Krystal, JH, State, MW. Psychiatric disorders: diagnosis to therapy. Cell 2014, 157:201–214.
Owen, MJ. New approaches to psychiatric diagnostic classification. Neuron 2014, 84:564–571.
Stephan, KE, Bach, DR, Fletcher, PC, Flint, J, Frank, MJ, Friston, KJ, Heinz, A, Huys, QJM, Owen, MJ, Binder, EB, et al. Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry 2015, 3:77–83.
Stephan, KE, Binder, EB, Breakspear, M, Dayan, P, Johnstone, EC, Meyer‐Lindenberg, A, Schnyder, U, Wang, X‐J, Bach, DR, Fletcher, PC, et al. Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry 2015, 3:84–90.
Kapur, S, Phillips, AG, Insel, TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry 2012, 17:1174–1179.
Rush, AJ, Trivedi, MH, Wisniewski, SR, Nierenberg, AA, Stewart, JW, Warden, D, Niederehe, G, Thase, ME, Lavori, PW, Lebowitz, BD, et al. Acute and longer‐term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 2006, 163:1905–1917.
Hyman, SE. Revolution stalled. Sci Transl Med 2012, 4:155cm11.
Wang, X‐J, Krystal, JH. Computational psychiatry. Neuron 2014, 84:638–654.
Adams, RA, Huys, QJM, Roiser, JP. Computational psychiatry: towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry 2016, 87:53–63.
Friston, KJ, Stephan, KE, Montague, R, Dolan, RJ. Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry 2014, 1:148–158.
Huys, QJM, Maia, T, Frank, MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 2016, 19:404–413.
Maia, T, Frank, MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 2011, 14:154–162.
Montague, PR, Dolan, RJ, Friston, KJ, Dayan, P. Computational psychiatry. Trends Cogn Sci 2012, 16:72–80.
Stephan, KE, Iglesias, S, Heinzle, J, Diaconescu, AO. Translational perspectives for computational neuroimaging. Neuron 2015, 87:716–732.
Stephan, KE, Mathys, C. Computational approaches to psychiatry. Curr Opin Neurobiol 2014, 25:85–92.
Wiecki, TV, Poland, J, Frank, MJ. Model‐based cognitive neuroscience approaches to computational psychiatry clustering and classification. Clin Psychol Sci 2015, 3:378–399.
Chen, CC, Henson, RN, Stephan, KE, Kilner, JM, Friston, KJ. Forward and backward connections in the brain: a DCM study of functional asymmetries. Neuroimage 2009, 45:453–462.
Karg, K, Burmeister, M, Shedden, K, Sen, S. The serotonin transporter promoter variant (5‐HTTLPR), stress, and depression meta‐analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 2011, 68:444–454.
Biederman, J, Spencer, T. Attention‐deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 1999, 46:1234–1242.
Howes, OD, Kapur, S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 2009, 35:549–562.
Raedler, TJ, Bymaster, FP, Tandon, R, Copolov, D, Dean, B. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2007, 12:232–246.
Stephan, KE, Baldeweg, T, Friston, KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 2006, 59:929–939.
Gu, Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 2002, 111:815–835.
von Bohlen und Halbach, O, Dermietzel, R. Neurotransmitters and Neuromodulators: Handbook of Receptors and Biological Effects. Weinheim, Germany: Wiley; 2006.
McCormick, DA, Wang, Z, Huguenard, J. Neurotransmitter control of neocortical neuronal activity and excitability. Cereb Cortex 1993, 3:387–398.
Faber, ES, Sah, P. Calcium‐activated potassium channels: multiple contributions to neuronal function. Neuroscientist 2003, 9:181–194.
Martin, KA, Spühler, IA. The fine structure of the dopaminergic innervation of area 10 of macaque prefrontal cortex. Eur J Neurosci 2013, 37:1061–1071.
Sara, SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 2009, 10:211–223.
