Colombani, J, Bianchini, L, Layalle, S, Pondeville, E, Dauphin‐Villemant, C, Antoniewski, C, Carre, C, Noselli, S, Leopold, P. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 2005, 310:667–670.
Hafen, E. Interplay between growth factor and nutrient signaling: lessons from Drosophila TOR. Curr Top Microbiol Immunol 2003, 279:153–167.
Oldham, S, Stocker, H, Laffargue, M, Wittwer, F, Wymann, M, Hafen, E. The Drosophila insulin/IGF receptor controls growth and size by modulating PtdInsP(3) levels. Development 2002, 129:4103–4109.
Nijhout, HF, Grunert, LW. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera. Proc Natl Acad Sci U S A 2002, 99:15446–15450.
Nijhout, HF, Smith, WA, Schachar, I, Subramanian, S, Tobler, A, Grunert, LW. The control of growth and differentiation of the wing imaginal disks of Manduca sexta. Dev Biol 2007, 302:569–576.
Wu, Q, Brown, M. Signaling and function of insulin‐like peptides in insects. Annu Rev Entomol 2006, 51:1–24.
Mouillet, J‐F, Henrich, VC, Lezzi, M, Vögtli, M. Differential control of gene activity by isoforms A, B1 and B2 of the Drosophila ecdysone receptor. Eur J Biochem 2001, 268:1811–1819.
Riddiford, LM, Cherbas, P, Truman, JW. Ecdysone receptors and their biological actions. Vitam Horm 2001, 60:1–73.
Wolfgang, WJ, Riddiford, LM. Cuticular morphogenesis during continuous growth of the final instar larva of a moth. Tissue Cell 1981, 13:757–772.
Švácha, P. What are and what are not imaginal discs: reevaluation of some basic concepts (Insecta, Holometabola). Dev Biol 1992, 154:101–117.
Nijhout, HF. Insect Hormones. Princeton, NJ: Princeton University Press; 1994.
Riddiford, LM. Hormone receptors and the regulation of insect metamorphosis. Receptor 1993, 3:203–209.
Riddiford, LM, Hiruma, K, Zhou, X, Nelson, CA. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol 2003, 33:1327–1338.
Goodman, WG, Cusson, M. The juvenile hormones. In: Gilbert, LI, ed. Insect Endocrinology. London: Academic Press; 2012, 310–365.
Riddiford, LM. Hormones and Drosophila development. In: Bate, M, Martinez‐Arias, A, eds. The Development of Drosophila melanogaster, vol. 2. Plainview, NY: Cold Spring Harbor Press; 1993, 899–939.
Riddiford, LM. Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Adv Insect Physiol 1994, 24:213–227.
Riddiford, LM. How does juvenile hormone control insect metamorphosis and reproduction? Gen Comp Endocrinol 2012, 179:477–484.
Truman, JW, Riddiford, LM. The morphostatic actions of juvenile hormone. Insect Biochem Mol Biol 2007, 37:761–770.
Dominick, OS, Truman, JW. The physiology of wandering behaviour in Manduca sexta. II. The endocrine control of wandering behaviour. J Exp Biol 1985, 117:45–68.
McBrayer, Z, Ono, H, Shimell, M, Parvy, J‐P, Beckstead, RB, Warren, JT, Thummel, CS, Dauphin‐Villemant, C, Gilbert, LI, O`Connor, MB. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev Cell 2007, 13:857–871.
Nijhout, HF, Williams, CM. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): cessation of juvenile hormone secretion as a trigger for pupation. J Exp Biol 1974, 61:493–501.
Truman, JW, Riddiford, LM. Physiology of insect rhythms. 3. The temporal organization of the endocrine events underlying pupation of the tobacco hornworm. J Exp Biol 1974, 60:371–382.
Riddiford, LM. Ecdysone‐induced change in cellular commitment of the epidermis of the tobacco hornworm, Manduca sexta, at the initiation of metamorphosis. Gen Comp Endocrinol 1978, 34:438–446.
Wigglesworth, V. The determination of characters at metamorphosis in Rhodnius prolixus (Hemiptera). J Exp Biol 1940, 17:201–223.
Riddiford, LM. Hormonal control of insect epidermal cell commitment in vitro. Nature 1976, 259:115–117.
Wigglesworth, V. Local and general factors in the development of “pattern” in Rhodnius prolixus (Hemiptera). J Exp Biol 1940, 17:180–200.
Truman, JW. Hormonal control of the form and function of the nervous system. In: Gilbert, LI, Iatrou, K, Gill, SS, eds. Comprehensive Molecular Insect Science, vol. 2. Oxford: Elsevier; 2005, 135–163.
Nijhout, HF, Davidowitz, G, Roff, DA. A quantitative analysis of the mechanism that controls body size in Manduca sexta. J Biol 2006, 5:16.
Mirth, C, Truman, J, Riddiford, L. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr Biol 2005, 15:1796–1807.
de Jong, G, Bochdanovits, Z. Latitudinal clines in Drosophila melanogaster: body size, allozyme frequencies, inversion frequencies and the insulin‐signalling pathway. J Genet 2003, 82:207–223.
James, AC, Azevedo, RB, Partridge, L. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics 1997, 146:881–890.
Partridge, L, Barrie, B, Fowler, K, French, V. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 1994, 48:1269–1276.
James, AC, Partridge, L. Thermal evolution of rate of larval development in Drosophila melanogaster in laboratory and field populations. J Evol Biol 1995, 8:315–330.
James, AC, Azevedo, RB, Partridge, L. Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics 1995, 140:659–666.
