month‐old infants. J Exp Psychol Learn 1998, 24:249–260.
Nakato, E, Otsuka, Y, Kanazawa, S, Yamaguchi, MK, Honda, Y, Kakigi, R. I know this face: Neural activity during mother` face perception in 7‐ to 8‐month‐old infants as investigated by near‐infrared spectroscopy. Early Hum Dev 2011, 87:1–7. doi:10.1016/j.earlhumdev.2010.08.030.
Nakato, E, Otsuka, Y, Kanazawa, S, Yamaguchi, MK, Honda, Y, Kakigi, R. Distinct differences in the pattern of hemodynamic response to happy and angry facial expressions in infants—a near‐infrared spectroscopic study. Neuroimage 2011, 54:1600–1606. doi:10.1016/j.neuroimage.2010.09.021.
de Haan, M, Pascalis, O, Johnson, MH. Specialization of neural mechanisms underlying face recognition in human infants. J Cogn Neurosci 2002, 14:199–209.
de Haan, M, Nelson, CA. Recognition of the mother`s face by six‐month‐old infants: A neurobehavioral study. Child Dev 1997, 68:187–210.
de Haan, M, Nelson, CA. Brain activity differentiates face and object processing in 6‐month‐old infants. Dev Psychol 1999, 35:1113–1121.
Kobayashi, M, Otsuka, Y, Nakato, E, Kanazawa, S, Yamaguchi, MK, Kakagi, R. Do infants represent the face in a viewpoint‐invariant manner? neural adaptation study as measured by near‐infrared spectroscopy. Front Hum Neurosci 2011, 5:1–12.
Kobayashi, M, Otsuka, Y, Kanazawa, S, Yamaguchi, MK, Kakigi, R. The processing of faces across non‐rigid facial transformation develops at 7 month of age: a fNIRS‐adaptation study. BMC Neurosci 2014, 15:1–8.
Kobayashi, M, Otsuka, Y, Kanazawa, S, Yamaguchi, MK, Kakigi, R. Size‐invariant representation of face in infant brain: an fNIRS‐adaptation study. NeuroReport 2012, 23:984–988. doi:10.1097/wnr.0b013e32835a4b86.
Fox, R, McDaniel, C. The perception of biological motion by human infants. Science 1982, 218:486–487.
Hirai, M, Hiraki, K. An event‐related potentials study of biological motion perception in human infants. Cogn Brain Res 2005, 22:301–304. doi:10.1016/j.cogbrainres.2004.08.008.
Yoon, JMD, Johnson, SC. Biological motion displays elicit social behavior in 12‐month‐olds. Child Dev 2009, 80:1069–1075.
Beauchamp, MS, Lee, KE, Haxby, JV, Martin, A. Parallel visual motion processing streams for manipulable objects and human movements. Neuron 2002, 34:149–159.
Beauchamp, MS, Lee, KE, Haxby, JV, Martin, A. FMRI responses to video and point‐light displays of moving humans and manipulable objects. J Cogn Neurosci 2003, 15:991–1001.
Morris, JP, Pelphrey, KA, McCarthy, G. Perceived causality influences brain activity evoked by biological motion. Soc Neurosci 2008, 3:16–25. doi:10.1080/17470910701476686.
Farroni, T, Chiarelli, AM, Lloyd‐Fox, S, Massaccesi, S, Merla, A, di Gangi, V, Mattarello, T, Faraguna, D, Johnson, MH. Infant cortex responds to other humans from shortly after birth. Sci Rep 2013, 3:1–5. doi:10.1038/srep02851.
Lloyd‐Fox, S, Blasi, A, Everdell, N, Elwell, CE, Johnson, MH. Selective cortical mapping of biological motion processing in young infants. J Cogn Neurosci 2011, 23:2521–2532.
Grossmann, T, Cross, ES, Ticini, LF, Daum, MM. Action observation in the infant brain: the role of body form and motion. Soc Neurosci 2013, 8:22–30. doi:10.1080/17470919.2012.696077.
