Small, SA, Schobel, SA, Buxton, RB, Witter, MP, Barnes, CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011, 12:585–601.
Lisman, JE. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate‐CA3 interactions. Neuron 1999, 22:233–242.
Bulchand, S, Grove, EA, Porter, FD, Tole, S. LIM‐homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech Dev 2001, 100:165–175.
Mangale, VS, Hirokawa, KE, Satyaki, PR, Gokulchandran, N, Chikbire, S, Subramanian, L, Shetty, AS, Martynoga, B, Paul, J, Mai, MV, et al. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 2008, 319:304–309.
Monuki, ES, Porter, FD, Walsh, CA. Patterning of the dorsal telencephalon and cerebral cortex by a roof plate‐Lhx2 pathway. Neuron 2001, 32:591–604.
Porter, FD, Drago, J, Xu, Y, Cheema, SS, Wassif, C, Huang, SP, Lee, E, Grinberg, A, Massalas, JS, Bodine, D, et al. Lhx2 a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 1997, 124:2935–2944.
Shinozaki, K, Yoshida, M, Nakamura, M, Aizawa, S, Suda, Y. Emx1 and Emx2 cooperate in initial phase of archipallium development. Mech Dev 2004, 121:475–489.
Muzio, L, Mallamaci, A. Foxg1 confines Cajal‐Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium. J Neurosci 2005, 25:4435–4441.
Lumsden, A, Krumlauf, R. Patterning the vertebrate neuraxis. Science 1996, 274:1109–1115.
Tanabe, Y, Jessell, TM. Diversity and pattern in the developing spinal cord. Science 1996, 274:1115–1123.
Grove, EA, Tole, S, Limon, J, Yip, L, Ragsdale, CW. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3‐deficient mice. Development 1998, 125:2315–2325.
Furuta, Y, Piston, DW, Hogan, BL. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 1997, 124:2203–2212.
Grove, EA, Tole, S. Patterning events and specification signals in the developing hippocampus. Cereb Cortex 1999, 9:551–561.
Subramanian, L, Tole, S. Mechanisms underlying the specification, positional regulation, and function of the cortical hem. Cereb Cortex 2009, 19(Suppl 1):i90–i95.
Grove, EA. Neuroscience. Organizing the source of memory. Science 2008, 319:288–289.
Louvi, A, Yoshida, M, Grove, EA. The derivatives of the Wnt3a lineage in the central nervous system. J Comp Neurol 2007, 504:550–569.
Lee, SM, Tole, S, Grove, E, McMahon, AP. A local Wnt‐3a signal is required for development of the mammalian hippocampus. Development 2000, 127:457–467.
Galceran, J, Miyashita‐Lin, EM, Devaney, E, Rubenstein, JL, Grosschedl, R. Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 2000, 127:469–482.
Kim, AS, Lowenstein, DH, Pleasure, SJ. Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon. Mech Dev 2001, 103:167–172.
Li, G, Berger, O, Han, SM, Paredes, M, Wu, NC, Pleasure, SJ. Hilar mossy cells share developmental influences with dentate granule neurons. Dev Neurosci 2008, 30:255–261.
Zhou, CJ, Zhao, C, Pleasure, SJ. Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities. J Neurosci 2004, 24:121–126.
Machon, O, Backman, M, Machonova, O, Kozmik, Z, Vacik, T, Andersen, L, Krauss, S. A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol 2007, 311:223–237.
Marin‐Padilla, M. Cajal‐Retzius cells and the development of the neocortex. Trends Neurosci 1998, 21:64–71.
Rice, DS, Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 2001, 24:1005–1039.
Soriano, E, Del Rio, JA. The cells of cajal‐retzius: still a mystery one century after. Neuron 2005, 46:389–394.
Alcantara, S, Ruiz, M, D`Arcangelo, G, Ezan, F, de Lecea, L, Curran, T, Sotelo, C, Soriano, E. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 1998, 18:7779–7799.
D`Arcangelo, G, Miao, GG, Chen, SC, Soares, HD, Morgan, JI, Curran, T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995, 374:719–723.
Ogawa, M, Miyata, T, Nakajima, K, Yagyu, K, Seike, M, Ikenaka, K, Yamamoto, H, Mikoshiba, K. The reeler gene‐associated antigen on Cajal‐Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 1995, 14:899–912.