Ray, C. The application of Bergmann`s and Allen`s Rules to the poikilotherms. J Morphol 1960, 106:85–108.
Arnett, AE, Gotelli, NJ. Geographic variation in life‐history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann`s rule. Evolution 1999, 53:1180–1188.
Blanckenhorn, WU, Demont, M. Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 2004, 44:413–424.
Partridge, L, Barrie, B, Fowler, K, French, V. Thermal evolution of pre‐adult life‐history traits in Drosophila melanogaster. J Evol Biol 1994, 7:645–663.
Fabian, DK, Kapun, M, Nolte, V, Kofler, R, Schmidt, PS, Schlötterer, C, Flatt, T. Genome‐wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol Ecol 2012, 21:4748–4769.
Gockel, J, Kennington, WJ, Hoffmann, A, Goldstein, DB, Partridge, L. Nonclinality of molecular variation implicates selection in maintaining a morphological cline of Drosophila melanogaster. Genetics 2001, 158:319–323.
Hoffmann, AA, Weeks, AR. Climatic selection on genes and traits after a 100‐year‐old invasion: a critical look at the temperate‐tropical clines in Drosophila melanogaster from eastern Australia. Genetica 2007, 129:133–147.
Knibb, WR, Oakeshott, JG, Gibson, JB. Chromosome inversion polymorphisms in Drosophila melanogaster. I. latitudinal clines and associations between inversions in Australasian populations. Genetics 1981, 98:833–847.
Mettler, LE, Voelker, RA, Mukai, T. Inversion clines in populations of Drosophila melanogaster. Genetics 1977, 87:169–176.
Weeks, AR, McKechnie, SW, Hoffmann, AA. Dissecting adaptive clinal variation: markers, inversions and size/stress associations in Drosophila melanogaster from a central field population. Ecol Lett 2002, 5:756–763.
Lee, SF, Chen, Y, Varan, AK, Wee, CW, Rako, L, Axford, JK, Good, RT, Blacket, MJ, Reuter, C, Partridge, L, et al. Molecular basis of adaptive shift in body size in Drosophila melanogaster: functional and sequence analyses of the Dca gene. Mol Biol Evol 2011, 28:2393–2402.
McKechnie, SW, Blacket, MJ, Song, SV, Rako, L, Carroll, X, Johnson, TK, Jensen, LT, Lee, SF, Wee, CW, Hoffmann, AA. A clinally varying promoter polymorphism associated with adaptive variation in wing size in Drosophila. Mol Ecol 2010, 19:775–784.
Beadle, GW, Tatum, EL, Clancy, CW. Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol Bull 1938, 75:447–462.
Robertson, FW. The ecological genetics of growth in Drosophila 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet. Genet Res 1963, 4:74–92.
French, V, Feast, M, Partridge, L. Body size and cell size in Drosophila: the developmental response to temperature. J Insect Physiol 1998, 44:1081–1089.
Robinson, SJW, Partridge, L. Temperature and clinal variation in larval growth efficiency in Drosophila melanogaster. J Evol Biol 2001, 14:14–21.
Santos, M, Fowler, K, Partridge, L. Gene‐environment interaction for body size and larval density in Drosophila melanogaster: an investigation of effects on development time, thorax length and adult sex ratio. Heredity 1994, 72:515–521.
Nunney, L, Cheung, W. The effect of temperature on body size and fecundity in female Drosophila melanogaster: evidence for adaptive plasticity. Evolution 1997, 51:1529–1535.
DiAngelo, JR, Bland, ML, Bambina, S, Cherry, S, Birnbaum, MM. The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc Natl Acad Sci U S A 2009, 106:20853–20858.
Ikeya, T, Broughton, S, Alic, N, Grandison, RC, Partridge, L. The endosymbiont Wolbachia increases insulin/IGF‐like signalling in Drosophila. Proc R Soc B Biol Sci 2009, 276:3799–3807.
Storelli, G, Defaye, A, Erkosar, B, Hols, P, Royet, J, Leulier, F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR‐dependent nutrient sensing. Cell Metab 2011, 14:403–414.
Simpson, P, Berreur, P, Berreur‐Bonnenfant, J. The initiation of pupariation in Drosophila: dependence on growth of the imaginal discs. J Embryol Exp Morphol 1980, 57:155–165.
Stieper, BC, Kupershtok, M, Driscoll, MV, Shingleton, AW. Imaginal discs regulate developmental timing in Drosophila melanogaster. Dev Biol 2008, 321:18–26.
Halme, A, Cheng, M, Hariharan, IK. Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 2010, 20:458–463.
Peck, LS, Maddrell, SHP. Limitation of size by hypoxia in the fruit fly Drosophila melanogaster. J Exp Zool A Comp Exp Biol 2005, 303A:968–975.
Lazebnyi, OE, Zakharchuck, EV, Imasheva, AG. Larval density and variation of body size in laboratory lines of Drosophila melanogaster. Russ J Genet 1996, 32:883–884.
Shin, SC, Kim, S‐H, You, H, Kim, B, Kim, AC, Lee, K‐A, Yoon, J‐H, Ryu, J‐H, Lee, W‐J. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011, 334:670–674.
Ghosh, SM, Testa, ND, Shingleton, AW. Temperature‐size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proc R Soc B Biol Sci 2013, 280:20130174.
Colombani, J, Raisin, S, Pantalacci, S, Radimerski, T, Montagne, J, Leopold, P. A nutrient sensor mechanism controls Drosophila growth. Cell 2003, 114:739–749.