Taber, KH, Hurley, RA. Volume transmission in the brain: beyond the synapse. J Neuropsychiatry Clin Neurosci 2014, 26:iv, 1–4.
Friston, KJ, Tononi, G, Reeke, GN Jr, Sporns, O, Edelman, GM. Value‐dependent selection in the brain: simulation in a synthetic neural model. Neuroscience 1994, 59:229–243.
Montague, PR, Hyman, SE, Cohen, JD. Computational roles for dopamine in behavioural control. Nature 2004, 431:760–767.
Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 2012, 76:1–11.
Doya, K. Modulators of decision making. Nat Neurosci 2008, 11:410–416.
Dayan, P. Twenty‐five lessons from computational neuromodulation. Neuron 2012, 76:240–256.
Schultz, W, Dayan, P, Montague, P. A neural substrate of prediction and reward. Science 1997, 275:1593.
D`Ardenne, K, McClure, SM, Nystrom, LE, Cohen, JD. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 2008, 319:1264–1267.
Klein‐Flügge, MC, Hunt, LT, Bach, DR, Dolan, RJ, Behrens, TE. Dissociable reward and timing signals in human midbrain and ventral striatum. Neuron 2011, 72:654–664.
Pessiglione, M, Seymour, B, Flandin, G, Dolan, RJ, Frith, CD. Dopamine‐dependent prediction errors underpin reward‐seeking behaviour in humans. Nature 2006, 442:1042–1045.
O`Doherty, JP, Dayan, P, Friston, K, Critchley, H, Dolan, RJ. Temporal difference models and reward‐related learning in the human brain. Neuron 2003, 38:329–337.
Gläscher, J, O`Doherty, J. Model based approaches to neuroimaging: combining reinforcement learning theory with fMRI data. WIREs Cogn Sci 2010, 1:501–510.
Stephan, KE, Schlagenhauf, F, Huys, QJM, Raman, S, Aponte, EA, Brodersen, KH, Rigoux, L, Moran, RJ, Daunizeau, J, Dolan, RJ, et al. Computational neuroimaging strategies for single patient predictions. Neuroimage 2016. Available at: http://dx.doi.org/10.1016/j.neuroimage.2016.06.038.
Ludvig, EA, Bellemare, MG, Pearson, KG. A primer on reinforcement learning in the brain: psychological, computational, and neural perspectives. AlonsoE,, MondragónE, (eds). In: Alonso E, Mondragón E, eds.Computational Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications. Hershey, PA: IGI Global; 2011, 111–144.
Gradin, VB, Kumar, P, Waiter, G, Ahearn, T, Stickle, C, Milders, M, Reid, I, Hall, J, Steele, JD. Expected value and prediction error abnormalities in depression and schizophrenia. Brain 2011, 134:1751–1764.
Rescorla, RA, Wagner, AW. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black, AH, Prokasy, WF, eds. Classical Conditioning II: Current Research and Theory. Appleton Century Crofts, NY: Appleton‐Century‐Crofts; 1972, 64–99.
Schultz, W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998, 80:1–27.
Mathys, C, Daunizeau, J, Friston, KJ, Stephan, KE. A bayesian foundation for individual learning under uncertainty. Front Hum Neurosci 2011, 5:39.
Friston, KJ, Harrison, L, Penny, W. Dynamic causal modelling. Neuroimage 2003, 19:1273–1302.
Stephan, KE, Penny, WD, Moran, RJ, den Ouden, HE, Daunizeau, J, Friston, KJ. Ten simple rules for dynamic causal modeling. Neuroimage 2010, 49:3099–3109.
den Ouden, HE, Daunizeau, J, Roiser, J, Friston, KJ, Stephan, KE. Striatal prediction error modulates cortical coupling. J Neurosci 2010, 30:3210–3219.
Roy, M, Shohamy, D, Daw, N, Jepma, M, Wimmer, GE, Wager, TD. Representation of aversive prediction errors in the human periaqueductal gray. Nat Neurosci 2014, 17:1607–1612.