Takiguchi‐Hayashi, K, Sekiguchi, M, Ashigaki, S, Takamatsu, M, Hasegawa, H, Suzuki‐Migishima, R, Yokoyama, M, Nakanishi, S, Tanabe, Y. Generation of reelin‐positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J Neurosci 2004, 24:2286–2295.
Yoshida, M, Assimacopoulos, S, Jones, KR, Grove, EA. Massive loss of Cajal‐Retzius cells does not disrupt neocortical layer order. Development 2006, 133:537–545.
Bielle, F, Griveau, A, Narboux‐Neme, N, Vigneau, S, Sigrist, M, Arber, S, Wassef, M, Pierani, A. Multiple origins of Cajal‐Retzius cells at the borders of the developing pallium. Nat Neurosci 2005, 8:1002–1012.
Tissir, F, Ravni, A, Achouri, Y, Riethmacher, D, Meyer, G, Goffinet, AM. DeltaNp73 regulates neuronal survival in vivo. Proc Natl Acad Sci U S A 2009, 106:16871–16876.
Meyer, G, Perez‐Garcia, CG, Abraham, H, Caput, D. Expression of p73 and Reelin in the developing human cortex. J Neurosci 2002, 22:4973–4986.
Zhao, C, Guan, W, Pleasure, SJ. A transgenic marker mouse line labels Cajal‐Retzius cells from the cortical hem and thalamocortical axons. Brain Res 2006, 1077:48–53.
Borrell, V, Marin, O. Meninges control tangential migration of hem‐derived Cajal‐Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci 2006, 9:1284–1293.
Paredes, MF, Li, G, Berger, O, Baraban, SC, Pleasure, SJ. Stromal‐derived factor‐1 (CXCL12) regulates laminar position of Cajal‐Retzius cells in normal and dysplastic brains. J Neurosci 2006, 26:9404–9412.
Angevine, JB Jr. Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Exp Neurol Suppl 1965, (Suppl 2):1–70.
Altman, J, Bayer, SA. Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J Comp Neurol 1990, 301:325–342.
Nakahira, E, Yuasa, S. Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 2005, 483:329–340.
Noctor, SC, Martinez‐Cerdeno, V, Ivic, L, Kriegstein, AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004, 7:136–144.
Tabata, H, Nakajima, K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 2003, 23:9996–10001.
Nadarajah, B, Brunstrom, JE, Grutzendler, J, Wong, RO, Pearlman, AL. Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 2001, 4:143–150.
LoTurco, JJ, Bai, J. The multipolar stage and disruptions in neuronal migration. Trends Neurosci 2006, 29:407–413.
Kerjan, G, Gleeson, JG. Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly. Trends Genet 2007, 23:623–630.
Franco, SJ, Martinez‐Garay, I, Gil‐Sanz, C, Harkins‐Perry, SR, Muller, U. Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 2011, 69:482–497.
Gupta, A, Sanada, K, Miyamoto, DT, Rovelstad, S, Nadarajah, B, Pearlman, AL, Brunstrom, J, Tsai, LH. Layering defect in p35 deficiency is linked to improper neuronal‐glial interaction in radial migration. Nat Neurosci 2003, 6:1284–1291.
Yang, A, Walker, N, Bronson, R, Kaghad, M, Oosterwegel, M, Bonnin, J, Vagner, C, Bonnet, H, Dikkes, P, Sharpe, A, et al. p73‐deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000, 404:99–103.
Caviness, VS Jr, Sidman, RL. Retrohippocampal, hippocampal and related structures of the forebrain in the reeler mutant mouse. J Comp Neurol 1973, 147:235–254.
Stanfield, BB, Cowan, WM. The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 1979, 185:393–422.
D`Arcangelo, G, Homayouni, R, Keshvara, L, Rice, DS, Sheldon, M, Curran, T. Reelin is a ligand for lipoprotein receptors. Neuron 1999, 24:471–479.
Hiesberger, T, Trommsdorff, M, Howell, BW, Goffinet, A, Mumby, MC, Cooper, JA, Herz, J. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled‐1 and modulates tau phosphorylation. Neuron 1999, 24:481–489.
Arnaud, L, Ballif, BA, Forster, E, Cooper, JA. Fyn tyrosine kinase is a critical regulator of disabled‐1 during brain development. Curr Biol 2003, 13:9–17.
Bock, HH, Herz, J. Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 2003, 13:18–26.