Nobukuni, T, Joaquin, M, Roccio, M, Dann, SG, Kim, SY, Gulati, P, Byfield, MP, Backer, JM, Natt, F, Bos, JL, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH‐kinase. Proc Natl Acad Sci U S A 2005, 102:14238–14243.
Zhang, H, Stallock, JP, Ng, JC, Reinhard, C, Neufeld, TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 2000, 14:2712–2724.
Tennessen, JM, Thummel, CS. Coordinating growth and maturation ‐ insights from Drosophila. Curr Biol 2011, 21:750–757.
Britton, JS, Lockwood, WK, Li, L, Cohen, SM, Edgar, BA. Drosophila`s insulin/P13‐kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2002, 2:239–249.
Brogiolo, W, Stocker, H, Ikeya, T, Rintelen, F, Fernandez, R, Hafen, E. An evolutionarily conserved function of the Drosophila insulin receptor and insulin‐like peptides in growth control. Curr Biol 2001, 11:213–221.
Chen, C, Jack, J, Garofalo, RS. The Drosophila insulin receptor is required for normal growth. Endocrinology 1996, 137:846–856.
Ikeya, T, Galic, M, Belawat, P, Nairz, K, Hafen, E. Nutrient‐dependent expression of insulin‐like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 2002, 12:1293–1300.
Oldham, S, Hafen, E. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 2003, 13:79–85.
Puig, O, Tjian, R. Nutrient availability and growth: regulation of insulin signaling by dFOXO/FOXO1. Cell Cycle 2006, 5:503–505.
Kim, D‐H, Sarbassov, DD, Ali, SM, King, JE, Latek, RR, Erdjument‐Bromage, H, Tempst, P, Sabatini, DM. mTOR interacts with raptor to form a nutrient‐sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163–175.
Oldham, S, Montagne, J, Radimerski, T, Thomas, G, Hafen, E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 2000, 14:2689–2694.
Grewal, SS. Insulin/TOR signaling in growth and homeostasis: a view from the fly world. Int J Biochem Cell Biol 2009, 41:1006–1010.
Masumura, M, Satake, SI, Saegusa, H, Mizoguchi, A. Glucose stimulates the release of bombyxin, an insulin‐related peptide of the silkworm Bombyx mori. Gen Comp Endocrinol 2000, 118:393–399.
Rulifson, EJ, Kim, SK, Nusse, R. Ablation of insulin‐producing neurons in flies: growth and diabetic phenotypes. Science 2002, 296:1118–1120.
Géminard, C, Rulifson, EJ, Léopold, P. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 2009, 10:199–207.
Bohni, R, Riesgo‐Escovar, J, Oldham, S, Brogiolo, W, Stocker, H, Andruss, BF, Beckingham, K, Hafen, E. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1‐4. Cell 1999, 97:865–875.
Weinkove, D, Neufeld, TP, Twardzik, T, Waterfield, MD, Leevers, SJ. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class IA phosphoinositide 3‐kinase and its adaptor. Curr Biol 1999, 9:1019–1029.
Goberdhan, DCI, Paricio, N, Goodman, EC, Mlodzik, M, Wilson, C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3‐kinase signaling pathway. Genes Dev 1999, 13:3244–3258.
Gao, X, Neufeld, TP, Pan, D. Drosophila PTEN regulates cell growth and proliferation through PI3K‐dependent and independent pathways. Dev Biol 2000, 221:404–418.
Huang, H, Potter, CJ, Tao, W, Li, DM, Brogiolo, W, Hafen, E, Sun, H, Xu, T. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 1999, 126:5365–5372.
Verdu, J, Buratovich, MA, Wilder, EL, Birnbaum, MJ. Cell‐autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat Cell Biol 1999, 1:500–506.
Kramer, J, Davidge, J, Lockyer, J, Staveley, B. Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev Biol 2003, 3:5.
Puig, O, Marr, MT, Ruhf, ML, Tjian, R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev 2003, 17:2006–2020.
Kim, SK, Rulifson, EJ. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 2004, 431:316–320.
Chell, JM, Brand, AH. Nutrition‐responsive glia control exit of neural stem cells from quiescence. Cell 2010, 143:1161–1173.
Sousa‐Nunes, R, Yee, LL, Gould, AP. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 2011, 471:508–512.
Rajan, A, Perrimon, N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 2012, 151:123–137.
Honegger, B, Galic, M, Kohler, K, Wittwer, F, Brogiolo, W, Hafen, E, Stocker, H. Imp‐L2, a putative homolog of vertebrate IGF‐binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 2008, 7:10.
Osterbur, DL, Fristrom, DK, Natzle, JE, Tojo, SJ, Fristrom, JW. Genes expressed during imaginal discs morphogenesis: IMP‐L2, a gene expressed during imaginal disc and imaginal histoblast morphogenesis. Dev Biol 1988, 129:439–448.
Okamoto, N, Nakamori, R, Murai, T, Yamauchi, Y, Masuda, A, Nishimura, T. A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila. Genes Dev 2013, 27:87–97.
Henrich, VC. The ecdysteroid receptor. In: Gilbert, LI, ed. Insect Endocrinology. London: Academic Press; 2012, 177–218.
Charles, J‐P, Iwema, T, Epa, V, Takaki, K, Rynes, J, Jindra, M. Ligand‐binding properties of a juvenile hormone receptor, Methoprene‐tolerant. Proc Natl Acad Sci U S A 2011, 108:21128–21133.
Jindra, M, Palli, SR, Riddiford, LM. The juvenile hormone signaling pathway in insect development. Annu Rev Entomol 2013, 58:181–204.