Moran, RJ, Jung, F, Kumagai, T, Endepols, H, Graf, R, Dolan, RJ, Friston, KJ, Stephan, KE, Tittgemeyer, M. Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. PLoS One 2011, 6:e22790.
Moran, RJ, Symmonds, M, Stephan, KE, Friston, KJ, Dolan, RJ. An in vivo assay of synaptic function mediating human cognition. Curr Biol 2011, 21:1320–1325.
Beaulieu, J‐M, Gainetdinov, RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011, 63:182–217.
Tritsch, NX, Sabatini, BL. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 2012, 76:33–50.
Bentivoglio, M, Morelli, M. Chapter I: The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. In: Dunnett, SB, Bentivoglio, M, Björklund, A, Hökfelt, T, eds. Handbook of Chemical Neuroanatomy, vol. 21. Elsevier; 2005, 1–107.
Floresco, SB, West, AR, Ash, B, Moore, H, Grace, AA. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 2003, 6:968–973.
Sutton, RS, Barto, AG. Reinforcement Learning: An Introduction, vol. 1. Cambridge, MA: Cambridge University Press; 1998.
Bayer, HM, Glimcher, PW. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 2005, 47:129–141.
Matsumoto, M, Takada, M. Distinct representations of cognitive and motivational signals in midbrain dopamine neurons. Neuron 2013, 79:1011–1024.
Nomoto, K, Schultz, W, Watanabe, T, Sakagami, M. Temporally extended dopamine responses to perceptually demanding reward‐predictive stimuli. J Neurosci 2010, 30:10692–10702.
Waelti, P, Dickinson, A, Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 2001, 412:43–48.
Bellebaum, C, Jokisch, D, Gizewski, ER, Forsting, M, Daum, I. The neural coding of expected and unexpected monetary performance outcomes: dissociations between active and observational learning. Behav Brain Res 2012, 227:241–251.
Schlagenhauf, F, Rapp, MA, Huys, QJM, Beck, A, Wüstenberg, T, Deserno, L, Buchholz, H‐G, Kalbitzer, J, Buchert, R, Bauer, M, et al. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Hum Brain Mapp 2013, 34:1490–1499.
Valentin, VV, O`Doherty, JP. Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. J Neurophysiol 2009, 102:3384–3391.
Jocham, G, Klein, TA, Ullsperger, M. Dopamine‐mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value‐based choices. J Neurosci 2011, 31:1606–1613.
Stephan, KE, Friston, KJ, Frith, CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self‐monitoring. Schizophr Bull 2009, 35:509–527.
Schultz, W, Dickinson, A. Neuronal coding of prediction errors. Annu Rev Neurosci 2000, 23:473–500.
Redish, AD. Addiction as a computational process gone awry. Science 2004, 306:1944–1947.
Kumar, P, Waiter, G, Ahearn, T, Milders, M, Reid, I, Steele, JD. Abnormal temporal difference reward‐learning signals in major depression. Brain 2008, 131:2084–2093.
Corlett, P, Taylor, J, Wang, XJ, Fletcher, P, Krystal, J. Toward a neurobiology of delusions. Prog Neurobiol 2010, 92:345–369.
Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 2003, 160:13–23.
Heinz, A, Schlagenhauf, F. Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull 2010, 36:472–485.
Murray, GK, Corlett, PR, Clark, L, Pessiglione, M, Blackwell, AD, Honey, G, Jones, PB, Bullmore, ET, Robbins, TW, Fletcher, PC. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 2008, 13:239, 267–276.
Romaniuk, L, Honey, GD, King, JR, Whalley, HC, McIntosh, AM, Levita, L, Hughes, M, Johnstone, EC, Day, M, Lawrie, SM, et al. Midbrain activation during Pavlovian conditioning and delusional symptoms in schizophrenia. Arch Gen Psychiatry 2010, 67:1246–1254.