Biondi, M, Wilcox, T. Processing of biological and mechanical motion in the infant brain. In: Poster presented at XIX Biennial International Conference on Infant Studies, Berlin, Germany, 3–5 July, 2014.
Southgate, V, Begus, K, Lloyd‐Fox, S, di Gangi, V, Hamilton, A. Goal representation in the infant brain. Neuroimage 2014, 85:294–301. doi:10.1016/j.neuroimage.2013.08.043.
Adolphs, R. Cognitive neuroscience of human social behaviour. Nat Rev Neurosci 2003, 4:165–178. doi:10.1038/nrn1056.
Carver, LJ, Cornew, L. The development of social information gathering in infancy: a model of neural substrates and developmental mechanisms. In: de Haan, M, Gunnar, MR, eds. Handbook of Developmental Social Neuroscience. New York: Guilford Press; 2009, 122–141.
Csibra, G, Gergely, G. Natural pedagogy. Trends Cogn Sci 2009, 13:148–153. doi:10.1016/j.tics.2009.01.005.
Mundy, P, Newell, L. Attention, joint attention, and social cognition. Curr Dir Psychol Sci 2007, 16:269–274. doi:10.1111/j.1467-8721.2007.00518.x.
Grossmann, T, Lloyd‐Fox, S, Johnson, MH. Brain responses reveal young infants` sensitivity to when a social partner follows their gaze. Dev Cogn Neurosci 2013, 6:155–161. doi:10.1016/j.dcn.2013.09.004.
Grossmann, T, Johnson, MH. Selective prefrontal cortex responses to joint attention in early infancy. Biol Lett 2010, 6:540–543. doi:10.1098/rsbl.2009.1069.
Grossmann, T, Parise, E, Friederici, A. The detection of communicative signals directed at the self in infant prefrontal cortex. Front Hum Neurosci 2010, 4:1–5. doi:10.3389/fnhum.2010.00201.
Obrig, H, Rossi, S, Telkemeyer, S, Wartenburger, I. From acoustic segmentation to language processing: evidence from optical imaging. Front Neuroenergetics 2010, 2:1–12. doi:10.3389/fnene.2010.00013.
Quaresima, V, Bisconti, S, Ferrari, M. A brief review on the use of functional near‐infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain Lang 2012, 121:79–89. doi:10.1016/j.bandl.2011.03.009.
Rossi, S, Telkemeyer, S, Wartenburger, I, Obrig, H. Shedding light on words and sentences: near‐infrared spectroscopy in language research. Brain Lang 2012, 121:152–163. doi:10.1016/j.bandl.2011.03.008.
Kuhl, PK. Early language acquisition: cracking the speech code. Nat Rev Neurosci 2004, 5:831–843.
Saffran, JR, Werker, JF, Werner, LA. The Infant`s Auditory World: Hearing, Speech, and the Beginnings of Language. In: Damon, W, Lerner, RM, eds. The Handbook of Child Psychology. New York: Wiley; 2006, 58–108.
Werker, JF, Yeung, HH. Infant speech perception bootstraps word learning. Trends Cogn Sci 2005, 2005:519–527.
Minagawa‐Kawai, Y, Mori, K, Naoi, N, Kojima, S. Neural attunement processes in infants during the acquisition of a language‐specific phonemic contrast. J Neurosci 2007, 27:315–321. doi:10.1523/jneurosci.1984-06.2007.
Arimitsu, T, Uchida‐Ota, M, Yagihashi, T, Kojima, S, Watanabe, S, Hokuto, I, Ikeda, K, Takahashi, T, Minagawa‐Kawai, Y. Functional hemispheric specialization in processing phonemic and prosodic auditory changes in neonates. Front Psychol 2011, 2:1–10. doi:10.3389/fpsyg.2011.00202.