Baumann, A, Fujiwara, Y, Wilson, TG. Evolutionary divergence of the paralogs Methoprene tolerant (Met) and germ cell expressed (gce) within the genus Drosophila. J Insect Physiol 2010, 56:1445–1455.
Baumann, AA, Barry, J, Wang, S, Fujiwara, Y, Wilson, TG. Paralogous genes involved in juvenile hormone action in Drosophila melanogaster. Genetics 2010, 185:1327–1336.
Godlewski, J, Wang, S, Wilson, TG. Interaction of bHLH‐PAS proteins involved in juvenile hormone reception in Drosophila. Biochem Biophys Res Commun 2006, 342:1305–1311.
Abdou, MA, He, Q, Wen, D, Zyaan, O, Wang, J, Xu, J, Baumann, AA, Joseph, J, Wilson, TG, Li, S, et al. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem Mol Biol 2011, 41:938–945.
Liu, Y, Sheng, Z, Liu, H, Wen, D, He, Q, Wang, S, Shao, W, Jiang, R‐J, An, S, Sun, Y, et al. Juvenile hormone counteracts the bHLH‐PAS transcription factors MET and GCE to prevent caspase‐dependent programmed cell death in Drosophila. Development 2009, 136:2015–2025.
Layalle, S, Arquier, N, Léopold, P. The TOR pathway couples nutrition and developmental timing in Drosophila. Dev Cell 2008, 15:568–577.
Caldwell, PE, Walkiewicz, M, Stern, M. Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr Biol 2005, 15:1785–1795.
Walkiewicz, MA, Stern, M. Increased insulin/insulin growth factor signaling advances the onset of metamorphosis in Drosophila. PLoS One 2009, 4:e5072.
Delanoue, R, Slaidina, M, Léopold, P. The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Dev Cell 2010, 18:1012–1021.
Francis, VA, Zorzano, A, Teleman, AA. dDOR is an EcR coactivator that forms a feed‐forward loop connecting insulin and ecdysone signaling. Curr Biol 2010, 20:1799–1808.
Mirth, CK, Truman, JW, Riddiford, LM. The ecdysone receptor controls the post‐critical weight switch to nutrition‐independent differentiation in Drosophila wing imaginal discs. Development 2009, 136:2345–2353.
Parker, NF, Shingleton, AW. The coordination of growth among Drosophila organs in response to localized growth‐perturbation. Dev Biol 2011, 357:318–325.
Nijhout, HF, Grunert, LW. The cellular and physiological mechanism of wing‐body scaling in Manduca sexta. Science 2010, 330:1693–1695.
Kato, Y, Riddiford, L. The role of 20‐hydroxyecdysone in stimulating epidermal mitoses during the larval‐pupal transformation of the tobacco hornworm, Manduca sexta. Development 1987, 100:227–236.
Truman, JW, Hiruma, K, Allee, JP, Macwhinnie, SG, Champlin, DT, Riddiford, LM. Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science 2006, 312:1385–1388.
Riddiford, LM, Truman, JW, Mirth, CK, Shen, Y‐c. A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development 2010, 137:1117–1126.
Mirth, CK, Tang, HY, Makhon‐Moore, S, Salhadar, S, Gokhale, R, Riddiford, LM, Shingleton, AW. Submitted.
Garelli, A, Gontijo, AM, Miguela, V, Caparros, E, Dominguez, M. Imaginal discs secrete insulin‐like peptide 8 to mediate plasticity of growth and maturation. Science 2012, 336:579–582.
Colombani, J, Andersen, DS, Leopold, P. Secreted peptide DILP8 coordinates Drosophila tissue growth with developmental timing. Science 2012, 336:582–585.
Sehnal, F, Bryant, PJ. Delayed pupariation in Drosophila imaginal disc overgrowth mutants is associated with reduced ecdysteroid titer. J Insect Physiol 1993, 39:1051–1059.
Atkinson, D. Temperature and organism size‐‐a biological law for ectotherms? In: Begon, M, Fitter, AH, eds. Advances in Ecological Research, vol. 25. San Diego, CA: Academic Press; 1994, 1–58.
Davidowitz, G, Nijhout, HF. The physiological basis of reaction norms: the interaction among growth rate, the duration of growth and body size. Integr Comp Biol 2004, 44:443–449.
Callier, V, Nijhout, HF. Control of body size by oxygen supply reveals size‐dependent and size‐independent mechanisms of molting and metamorphosis. Proc Natl Acad Sci U S A 2011, 108:14664–14669.
Greenlee, KJ, Harrison, JF. Respiratory changes throughout ontogeny in the tobacco hornworm caterpillar, Manduca sexta. J Exp Biol 2005, 208:1385–1392.
Okamoto, N, Yamanaka, N, Yagi, Y, Nishida, Y, Kataoka, H, O`Connor, MB, Mizoguchi, A. A fat body‐derived IGF‐like peptide regulates postfeeding growth in Drosophila. Dev Cell 2009, 17:885–891.
Slaidina, M, Delanoue, R, Gronke, S, Partridge, L, Léopold, P. A Drosophila insulin‐like peptide promotes growth during nonfeeding states. Dev Cell 2009, 17:874–884.
Okamoto, N, Yamanaka, N, Satake, H, Saegusa, H, Kataoka, H, Mizoguchi, A. An ecdysteroid‐inducible insulin‐like growth factor‐like peptide regulates adult development of the silkmoth Bombyx mori. FEBS J 2009, 276:1221–1232.