Roiser, JP, Howes, OD, Chaddock, CA, Joyce, EM, McGuire, P. Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophr Bull 2013, 39:1328–1336.
Deserno, L, Boehme, R, Heinz, A, Schlagenhauf, F. Reinforcement learning and dopamine in schizophrenia: dimensions of symptoms or specific features of a disease group? Front Psychiatry 2013, 4:172.
Schlagenhauf, F, Huys, QJM, Deserno, L, Rapp, MA, Beck, A, Heinze, H‐J, Dolan, R, Heinz, A. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage 2014, 89:171–180.
Boehme, R, Deserno, L, Gleich, T, Katthagen, T, Pankow, A, Behr, J, Buchert, R, Roiser, JP, Heinz, A, Schlagenhauf, F. Aberrant salience is related to reduced reinforcement learning signals and elevated dopamine synthesis capacity in healthy adults. J Neurosci 2015, 35:10103–10111.
Roiser, JP, Stephan, KE, den Ouden, HE, Barnes, TR, Friston, KJ, Joyce, EM. Do patients with schizophrenia exhibit aberrant salience? Psychol Med 2009, 39:199–209.
Hiroyuki, N. Multiplexing signals in reinforcement learning with internal models and dopamine. Curr Opin Neurobiol 2014, 25:123–129.
Schultz, W. Updating dopamine reward signals. Curr Opin Neurobiol 2012, 23:229–238.
Roeper, J. Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 2013, 36:336–342.
Bunzeck, N, Düzel, E. Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron 2006, 51:369–379.
Lisman, JE, Grace, AA. The hippocampal‐VTA loop: controlling the entry of information into long‐term memory. Neuron 2005, 46:703–713.
Guitart‐Masip, M, Bunzeck, N, Stephan, KE, Dolan, RJ, Düzel, E. Contextual novelty changes reward representations in the striatum. J Neurosci 2010, 30:1721–1726.
Kakade, S, Dayan, P. Dopamine: generalization and bonuses. Neural Netw 2002, 15:549–559.
Costa, VD, Tran, VL, Turchi, J, Averbeck, BB. Dopamine modulates novelty seeking behavior during decision making. Behav Neurosci 2014, 128:556–566.
Kayser, AS, Mitchell, JM, Weinstein, D, Frank, MJ. Dopamine, locus of control, and the exploration‐exploitation tradeoff. Neuropsychopharmacology 2015, 40:454–462.
Friston, K, Rigoli, F, Ognibene, D, Mathys, C, Fitzgerald, T, Pezzulo, G. Active inference and epistemic value. Cogn Neurosci 2015, 6:187–214.
Fiorillo, CD, Tobler, PN, Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 2003, 299:1898–1902.
Schultz, W, Preuschoff, K, Camerer, C, Hsu, M, Fiorillo, CD, Tobler, PN, Bossaerts, P. Explicit neural signals reflecting reward uncertainty. Philos Trans R Soc Lond B Biol Sci 2008, 363:3801–3811.
Niv, Y, Duff, MO, Dayan, P. Dopamine, uncertainty and TD learning. Behav Brain Funct 2005, 1:6.
de Lafuente, V, Romo, R. Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions. Proc Natl Acad Sci USA 2011, 108:19767–19771.
Hart, AS, Clark, JJ, Phillips, PE. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning. Neurobiol Learn Mem 2015, 117:84–92.
Schwartenbeck, P, FitzGerald, TH, Mathys, C, Dolan, R, Friston, K. The dopaminergic midbrain encodes the expected certainty about desired outcomes. Cereb Cortex 2015, 25:3434–3445.
Tomassini, A, Ruge, D, Galea, JM, Penny, W, Bestmann, S. The role of dopamine in temporal uncertainty. J Cogn Neurosci 2016, 28:96–110.
