Cox, RT. The Algebra of Probable Inference. Baltimore, MD: Johns Hopkins University Press; 1961.

Busemeyer, JR, Diederich, A. Cognitive Modeling. Los Angeles, CA: Sage Publications; 2010.

Scarborough, D, Sternberg, S. An Invitation to Cognitive Science: Methods, Models and Conceptual Issues, vol 4. Cambridge, MA: MIT Press; 1998.

Polk, TA, Seifert, CM. Cognitive Modeling. Cambridge, MA: MIT Press; 2002.

Sun, R. The Cambridge Handbook of Computational Psychology. New York, NY: Cambridge University Press; 2008.

Marr, D. Vision. New York, NY: Freeman; 1982.

Anderson, JR. The Adaptive Character of Thought. Hillsdale, NJ: Lawrence Erlbaum Associates; 1990.

Barlow, HB. Possible principles underlying the transformation of sensory messages. In: Rosenblith, W, ed. Sensory Communication. Cambridge, MA: MIT Press; 1961, 217–234.

Chater, N, Oaksford, M. The Probabilistic Mind. Oxford, UK: Oxford University Press; 2008.

Geisler, WS. Ideal observer analysis. In: Chalupa, LM, Werner, JS, eds. The Visual Neurosciences. Cambridge, MA: MIT Press; 2004, 825–837.

Green, DM, Swets, JA. Signal Detection Theory and Psychophysics. New York, NY: John Wiley %26 Sons; 1966.

Griffiths, TL, Kemp, C, Tenenbaum, JB. Bayesian models of cognition. In: Sun, R, ed. The Cambridge Handbook of Computational Psychology. New York, NY: Cambridge University Press; 2008, 59–100.

Kahneman, D, Slovic, P, Tversky, A. Judgment Under Uncertainty: Heuristics and Biases. Cambridge, UK: Cambridge University Press; 1982.

Knill, DC, Richards, W. Perception as Bayesian Inference. Cambridge, UK: Cambridge University Press; 1996.

Oaksford, M, Chater, N. Rational Models of Cognition. Oxford, UK: Oxford University Press; 1999.

Todorov, E. Optimality principles in sensorimotor control. Nat Neurosc 2004, 7: 907–915.

Neapolitan, RE. Learning Bayesian Networks. Upper Saddle River, NJ: Pearson Prentice Hall; 2004.

Pearl, J. Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan Kaufmann; 1988.

Russell, S, Norvig, P. Artificial Intelligence: A Modern Approach. 2nd ed. Upper Saddle River, NJ: Prentice Hall; 2003.

Gelman, A, Carlin, JB, Stern, HS, Rubin, DB. Bayesian Data Analysis. 2nd ed. New York, NY: Chapman and Hall; 2003.

Calvert, GA, Bullmore, ET, Brammer, MJ, Campbell, R, Williams, SCR, et al. Activation of auditory cortex during silent lipreading. Science 1997, 276: 593–596.

Pirog Revill, K, Aslin, RN, Tanenhaus, MK, Bavelier, D. Neural correlates of partial lexical activation. Proc Natl Acad Sci USA 2008, 105: 13110–13114.

Blakemore, S‐J, Wolpert, D, Frith, C. Why can`t you tickle yourself? NeuroReport 2000, 11: 11–15.

Yuille, AL, Bülthoff, HH. Bayesian theory and psychophysics. In: Knill, D, Richards, W, eds. Perception as Bayesian Inference. Cambridge, UK: Cambridge University Press; 1996, 123–161.

Ernst, MO, Banks, MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002, 415: 429–433.

Knill, DC, Saunders, J. Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Res 2003, 43: 2539–2558.

Alais, D, Burr, D. The ventriloquist effect results from near‐optimal bimodal integration. Curr Biol 2004, 14: 257–262.

Battaglia, PW, Jacobs, RA, Aslin, RN. Bayesian integration of visual and auditory signals for spatial localization. J Opt Soc Am A 2003, 20: 1391–1397.

Ghahramani, Z, Wolpert, DM, Jordan, MI. Computational models of sensorimotor integration. In: Morasso, PG, Sanguineti, V, eds. Self‐Organization, Computational Maps, and Motor Control. New York, NY: Elsevier Science; 1997.

Jacobs, RA. Optimal integration of texture and motion cues to depth. Vision Res 1999, 39: 3621–3629.

Körding, KP, Wolpert, DM. Bayesian integration in sensorimotor learning. Nature 2004, 427: 244–247.

Landy, MS, Maloney, LT, Johnston, EB, Young, M. Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Res 1995, 35: 389–412.

Maloney, LT, Landy, MS. A statistical framework for robust fusion of depth information. Visual Communications Image Processing IV, Proceedings of the SPIE 1199, 1989, 1154–1163.

Young, MJ, Landy, MS, Maloney, LT. A perturbation analysis of depth perception from combinations of texture and motion cues. Vision Res 1993, 33: 2685–2696.

Shanks, DR. Forward and backward blocking in human contingency judgement. Q J Exp Psychol 1985, 37B: 1–21.

Rescorla, RA, Wagner, AR. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black, AH, Prokasy, WF, eds. Classical Conditioning II: Current Research and Theory. New York, NY: Appleton‐Century‐Crofts; 1972.

Kruschke, JK. Bayesian approaches to associative learning: from passive to active learning. Learn Behav 2008, 36: 210–226.