Agui, N, Granger, NA, Gilbert, LI, Bollenbacher, WE. Cellular localization of the insect prothoracicotropic hormone: in vitro assay of a single neurosecretory cell. Proc Natl Acad Sci U S A 1979, 76:5694–5698.
Smith, WA, Rybczynski, R. Prothoracicotropic hormone. In: Gilbert, LI, ed. Insect Endocrinology. London: Academic Press; 2012, 1–62.
Rewitz, K, Yamanaka, N, Gilbert, L, O`Connor, M. The insect neuropeptide PTTH activates receptor tyrosine kinase Torso to initiate metamorphosis. Science 2009, 326:1403–1405.
Wigglesworth, V. The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and `metamorphosis`. Q J Microsc Sci 1934, 77:191–222.
Nijhout, HF. Abdominal stretch reception in Dipetalogaster maximus (Hemiptera: Reduviidae). J Insect Physiol 1984, 30:629–633.
Nijhout, HF. Stretch‐induced moulting in Oncopeltus fasciatus. J Insect Physiol 1979, 25:277–282.
Davidowitz, G, D`Amico, LJ, Nijhout, HF. The effects of environmental variation on a mechanism that controls insect body size. Evol Ecol Res 2004, 6:49–62.
Davidowitz, G, D`Amico, LJ, Nijhout, HF. Critical weight in the development of insect body size. Evol Dev 2003, 5:188–197.
Nijhout, HF, Williams, CM. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): growth of the last‐instar larva and the decision to pupate. J Exp Biol 1974, 61:481–491.
Truman, JW. Physiology of insect rhythms. 1, Circadian organization of the endocrine events underlying the molting cycle of larval tobacco hornworms. J Exp Biol 1972, 57:805–820.
Rountree, D, Bollenbacher, W. Juvenile hormone regulates ecdysone secretion through inhibition of PTTH release. Am Zool 1984, 24:A31.
Rountree, D, Bollenbacher, W. The release of the prothoracicotropic hormone in the tobacco hornworm, Manduca sexta, is controlled intrinsically by juvenile hormone. J Exp Biol 1986, 120:41–58.
Sakurai, S, Okuda, M, Ohtaki, T. Juvenile hormone inhibits ecdysone secretion and responsiveness to prothoracicotropic hormone in prothoracic glands of Bombyx mori. Gen Comp Endocrinol 1989, 75:222–230.
Dominick, OS, Truman, JW. The physiology of wandering behavior in Manduca sexta. 1. Temporal organization and the influence of the internal and external environments. J Exp Biol 1984, 110:35–51.
Nijhout, HF. Dynamics of juvenile hormone action in larvae of the tobacco hornworm, Manduca sexta (L.). Biol Bull 1975, 149:568–579.
Truman, JW, Riddiford, LM, Safranek, L. Temporal patterns of response to ecdysone and juvenile hormone in the epidermis of the tobacco hornworm, Manduca sexta. Dev Biol 1974, 39:247–262.
Cymborowski, B, Bogus, M, Beckage, NE, Williams, CM, Riddiford, LM. Juvenile‐hormone titers and metabolism during starvation‐induced supernumerary larval molting of the tobacco hornworm Manduca sexta L. J Insect Physiol 1982, 28:129–135.
Riddiford, LM, Ashburner, M. Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophila melanogaster. Gen Comp Endocrinol 1991, 82:172–183.
Zhou, X, Riddiford, LM. Broad specifies pupal development and mediates the status quo action of juvenile hormone on the pupal‐adult transformation in Drosophila and Manduca. Development 2002, 129:2259–2269.
Shafiei, M, Moczek, AP, Nijhout, HF. Food availability controls the onset of metamorphosis in the dung beetle Onthophagus taurus (Coleoptera: Scarabaeidae). Physiol Entomol 2001, 26:173–180.
Fukuda, S. The hormonal mechanism of larval molting and metamorphosis in the silkworm. J Fac Sci Tokyo Imp Univ 1944, 4:477–532.
Dean, RL, Bollenbacher, WE, Locke, M, Smith, SL, Gilbert, LI. Haemolymph ecdysteroid levels and cellular events in the intermoult/moult sequence of Calpodes ethlius. J Insect Physiol 1980, 26:267–280.
Rountree, DB, Nijhout, HF. Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). J Insect Physiol 1995, 41:987–992.
Gu, S‐H, Young, S‐C, Lin, J‐L, Lin, P‐L. Involvement of PI3K/Akt signaling in PTTH‐stimulated ecdysteroidogenesis by prothoracic glands of the silkworm, Bombyx mori. Insect Biochem Mol Biol 2011, 41:197–202.
Tanaka, Y. Recent topics on the regulatory mechanism of ecdysteroidogenesis by the prothoracic gland in insects. Front Endocrinol 2011, 107:1–6.
Locke, M. Epidermis. In: Harrison, FW, Locke, M, eds. Microscopic Anatomy of Invertebrates. New York: Wiley Liss %26 Sons; 1998, 75–138.
Locke, M. The Wigglesworth Lecture: insects for studying fundamental problems in biology. J Insect Physiol 2001, 47:495–507.
Ashburner, M, Chihara, C, Meltzer, P, Richards, G. Temporal control of puffing activity in polytene chromosomes. Cold Spring Harb Symp Quant Biol 1974, 38:655–662.
Hill, RJ, Billas, IML, Bonneton, F, Graham, LD, Lawrence, MC. Ecdysone receptors: from the Ashburner model to structural biology. Annu Rev Entomol 2013, 58:251–271.