Guggenmos, M, Wilbertz, G, Hebart, MN, Sterzer, P. Mesolimbic confidence signals guide perceptual learning in the absence of external feedback. eLife 2016, 5:e13388.
Friston, KJ, Shiner, T, FitzGerald, T, Galea, JM, Adams, R, Brown, H, Dolan, RJ, Moran, R, Stephan, KE, Bestmann, S. Dopamine, affordance and active inference. PLoS Comput Biol 2012, 8:e1002327.
Iglesias, S, Mathys, C, Brodersen, KH, Kasper, L, Piccirelli, M, den Ouden, HE, Stephan, KE. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron 2013, 80:519–530.
Payzan‐LeNestour, E, Dunne, S, Bossaerts, P, O`Doherty, JP. The neural representation of unexpected uncertainty during value‐based decision making. Neuron 2013, 79:191–201.
Preuschoff, K, Bossaerts, P. Adding prediction risk to the theory of reward learning. Ann N Y Acad Sci 2007, 1104:135–146.
Schwartenbeck, P, FitzGerald, TH, Dolan, R. Neural signals encoding shifts in beliefs. Neuroimage 2016, 125:578–586.
FitzGerald, TH, Dolan, RJ, Friston, K. Dopamine, reward learning, and active inference. Front Comput Neurosci 2015, 9:136.
Berridge, KC. From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur J Neurosci 2012, 35:1124–1143.
Robbins, TW, Everitt, BJ. A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology (Berl) 2007, 191:433–437.
Robinson, S, Sandstrom, SM, Denenberg, VH, Palmiter, RD. Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behav Neurosci 2005, 119:5–15.
Pellicano, E, Burr, D. When the world becomes `too real`: a Bayesian explanation of autistic perception. Trends Cogn Sci 2012, 16:504–510.
Lawson, RP, Rees, G, Friston, KJ. An aberrant precision account of autism. Front Hum Neurosci 2014, 8:302.
Adams, RA, Stephan, KE, Brown, HR, Frith, CD, Friston, KJ. The computational anatomy of psychosis. Front Psychiatry 2013, 4:47.
Kapur, S, Zipursky, R, Jones, C, Remington, G, Houle, S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double‐blind PET study of first‐episode schizophrenia. Am J Psychiatry 2000, 157:514–520.
Haker, H, Schneebeli, M, Stephan, KE. Can Bayesian theories of autism spectrum disorder help improve clinical practice? Front Psychiatry 2016, 7:107.
Franklin, NT, Frank, MJ. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. eLife 2015, 4:e12029.
Mesulam, MM, Mufson, EJ, Wainer, BH, Levey, AI. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1‐Ch6). Neuroscience 1983, 10:1185–1201.
Newman, EL, Gupta, K, Climer, JR, Monaghan, CK, Hasselmo, ME. Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 2012, 6:24.
Sarter, M, Hasselmo, ME, Bruno, JP, Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal‐driven and cognitive modulation of signal detection. Brain Res Brain Res Rev 2005, 48:98–111.
Feldman, H, Friston, KJ. Attention, uncertainty, and free‐energy. Front Hum Neurosci 2010, 4:215.
Yu, AJ, Dayan, P. Acetylcholine in cortical inference. Neural Netw 2002, 15:719–730.
Yu, AJ, Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 2005, 46:681–692.
Vossel, S, Bauer, M, Mathys, C, Adams, RA, Dolan, RJ, Stephan, KE, Friston, KJ. Cholinergic stimulation enhances Bayesian belief updating in the deployment of spatial attention. J Neurosci 2014, 34:15735–15742.
de Kloet, SF, Mansvelder, HD, De Vries, TJ. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors. Biochem Pharmacol 2015, 97:425–438.
Mansvelder, HD, McGehee, DS. Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 2002, 53:606–617.
Tzschentke, TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 2001, 63:241–320.
Yeomans, J, Forster, G, Blaha, C. M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Sci 2001, 68:2449–2456.