Senturk, A, Pfennig, S, Weiss, A, Burk, K, Acker‐Palmer, A. Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration. Nature 2011, 472:356–360.
Kuo, G, Arnaud, L, Kronstad‐O`Brien, P, Cooper, JA. Absence of Fyn and Src causes a reeler‐like phenotype. J Neurosci 2005, 25:8578–8586.
Trommsdorff, M, Gotthardt, M, Hiesberger, T, Shelton, J, Stockinger, W, Nimpf, J, Hammer, RE, Richardson, JA, Herz, J. Reeler/Disabled‐like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 1999, 97:689–701.
Howell, BW, Hawkes, R, Soriano, P, Cooper, JA. Neuronal position in the developing brain is regulated by mouse disabled‐1. Nature 1997, 389:733–737.
Sheldon, M, Rice, DS, D`Arcangelo, G, Yoneshima, H, Nakajima, K, Mikoshiba, K, Howell, BW, Cooper, JA, Goldowitz, D, Curran, T. Scrambler and yotari disrupt the disabled gene and produce a reeler‐like phenotype in mice. Nature 1997, 389:730–733.
Ware, ML, Fox, JW, Gonzalez, JL, Davis, NM, Lambert de Rouvroit, C, Russo, CJ, Chua, SC Jr, Goffinet, AM, Walsh, CA. Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 1997, 19:239–249.
Ballif, BA, Arnaud, L, Arthur, WT, Guris, D, Imamoto, A, Cooper, JA. Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin‐stimulated neurons. Curr Biol 2004, 14:606–610.
Chen, K, Ochalski, PG, Tran, TS, Sahir, N, Schubert, M, Pramatarova, A, Howell, BW. Interaction between Dab1 and CrkII is promoted by Reelin signaling. J Cell Sci 2004, 117:4527–4536.
Huang, Y, Magdaleno, S, Hopkins, R, Slaughter, C, Curran, T, Keshvara, L. Tyrosine phosphorylated Disabled 1 recruits Crk family adapter proteins. Biochem Biophys Res Commun 2004, 318:204–212.
Park, TJ, Curran, T. Crk and Crk‐like play essential overlapping roles downstream of disabled‐1 in the Reelin pathway. J Neurosci 2008, 28:13551–13562.
Assadi, AH, Zhang, G, Beffert, U, McNeil, RS, Renfro, AL, Niu, S, Quattrocchi, CC, Antalffy, BA, Sheldon, M, Armstrong, DD, et al. Interaction of reelin signaling and Lis1 in brain development. Nat Genet 2003, 35:270–276.
Shu, T, Ayala, R, Nguyen, MD, Xie, Z, Gleeson, JG, Tsai, LH. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 2004, 44:263–277.
Tsai, JW, Bremner, KH, Vallee, RB. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 2007, 10:970–979.
Hirotsune, S, Fleck, MW, Gambello, MJ, Bix, GJ, Chen, A, Clark, GD, Ledbetter, DH, McBain, CJ, Wynshaw‐Boris, A. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 1998, 19:333–339.
Toyo‐oka, K, Shionoya, A, Gambello, MJ, Cardoso, C, Leventer, R, Ward, HL, Ayala, R, Tsai, LH, Dobyns, W, Ledbetter, D, et al. 14‐3‐3epsilon is important for neuronal migration by binding to NUDEL a molecular explanation for Miller‐Dieker syndrome. Nat Genet 2003, 34:274–285.
Frotscher, M. Role for Reelin in stabilizing cortical architecture. Trends Neurosci 2010, 33:407–414.
Ohshima, T, Ward, JM, Huh, CG, Longenecker, G, Veeranna, G, Pant, HC, Brady, RO, Martin, LJ, Kulkarni, AB. Targeted disruption of the cyclin‐dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 1996, 93:11173–11178.
Chae, T, Kwon, YT, Bronson, R, Dikkes, P, Li, E, Tsai, LH. Mice lacking p35 a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 1997, 18:29–42.
Wenzel, HJ, Robbins, CA, Tsai, LH, Schwartzkroin, PA. Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures. J Neurosci 2001, 21:983–998.
Ko, J, Humbert, S, Bronson, RT, Takahashi, S, Kulkarni, AB, Li, E, Tsai, LH. p35 and p39 are essential for cyclin‐dependent kinase 5 function during neurodevelopment. J Neurosci 2001, 21:6758–6771.