Koelle, MR, Talbot, WS, Segraves, WA, Bender, MT, Cherbas, P, Hogness, DS. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 1991, 67:59–77.
Yao, TP, Segraves, WA, Oro, AE, McKeown, M, Evans, RM. Drosophila Ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 1992, 71:63–72.
Hiruma, K, Riddiford, L. Developmental expression of mRNAs for epidermal and fat body proteins and hormonally regulated transcription factors in the tobacco hornworm, Manduca sexta. J Insect Physiol 2010, 56:1390–1395.
Langelan, RE, Fisher, JE, Hiruma, K, Palli, SR, Riddiford, LM. Patterns of MHR3 expression in the epidermis during a larval molt of the tobacco hornworm Manduca sexta. Dev Biol 2000, 227:481–494.
Warren, J, Yerushalmi, Y, Shimell, M, O`Connor, M, Restifo, L, Gilbert, L. Discrete pulses of molting hormone, 20‐hydroxyecdysone, during late larval development of Drosophila melanogaster: correlations with changes in gene activity. Dev Dyn 2006, 235:315–326.
Schubiger, M, Truman, JW. The RXR ortholog USP suppresses early metamorphic processes in Drosophila in the absence of ecdysteroids. Development 2000, 127:1151–1159.
Bayer, CA, Holley, B, Fristrom, JW. A switch in Broad‐Complex zinc‐finger isoform expression is regulated posttranscriptionally during the metamorphosis of Drosophila imaginal discs. Dev Biol 1996, 177:1–14.
Zhou, B, Hiruma, K, Shinoda, T, Riddiford, L. Juvenile hormone prevents ecdysteroid‐induced expression of Broad Complex RNAs in the epidermis of the tobacco hornworm, Manduca sexta. Dev Biol 1998, 203:233–244.
Zhou, B, Riddiford, LM. Hormonal regulation and patterning of the Broad‐Complex in the epidermis and wing discs of the tobacco hornworm, Manduca sexta. Dev Biol 2001, 231:125–137.
Champlin, DT, Reiss, SE, Truman, JW. Hormonal control of ventral diaphragm myogenesis during metamorphosis of the moth, Manduca sexta. Dev Genes Evol 1999, 209:265–274.
Champlin, DT, Truman, JW. Ecdysteroid control of cell proliferation during optic lobe neurogenesis in the moth Manduca sexta. Development 1998, 125:269–277.
Talbot, WS, Swyryd, EA, Hogness, DS. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 1993, 73:1323–1337.
Truman, JW, Talbot, WS, Fahrbach, SE, Hogness, DS. Ecdysone receptor expression in the CNS correlates with stage‐specific responses to ecdysteroids during Drosophila and Manduca development. Development 1994, 120:219–234.
Wilson, TG, Ashok, M. Insecticide resistance resulting from an absence of target‐site gene product. Proc Natl Acad Sci U S A 1998, 95:14040–14044.
Goodman, WG, Granger, NA. The juvenile hormones. In: Lawrence, I, Gilbert, LI, Iatrou, K, Gill, SS, eds. Comprehensive Molecular Insect Science. Amsterdam: Elsevier; 2005, 319–408.
Hiruma, K, Kaneko, Y. Hormonal regulation of insect metamorphosis with special reference to juvenile hormone biosynthesis. Curr Top Dev Biol 2013, 103:73–100.
Belles, X, Martin, D, Piulachs, MD. The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 2005, 50:181–199.
Jones, G, Teal, P, Henrich, VC, Krzywonos, A, Sapa, A, Wozniak, M, Smolka, J, Jones, D. Ligand binding pocket function of Drosophila USP is necessary for metamorphosis. Gen Comp Endocrinol 2013, 182:73–82.
Jones, G, Jones, D, Teal, P, Sapa, A, Wozniak, M. The retinoid‐X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand. FEBS J 2006, 273:4983–4996.
Minakuchi, C, Namiki, T, Yoshiyama, M, Shinoda, T. RNAi‐mediated knockdown of juvenile hormone acid O‐methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J 2008, 275:2919–2931.
Daimon, T, Kozaki, T, Niwa, R, Kobayashi, I, Furuta, K, Namiki, T, Uchino, K, Banno, Y, Katsuma, S, Tamura, T, et al. Precocious metamorphosis in the juvenile hormone‐deficient mutant of the silkworm, Bombyx mori. PLoS Genet 2012, 8:e1002486.
Kataoka, H, Toschi, A, Li, JP, Carney, RL, Schooley, DA, Kramer, SJ. Identification of an allatotropin from adult Manduca sexta. Science 1989, 243:1481–1483.
Yamanaka, N, Yamamoto, S, Zitnan, D, Watanabe, K, Kawada, T, Satake, H, Kaneko, Y, Hiruma, K, Tanaka, Y, Shinoda, T, et al. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS One 2008, 3:e3048.
Wang, C, Zhang, J, Tobe, SS, Bendena, WG. Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by Drosophila melanogaster ring gland/corpus allatum through RNAi analysis. Gen Comp Endocrinol 2012, 176:347–353.
Chiang, AS, Lin, WY, Liu, HP, Pszczolkowski, MA, Fu, TF, Chiu, SL, Holbrook, GL. Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc Natl Acad Sci U S A 2002, 99:37–42.
Huang, JH, Tian, L, Peng, C, Abdou, M, Wen, D, Wang, Y, Li, S, Wang, J. DPP‐mediated TGF beta signaling regulates juvenile hormone biosynthesis by activating the expression of juvenile hormone acid methyltransferase. Development 2011, 138:2283–2291.