Okada, K, Nakamura, K, Kobayashi, Y. A neural correlate of predicted and actual reward‐value information in monkey pedunculopontine tegmental and dorsal raphe nucleus during saccade tasks. Neural Plast 2011, 2011:579840.
Kobayashi, Y, Okada, KI. Reward prediction error computation in the pedunculopontine tegmental nucleus neurons. Ann N Y Acad Sci 2007, 1104:310–323.
Gu, X, Lohrenz, T, Salas, R, Baldwin, PR, Soltani, A, Kirk, U, Cinciripini, PM, Montague, PR. Belief about nicotine selectively modulates value and reward prediction error signals in smokers. Proc Natl Acad Sci 2015, 112:2539–2544.
Bunzeck, N, Guitart‐Masip, M, Dolan, RJ, Duzel, E. Pharmacological dissociation of novelty responses in the human brain. Cereb Cortex 2013, 24:1351–1360.
Näätänen, R. The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hear 1995, 16:6–18.
Umbricht, D, Krljes, S. Mismatch negativity in schizophrenia: a meta‐analysis. Schizophr Res 2005, 76:1–23.
Erickson, MA, Ruffle, A, Gold, JM. A meta‐analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biol Psychiatry 2015, 79:980–987.
Garrido, MI, Kilner, JM, Stephan, KE, Friston, KJ. The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 2009, 120:453–463.
Moran, RJ, Campo, P, Symmonds, M, Stephan, KE, Dolan, RJ, Friston, KJ. Free energy, precision and learning: the role of cholinergic neuromodulation. J Neurosci 2013, 33:8227–8236.
Friston, KJ. Hallucinations and perceptual inference. Behav Brain Sci 2005, 28:764–766.
Smythies, JR. The role of acetylcholine in hallucinatory perception. Behav Brain Sci 2005, 28:773.
Scarr, E, Cowie, TF, Kanellakis, S, Sundram, S, Pantelis, C, Dean, B. Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry 2009, 14:1017–1023.
Raedler, TJ, Knable, MB, Jones, DW, Urbina, RA, Gorey, JG, Lee, KS, Egan, MF, Coppola, R, Weinberger, DR. In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 2003, 160:118–127.
Reichert, DP, Series, P, Storkey, AJ. Charles Bonnet syndrome: evidence for a generative model in the cortex? PLoS Comput Biol 2013, 9:e1003134.
Mohammad‐Zadeh, LF, Moses, L, Gwaltney‐Brant, SM. Serotonin: a review. J Vet Pharmacol Ther 2008, 31:187–199.
Andrews, PW, Bharwani, A, Lee, KR, Fox, M, Thomson, JA Jr. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev 2015, 51:164–188.
Nakamura, K. The role of the dorsal raphe nucleus in reward‐seeking behavior. Front Integr Neurosci 2013, 7:60.
Smythies, J, Section, V. Serotonin system. Int Rev Neurobiol 2005, 64:217–268.
Berger, M, Gray, JA, Roth, BL. The expanded biology of serotonin. Annu Rev Med 2009, 60:355–366.
Liu, Z, Zhou, J, Li, Y, Hu, F, Lu, Y, Ma, M, Feng, Q, J‐e, Z, Wang, D, Zeng, J, et al. Dorsal raphe neurons signal reward through 5‐HT and glutamate. Neuron 2014, 81:1360–1374.
Cohen, JY, Amoroso, MW, Uchida, N. Serotonergic neurons signal reward and punishment on multiple timescales. eLife 2015, 4:e06346.
Celada, P, Puig, MV, Artigas, F. Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 2013, 7:25.
Puig, MV, Gulledge, AT. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol 2011, 44:449–464.
Dayan, P, Huys, QJM. Serotonin, inhibition, and negative mood. PLoS Comput Biol 2008, 4:e4.