Nakano, T, Watanabe, H, Homae, F, Taga, G. Prefrontal cortical involvement in young infants` analysis of novelty. Cereb Cortex 2009, 19:455–463. doi:10.1093/cercor/bhn096.
Sato, Y, Mori, K, Furuya, I, Hayashi, R, Minagawa‐Kawai, Y, Koizumi, T. Developmental changes in cerebral lateralization to spoken language in infants: measured by near‐infrared spectroscopy. Jpn J Logoped Phoniatr 2003, 44:165–171.
Sato, Y, Sogabe, Y, Mazuka, R. Development of hemispheric specialization for lexical pitch–accent in Japanese infants. J Cogn Neurosci 2009, 22:2503–2513.
Minagawa‐Kawai, Y, Cristià, A, Dupoux, E. Cerebral lateralization and early speech acquisition: a developmental scenario. Dev Cogn Neurosci 2011, 1:217–232. doi:10.1016/j.dcn.2011.03.005.
Telkemeyer, S, Rossi, S, Koch, SP, Nierhaus, T, Steinbrink, J, Poeppel, D, Obrig, H, Wartenburger, I. Sensitivity of newborn auditory cortex to the temporal structure of sounds. J Neurosci 2009, 29:14726–14733. doi:10.1523/jneurosci.1246-09.2009.
Telkemeyer, S, Rossi, S, Nierhaus, T, Steinbrink, J, Obrig, H, Wartenburger, I. Acoustic processing of temporally modulated sounds in infants: evidence from a combined near‐infrared spectroscopy and EEG study. Front Psychol 2011, 2:1–14. doi:10.3389/fpsyg.2011.00062.
Benavides‐Varela, S, Gomez, DM, Mehler, J. Studying neonates` language and memory capacities with functional near‐infrared spectroscopy. Front Psychol 2011, 2:1–5. doi:10.3389/fpsyg.2011.00064.
Benavides‐Varela, S, Hochmann, J‐R, Macagno, F, Nespor, M, Mehler, J. Newborn`s brain activity signals the origin of word memories. Proc Natl Acad Sci USA 2012, 109:17908–17913. doi:10.1073/pnas.1205413109.
Gomez, DM, Berent, I, Benavides‐Varela, S, Bion, RAH, Cattarossi, L, Nespor, M, Mehler, J. Language universals at birth. Proc Natl Acad Sci USA 2014, 111:5837–5841. doi:10.1073/pnas.1318261111.
Bortfeld, H, Fava, E, Boas, DA. Identifying cortical lateralization of speech processing in infants using near‐infrared spectroscopy. Dev Neuropsychol 2009, 34:52–65. doi:10.1080/87565640802564481.
Kotilahti, K, Nissila, I, Nasi, T, Lipiainen, L, Noponen, T, Merilainen, P, Huotilainen, M, Fellman, V. Hemodynamic responses to speech and music in newborn infants. Hum Brain Mapp 2010, 31:595–603. doi:10.1002/hbm.20890.
Sato, H, Hirabayaski, Y, Tsubokura, H, Kanai, M, Ashida, T, Konishi, I, Uchida‐Ota, M, Konishi, Y, Maki, A. Cerebral hemodynamics in newborn infants exposed to speech sounds: a whole‐head optical topography study. Hum Brain Mapp 2012, 33:2092–2103. doi:10.1002/hbm.21350.
Perani, D, Saccuman, MC, Scifo, P, Anwander, A, Spada, D, Baldoli, C, Poloniato, A, Lohmann, G, Friederici, AD. Neural language networks at birth. Proc Natl Acad Sci USA 2011, 108:16056–16061. doi:10.1073/pnas.1102991108.
Dehaene‐Lambertz, G, Dehaene, S, Hertz‐Pannier, L. Functional neuroimaging of speech perception in infants. Science 2002, 298:2013–2015.