Granger, NA, Sturgis, SL, Ebersohl, R, Geng, C, Sparks, TC. Dopaminergic control of corpora allata activity in the larval tobacco hornworm, Manduca sexta. Arch Insect Biochem Physiol 1996, 32:449–466.
Hammock, BD. Regulation of juvenile hormone titer: degradation. In: Kerkut, GA, Gilbert, LI, eds. Comprehensive Insect Physiology, Biochemistry, and Pharmacology. New York: Pergamon Press; 1985, 431–472.
Kamita, SG, Hinton, AC, Wheelock, CE, Wogulis, MD, Wilson, DK, Wolf, NM, Stok, JE, Hock, B, Hammock, BD. Juvenile hormone (JH) esterase: why are you so JH specific? Insect Biochem Mol Biol 2003, 33:1261–1273.
de Kort, CAD, Granger, NA. Regulation of JH titers: the relevance of degradative enzymes and binding proteins. Arch Insect Biochem Physiol 1996, 33:1–26.
Sparks, TC, Hammock, BD, Riddiford, LM. The hemolymph juvenile‐hormone esterase of Manduca sexta (L) ‐ inhibition and regulation. Insect Biochem 1983, 13:529–541.
Browder, MH, D`Amico, LJ, Nijhout, HF. The role of low levels of juvenile hormone esterase in the metamorphosis of Manduca sexta. J Insect Sci 2001, 1:11.
Mitsui, T, Riddiford, LM, Bellamy, G. Metabolism of juvenile hormone by the epidermis of the tobacco hornworm, Manduca sexta. Insect Biochem 1979, 9:637–643.
Sparks, TC, Hammock, BD. Comparative inhibition of the juvenile hormone esterases from Trichoplusia ni, Tenebrio molitor, and Musca domestica. Pestic Biochem Physiol 1980, 14:290–302.
Seino, A, Ogura, T, Tsubota, T, Shimomura, M, Nakakura, T, Tan, A, Mita, K, Shinoda, T, Nakagawa, Y, Shiotsuki, T. Characterization of juvenile hormone epoxide hydrolase and related genes in the larval development of the silkworm Bombyx mori. Biosci Biotechnol Biochem 2010, 74:1421–1429.
Goodman, W, O`Hern, PA, Zaugg, RH, Gilbert, LI. Purification and characterization of a juvenile hormone binding protein from the hemolymph of the fourth instar tobacco hornworm, Manduca sexta. Mol Cell Endocrinol 1978, 11:225–242.
Konopova, B, Jindra, M. Juvenile hormone resistance gene Methoprene‐tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 2007, 104:10488–10493.
Minakuchi, C, Namiki, T, Shinoda, T. Krüppel homolog 1, an early juvenile hormone‐response gene downstream of Methoprene‐tolerant, mediates its anti‐metamorphic action in the red flour beetle Tribolium castaneum. Dev Biol 2009, 325:341–350.
Kayukawa, T, Minakuchi, C, Namiki, T, Togawa, T, Yoshiyama, M, Kamimura, M, Mita, K, Imanishi, S, Kiuchi, M, Ishikawa, Y, et al. Transcriptional regulation of juvenile hormone‐mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc Natl Acad Sci U S A 2012, 109:11729–11734.
Emlen, DJ, Nijhout, HF. The development and evolution of exaggerated morphologies in insects. Annu Rev Entomol 2000, 5:661–708.
Oldham, S, Bohni, R, Stocker, H, Brogiolo, W, Hafen, E. Genetic control of size in Drosophila. Philos Trans R Soc Lond B Biol Sci 2000, 355:945–952.
Kawano, K. Horn and wing allometry and male dimorphism in giant rhinoceros beetles (Coleoptera: Scarabaeidae) of tropical Asia and America. Ann Entomol Soc Am 1995, 88:92–99.
Nijhout, HF, Wheeler, DE. Growth models of complex allometries in holometabolous insects. Am Nat 1996, 148:40–56.
Wheeler, DE. The developmental basis of worker caste polymorphism in ants. Am Nat 1991, 138:1218–1238.
Wilson, EO. The origin and evolution of polymorphism in ants. Q Rev Biol 1953, 28:136–156.
Rintelen, F, Stocker, H, Thomas, G, Hafen, E. PDK1 regulates growth through Akt and S6K in Drosophila. Proc Natl Acad Sci U S A 2001, 98:15020–15025.
Tang, HY, Smith‐Caldas, MSB, Driscoll, MV, Salhadar, S, Shingleton, AW. FOXO regulates organ‐specific phenotypic plasticity in Drosophila. PLoS Genet 2011, 7:e1002373.
Montagne, J, Stewart, MJ, Stocker, H, Hafen, E, Kozma, SC, Thomas, G. Drosophila S6 kinase: a regulator of cell size. Science 1999, 285:2126–2129.
Brennan, CA, Ashburner, M, Moses, K. Ecdysone pathway is required for furrow progression in the developing Drosophila eye. Development 1998, 125:2653–2664.
Brennan, CA, Li, TR, Bender, M, Hsiung, F, Moses, K. Broad‐complex, but not ecdysone receptor, is required for progression of the morphogenetic furrow in the Drosophila eye. Development 2001, 128:1–11.
Mou, X, Duncan, DM, Baehrecke, EH, Duncan, I. Control of target gene specificity during metamorphosis by the steroid response gene E93. Proc Natl Acad Sci U S A 2012, 109:2949–2954.