Dayan, P, Kakade, S. Explaining away in weight space. In: Leen, T, Dietterich, T, Tresp, V, eds. Advances in Neural Information Processing Systems, vol 13. Cambridge, MA: MIT Press; 2001, 451–457.

Sobel, DM, Tenenbaum, JB, Gopnik, A. Children`s causal inferences from indirect evidence: backwards blocking and Bayesian reasoning in preschoolers. Cogn Sci 2004, 28: 303–333.

Tenenbaum, JB, Griffiths, TL. Theory‐based causal inference. In: Becker, S, Thrun, S, Obermayer, K, eds. Advances in Neural Information Processing Systems, vol 15. Cambridge, MA: MIT Press; 2003, 35–42.

Courville, AC, Daw, ND, Touretzky, DS. Bayesian theories of conditioning in a changing world. Trends Cogn Sci 2006, 10: 295–300.

Jacobs, RA, Shams, L. Visual learning in multisensory environments. Topics Cogn Sci 2009, 2: 217–225.

Dempster, AP, Laird, NM, Rubin, DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 1977, 39: 1–38.

Roweis, S, Ghahramani, Z. A unifying review of linear Gaussian models. Neural Comput 1999, 11: 305–345.

Robinson, RW. Counting labeled acyclic digraphs. In: Harary, F, ed. New Directions in the Theory of Graphs. New York, NY: Academic Press; 1973, 239–273.

MacKay, DJC. Information Theory, Inference, and Learning Algorithms. Cambridge, UK: Cambridge University Press; 2003.

Körding, KP, Beierholm, U, Ma, WJ, Quartz, S, Tenenbaum, JB, et al. Causal inference in multisensory perception. PLoS ONE 2007, 2: e943.

Griffiths, TL, Sanborn, AN, Canini, KR, Navarro, DJ. Categorization as nonparametric Bayesian density estimation. In: Oaksford, M, Chater, N, eds. The Probabilistic Mind: Prospects for Rational Models of Cognition. Oxford, UK: Oxford University Press; 2009, 303–328.

Kemp, C, Tenenbaum, JB. The discovery of structural form. Proc Natl Acad Sci USA 2008, 105: 10687–10692.

Xu, F, Tenenbaum, JB. Word learning as Bayesian inference. Psychol Rev 2007, 114: 245–272.

Tenenbaum, JB, Griffiths, TL, Kemp, C. Theory‐based Bayesian models of inductive learning and reasoning. Trends Cogn Sci 2006, 10: 309–318.

Tenenbaum, JB, Griffiths, TL, Niyogi, S. Intuitive theories as grammars for causal inference. In: Gopnik, A, Schulz, L, eds. Causal Learning: Psychology, Philosophy, and Computation. Oxford, UK: Oxford University Press; 2007, 301–322.

Goodman, ND, Tenenbaum, JB, Feldman, J, Griffiths, TL. A rational analysis of rule‐based concept learning. Cogn Sci 2008, 32: 108–154.

Kalish, ML, Griffiths, TL, Lewandowsky, S. Iterated learning: intergenerational knowledge transmission reveals inductive biases. Psychon Bull Rev 2007, 14: 288–294.

Nelson, JD. Finding useful questions: on Bayesian diagnosticity, probability, impact, and information gain. Psychol Rev 2005, 112: 979–999.

Oaksford, M, Chater, N. Optimal data selection: revision, review, and reevaluation. Psychon Bull Rev 2003, 10: 289–318.

Steyvers, M, Tenenbaum, JB, Wagenmakers, E‐J, Blum, B. Inferring causal networks from observations and interventions. Cogn Sci 2003, 27: 453–489.

Gigerenzer, G, Todd, PM, The ABC Research Group. Simple Heuristics that Make Us Smart. New York, NY: Oxford University Press; 1999.

Daw, ND, Courville, AC, Dayan, P. Semi‐rational models: the case of trial order. In: Chater, N, Oaksford, M, eds. The Probabilistic Mind. Oxford, UK: Oxford University Press; 2008, 431–452.

Brown, SD, Steyvers, M. Detecting and predicting changes. Cogn Psychol 2009, 58: 49–67.

Sanborn, A, Griffiths, TL, Navarro, DJ. A more rational model of categorization. *Proceedings of the 28th Annual Conference of the Cognitive Science Society*. Vancouver, Canada, 2006.

Sanborn, A, Silva, R. A machine learning perspective on the locally Bayesian model. *Proceedings of the 31st Annual Conference of the Cognitive Science Society*. Amsterdam, The Netherlands, 2009.

Shi, L, Feldman, NH, Griffiths, TL. Performing Bayesian inference with exemplar models. *Proceedings of the 30th Annual Conference of the Cognitive Science Society*, 2008.

Deneve, S. Bayesian spiking neurons II: learning. Neural Comput 2008, 20: 118–145.

Kruschke, JK. Locally Bayesian learning with applications to retrospective revaluation and highlighting. Psychol Rev 2006, 113: 677–699.

Roweis, S. EM algorithms for PCA and SPCA. In: Jordan, MI, Kearns, MJ, Solla, SA, eds. Advances in Neural Information Processing Systems 10. Cambridge, MA: MIT Press; 1998.

Tipping, ME, Bishop, CM. Probabilistic principal component analysis. J R Stat Soc B 1999, 21: 611–622.