Dehaene‐Lambertz, G, Hertz‐Pannier, L, Dubois, J, Meriaux, S, Roche, A, Sigman, M, Dehaene, S. Functional organization of perisylvian activation during presentation of sentences in preverbal infants. Proc Natl Acad Sci USA 2006, 103:14240–14245. doi:10.1073/pnas.0606302103.
Grossmann, T, Oberecker, R, Koch, SP, Friederici, AD. The developmental origins of voice processing in the human brain. Neuron 2010, 65:852–858. doi:10.1016/j.neuron.2010.03.001.
May, L, Byers‐Heinlein, K, Gervain, J, Werker, JF. Language and the newborn brain: does prenatal language experience shape the neonate neural response to speech? Front Psychol 2011, 2:1–9. doi:10.3389/fpsyg.2011.00222.
Homae, F, Watanabe, H, Nakano, T, Asakawa, K, Taga, G. The right hemisphere of sleeping infant perceives sentential prosody. Neurosci Res 2006, 54:276–280.
Homae, F, Watanabe, H, Nakano, T, Taga, G. Prosodic processing in the developing brain. Neurosci Res 2007, 2007:29–39.
Lloyd‐Fox, S, Blasi, A, Mercure, E, Elwell, CE, Johnson, MH. The emergence of cerebral specialization for the human voice over the first months of life. Soc Neurosci 2012, 7:317–330. doi:10.1080/17470919.2011.614696.
Minagawa‐Kawai, Y, van der Lely, H, Ramus, F, Sato, Y, Mazuka, R, Dupoux, E. Optical brain imaging reveals general auditory and language‐specific processing in early infant development. Cereb Cortex 2011, 21:254–261. doi:10.1093/cercor/bhq082.
Blasi, A, Mercure, E, Lloyd‐Fox, S, Thomson, A, Brammer, M, Sauter, D, Deeley, Q, Barker, GJ, Renvall, V, Deoni, S, et al. Early specialization for voice and emotion processing in the infant brain. Curr Biol 2011, 21:1220–1224. doi:10.1016/j.cub.2011.06.009.
Gervain, J, Berent, I, Werker, JF. Binding at birth: the newborn brain detects identity relations and sequential position in speech. J Cogn Neurosci 2012, 24:564–574.
Wagner, JB, Fox, SE, Tager‐Flusberg, H, Nelson, CA. Neural processing of repetition and non‐repetition grammars in 7‐ and 9‐month‐old infants. Front Psychol 2011, 2:1–8. doi:10.3389/fpsyg.2011.00168.
Homae, F, Watanabe, H, Otobe, T, Nakano, T, Go, T, Konishi, Y, Taga, G. Development of global cortical networks in early infancy. J Neurosci 2010, 30:4877–4882.
Homae, F, Watanabe, H, Nakano, T, Taga, G. Large‐scale brain networks underlying language acquisition in early infancy. Front Psychol 2011, 2:1–14. doi:10.3389/fpsyg.2011.00093.
Imai, M, Watanabe, H, Yasui, K, Kimura, Y, Shitara, Y, Tsuchida, S, Takahashi, N, Taga, G. Functional connectivity of the cortex of term and preterm infants and infants with Down`s syndrome. Neuroimage 2014, 85:272–278. doi:10.1016/j.neuroimage.2013.04.080.
Scholkmann, F, Holper, L, Wolf, U, Wolf, M. A new methodical approach in neuroscience: assessing inter‐personal brain coupling using functional near‐infrared imaging (fNIRI) hyperscanning. Front Neurosci 2013, 7:1–6. doi:10.3389/fnhum.2013.00813.
Piper, SK, Krueger, A, Koch, SP, Mehnert, J, Habermehl, C, Steinbrink, J, Obrig, H, Schmitz, CH. A wearable multi‐channel fNIRS system for brain imaging in freely moving subjects. Neuroimage 2014, 85:64–71. doi:10.1016/j.neuroimage.2013.06.062.