Huys, QJM, Eshel, N, O`Nions, E, Sheridan, L, Dayan, P, Roiser, JP. Bonsai trees in your head: how the pavlovian system sculpts goal‐directed choices by pruning decision trees. PLoS Comput Biol 2012, 8:e1002410.
Dalley, JW, Roiser, JP. Dopamine, serotonin and impulsivity. Neuroscience 2012, 215:42–58.
Robbins, TW, Gillan, CM, Smith, DG, de Wit, S, Ersche, KD. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci 2012, 16:81–91.
Doya, K. Metalearning and neuromodulation. Neural Netw 2002, 15:495–506.
Schweighofer, N, Bertin, M, Shishida, K, Okamoto, Y, Tanaka, SC, Yamawaki, S, Doya, K. Low‐serotonin levels increase delayed reward discounting in humans. J Neurosci 2008, 28:4528–4532.
Crockett, MJ, Clark, L, Lieberman, MD, Tabibnia, G, Robbins, TW. Impulsive choice and altruistic punishment are correlated and increase in tandem with serotonin depletion. Emotion 2010, 10:855–862.
Tanaka, SC, Schweighofer, N, Asahi, S, Shishida, K, Okamoto, Y, Yamawaki, S, Doya, K. Serotonin differentially regulates short‐ and long‐term prediction of rewards in the ventral and dorsal striatum. PLoS One 2007, 2:e1333.
Worbe, Y, Savulich, G, Voon, V, Fernandez‐Egea, E, Robbins, TW. Serotonin depletion induces ‘waiting impulsivity’ on the human four‐choice serial reaction time task: cross‐species translational significance. Neuropsychopharmacology 2014, 39:1519–1526.
Cools, R, Nakamura, K, Daw, ND. Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 2011, 36:98–113.
Daw, ND, Kakade, S, Dayan, P. Opponent interactions between serotonin and dopamine. Neural Netw 2002, 15:603–616.
Seymour, B, Daw, ND, Roiser, JP, Dayan, P, Dolan, R. Serotonin selectively modulates reward value in human decision‐making. J Neurosci 2012, 32:5833–5842.
Hindi Attar, C, Finckh, B, Büchel, C. The influence of serotonin on fear learning. PLoS One 2012, 7:e42397.
Rygula, R, Clarke, HF, Cardinal, RN, Cockcroft, GJ, Xia, J, Dalley, JW, Robbins, TW, Roberts, AC. Role of central serotonin in anticipation of rewarding and punishing outcomes: effects of selective amygdala or orbitofrontal 5‐HT depletion. Cereb Cortex 2015, 25:3064–3076.
Guitart‐Masip, M, Economides, M, Huys, QJM, Frank, MJ, Chowdhury, R, Duzel, E, Dayan, P, Dolan, RJ. Differential, but not opponent, effects of L‐DOPA and citalopram on action learning with reward and punishment. Psychopharmacology (Berl) 2014, 231:955–966.
Schweimer, JV, Ungless, MA. Phasic responses in dorsal raphe serotonin neurons to noxious stimuli. Neuroscience 2010, 171:1209–1215.
Ranade, SP, Mainen, ZF. Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. J Neurophysiol 2009, 102:3026–3037.
Nakamura, K, Matsumoto, M, Hikosaka, O. Reward‐dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J Neurosci 2008, 28:5331–5343.
Niv, Y, Daw, ND, Joel, D, Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl) 2007, 191:507–520.
Dayan, P, Huys, QJM. Serotonin`s many meanings elude simple theories. eLife 2015, 4:e07390.
Stanford, SC. Adrenaline and noradrenaline: introduction. In: eLS. Chichester: John Wiley %26 Sons; 2001.
Berridge, CW, Waterhouse, BD. The locus coeruleus‐noradrenergic system: modulation of behavioral state and state‐dependent cognitive processes. Brain Res Brain Res Rev 2003, 42:33–84.
Aston‐Jones, G, Cohen, JD. An integrative theory of locus coeruleus‐norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 2005, 28:403–450.