Schubiger, M, Carré, C, Antoniewski, C, Truman, JW. Ligand‐dependent de‐repression via EcR/USP acts as a gate to coordinate the differentiation of sensory neurons in the Drosophila wing. Development 2005, 132:5239–5248.
Martin, P, Shearn, A. Development of Drosophila imaginal discs in vitro: effects of ecdysone concentration and insulin. J Exp Zool 1980, 211:291–301.
Tobler, A, Nijhout, HF. A switch in the control of growth of the wing imaginal disks of Manduca sexta. PLoS One 2010, 5:e10723.
Berreur, P, Bougues, R. Effects of ecdysone on the in vivo growth of wing disks of Calliphora erythrocephala. J Insect Physiol 1975, 21:915–919.
Shingleton, AW, Mirth, CK, Bates, PW. Developmental model of static allometry in holometabolous insects. Proc R Soc B Biol Sci 2008, 275:1875–1885.
MacWhinnie, SGB, Allee, JP, Nelson, CA, Riddiford, LM, Truman, JW, Champlin, DT. The role of nutrition in creation of the eye imaginal disc and initiation of metamorphosis in Manduca sexta. Dev Biol 2005, 285:285–297.
Koyama, T, Syropyatova, M, Riddiford, L. Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone. Dev Biol 2008, 324:258–265.
Rusten, TE, Lindmo, K, Juhasz, G, Sass, M, Seglen, PO, Brech, A, Stenmark, H. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 2004, 7:179–192.
Shingleton, AW, Das, J, Vinicius, L, Stern, DL. The temporal requirements for insulin signaling during development in Drosophila. PLoS Biol 2005, 3:e289.
Erezyilmaz, DF, Riddiford, LM, Truman, JW. The pupal specifier broad directs progressive morphogenesis in a direct‐developing insect. Proc Natl Acad Sci U S A 2006, 103:6925–6930.
Hutchinson, J, McNamara, J, Houston, A, Vollrath, F. Dyar`s Rule and the Investment Principle: optimal moulting strategies if feeding rate is size‐dependent and growth is discontinuous. Philos Trans R Soc Lond B Biol Sci 1997, 352:113–138.
Klingenberg, CP, Zimmermann, M. Dyar`s rule and multivariate allometric growth in nine species of waterstriders (Heteroptera: Gerridae). J Zool 1992, 227:453–464.
Erezyilmaz, D, Riddiford, L, Truman, J. Juvenile hormone acts at embryonic molts and induces the nymphal cuticle in the direct‐developing cricket. Dev Genes Evol 2004, 214:313–323.
Konopova, B, Smykal, V, Jindra, M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One 2011, 6:e28728.
Huang, J‐H, Lozano, J, Belles, X. Broad‐complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim Biophys Acta 1830, 2013:2178–2187.
Bowers, WS. How anti‐juvenile hormones work. Am Zool 1981, 21:737–742.
Bowers, WS, Martinez‐Pardo, R. Antiallatotropins: inhibition of corpus allatum development. Science 1977, 197:1369–1371.
Mahfooz, N, Turchyn, N, Mihajlovic, M, Hrycaj, S, Popadić, A. Ubx regulates differential enlargement and diversification of insect hind legs. PLoS One 2007, 2:e866.
Mahfooz, NS, Li, H, Popadić, A. Differential expression patterns of the hox gene are associated with differential growth of insect hind legs. Proc Natl Acad Sci U S A 2004, 101:4877–4882.
Gabriel, JM. The development of the locust jumping mechanism: I. Allometric growth and its effect on jumping performance. J Exp Biol 1985, 118:313–326.
Moczek, AP, Nagy, LM. Diverse developmental mechanisms contribute to different levels of diversity in horned beetles. Evol Dev 2005, 7:175–185.
Moczek, AP, Rose, DJ. Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci U S A 2009, 106:8992–8997.
Tanaka, K, Truman, J. Development of the adult leg epidermis in Manduca sexta: contribution of different larval cell populations. Dev Genes Evol 2005, 215:78–89.
Tanaka, K, Truman, JW. Molecular patterning mechanism underlying metamorphosis of the thoracic leg in Manduca sexta. Dev Biol 2007, 305:539–550.
Emlen, DJ, Allen, CE. Genotype to phenotype: physiological control of trait size and scaling in insects. Integr Comp Biol 2003, 43:617–634.
Emlen, DJ, Nijhout, HF. Hormonal control of male horn length dimorphism in Onthophagus taurus (Coleoptera: Scarabaeidae): a second critical period of sensitivity to juvenile hormone. J Insect Physiol 2001, 47:1045–1054.
Emlen, DJ, Warren, IA, Johns, A, Dworkin, I, Lavine, LC. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 2012, 337:860–864.
Moczek, AP, Emlen, DJ. Male horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes? Anim Behav 2000, 59:459–466.
Moczek, AP. Allometric plasticity in a polyphenic beetle. Ecol Entomol 2002, 27:58–67.
Emlen, DJ. Environmental control of horn length dimorphism in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc R Soc B Biol Sci 1994, 256:131–136.
Emlen, DJ. Artificial selection on horn length‐body size allometry in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Evolution 1996, 50:1219–1230.
Emlen, DJ. Diet alters male horn allometry in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc R Soc B Biol Sci 1997, 264:567–574.
Shingleton, AW, Tang, HY. Plastic flies: the regulation and evolution of trait variability in Drosophila. Fly 2012, 6:147–152.
Tobler, A, Nijhout, HF. Developmental constraints on the evolution of wing‐body allometry in Manduca sexta. Evol Dev 2010, 12:592–600.