Eckhoff, P, Wong‐Lin, K, Holmes, P. Optimality and robustness of a biophysical decision‐making model under norepinephrine modulation. J Neurosci 2009, 29:4301–4311.
Bouret, S, Sara, SJ. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci 2005, 28:574–582.
Dayan, P, Yu, AJ. Phasic norepinephrine: a neural interrupt signal for unexpected events. Network 2006, 17:335–350.
de Berker, AO, Rutledge, RB, Mathys, C, Marshall, L, Cross, GF, Dolan, RJ, Bestmann, S. Computations of uncertainty mediate acute stress responses in humans. Nat Commun 2016, 7:10996.
Joshi, S, Li, Y, Kalwani, RM, Gold, JI. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 2016, 89:221–234.
Browning, M, Behrens, TE, Jocham, G, O`Reilly, JX, Bishop, SJ. Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat Neurosci 2015, 18:590–596.
Behrens, TE, Woolrich, MW, Walton, ME, Rushworth, MF. Learning the value of information in an uncertain world. Nat Neurosci 2007, 10:1214–1221.
David, O, Guillemain, I, Saillet, S, Reyt, S, Deransart, C, Segebarth, C, Depaulis, A. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol 2008, 6:e315.
Gilbert, JR, Symmonds, M, Hanna, MG, Dolan, RJ, Friston, KJ, Moran, RJ. Profiling neuronal ion channelopathies with non‐invasive brain imaging and dynamic causal models: case studies of single gene mutations. Neuroimage 2016, 124:43–53.
Brodersen, KH, Deserno, L, Schlagenhauf, F, Lin, Z, Penny, WD, Buhmann, JM, Stephan, KE. Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin 2014, 4:98–111.
Corlett, PR, Fletcher, PC. Computational psychiatry: a Rosetta Stone linking the brain to mental illness. Lancet Psychiatry 2014, 1:399–402.
den Ouden, HE, Daw, ND, Fernandez, G, Elshout, JA, Rijpkema, M, Hoogman, M, Franke, B, Cools, R. Dissociable effects of dopamine and serotonin on reversal learning. Neuron 2013, 80:1090–1100.
Düzel, E, Bunzeck, N, Guitart‐Masip, M, Wittmann, B, Schott, BH, Tobler, PN. Functional imaging of the human dopaminergic midbrain. Trends Neurosci 2009, 32:321–328.
Cragg, SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci 2006, 29:125–131.
Threlfell, S, Cragg, SJ. Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci 2011, 5:11.
Mansvelder, HD, McGehee, DS. Long‐term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 2000, 27:349–357.
Geisler, S, Derst, C, Veh, RW, Zahm, DS. Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 2007, 27:5730–5743.
El Mestikawy, S, Wallén‐Mackenzie, Å, Fortin, GM, Descarries, L, Trudeau, LE. From glutamate co‐release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci 2011, 12:204–216.
Devoto, P, Flore, G. On the origin of cortical dopamine: is it a co‐transmitter in noradrenergic neurons? Curr Neuropharmacol 2006, 4:115–125.
Saunders, A, Granger, AJ, Sabatini, BL. Corelease of acetylcholine and GABA from cholinergic forebrain neurons. Elife 2015, 4:e06412.
Tritsch, NX, Oh, WJ, Gu, C, Sabatini, BL. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. Elife 2014, 3:e01936.
Trudeau, LE, Hnasko, TS, Wallén‐Mackenzie, Å, Morales, M, Rayport, S, Sulzer, D. The multilingual nature of dopamine neurons. Prog Brain Res 2014, 211:141–164.
Andrade, R, Haj‐Dahmane, S. Serotonin neuron diversity in the dorsal raphe. ACS Chem Neurosci 2013, 4:22–25.
Pine, A, Shiner, T, Seymour, B, Dolan, RJ. Dopamine, time, and impulsivity in humans. J Neurosci 2010, 30:8888–8896.