Ohshima, T, Hirasawa, M, Tabata, H, Mutoh, T, Adachi, T, Suzuki, H, Saruta, K, Iwasato, T, Itohara, S, Hashimoto, M, et al. Cdk5 is required for multipolar‐to‐bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 2007, 134:2273–2282.
Corbo, JC, Deuel, TA, Long, JM, LaPorte, P, Tsai, E, Wynshaw‐Boris, A, Walsh, CA. Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J Neurosci 2002, 22:7548–7557.
Kerjan, G, Koizumi, H, Han, EB, Dube, CM, Djakovic, SN, Patrick, GN, Baram, TZ, Heinemann, SF, Gleeson, JG. Mice lacking doublecortin and doublecortin‐like kinase 2 display altered hippocampal neuronal maturation and spontaneous seizures. Proc Natl Acad Sci U S A 2009, 106:6766–6771.
Pleasure, SJ, Anderson, S, Hevner, R, Bagri, A, Marin, O, Lowenstein, DH, Rubenstein, JL. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 2000, 28:727–740.
Butt, SJ, Fuccillo, M, Nery, S, Noctor, S, Kriegstein, A, Corbin, JG, Fishell, G. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 2005, 48:591–604.
Miyoshi, G, Hjerling‐Leffler, J, Karayannis, T, Sousa, VH, Butt, SJ, Battiste, J, Johnson, JE, Machold, RP, Fishell, G. Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 2010, 30:1582–1594.
Xu, Q, Cobos, I, De La Cruz, E, Rubenstein, JL, Anderson, SA. Origins of cortical interneuron subtypes. J Neurosci 2004, 24:2612–2622.
Gelman, DM, Martini, FJ, Nobrega‐Pereira, S, Pierani, A, Kessaris, N, Marin, O. The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 2009, 29:9380–9389.
Kanatani, S, Yozu, M, Tabata, H, Nakajima, K. COUP‐TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. J Neurosci 2008, 28:13582–13591.
Li, G, Pleasure, SJ. Migration in the hippocampus. In: Rubenstein, JLR, Rakic, P, eds. Comprehensive Developmental Neuroscience, vol. 2. 1st ed. Academic Press; 331–340.
Marin, O, Yaron, A, Bagri, A, Tessier‐Lavigne, M, Rubenstein, JL. Sorting of striatal and cortical interneurons regulated by semaphorin‐neuropilin interactions. Science 2001, 293:872–875.
Marin, O, Rubenstein, JL. A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2001, 2:780–790.
Li, G, Adesnik, H, Li, J, Long, J, Nicoll, RA, Rubenstein, JL, Pleasure, SJ. Regional distribution of cortical interneurons and development of inhibitory tone are regulated by Cxcl12/Cxcr4 signaling. J Neurosci 2008, 28:1085–1098.
Yozu, M, Tabata, H, Nakajima, K. The caudal migratory stream a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci 2005, 25:7268–7277.
Wichterle, H, Turnbull, DH, Nery, S, Fishell, G, Alvarez‐Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 2001, 128:3759–3771.
Nery, S, Fishell, G, Corbin, JG. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 2002, 5:1279–1287.
Li, G, Pleasure, SJ. Morphogenesis of the dentate gyrus: what we are learning from mouse mutants. Dev Neurosci 2005, 27:93–99.
Altman, J, Bayer, SA. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 1990, 301:365–381.
Li, G, Kataoka, H, Coughlin, SR, Pleasure, SJ. Identification of a transient subpial neurogenic zone in the developing dentate gyrus and its regulation by Cxcl12 and reelin signaling. Development 2009, 136:327–335.
Lu, M, Grove, EA, Miller, RJ. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci U S A 2002, 99:7090–7095.
Bagri, A, Gurney, T, He, X, Zou, YR, Littman, DR, Tessier‐Lavigne, M, Pleasure, SJ. The chemokine SDF1 regulates migration of dentate granule cells. Development 2002, 129:4249–4260.
Drakew, A, Deller, T, Heimrich, B, Gebhardt, C, Del Turco, D, Tielsch, A, Forster, E, Herz, J, Frotscher, M. Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp Neurol 2002, 176:12–24.
Stumm, RK, Zhou, C, Ara, T, Lazarini, F, Dubois‐Dalcq, M, Nagasawa, T, Hollt, V, Schulz, S. CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 2003, 23:5123–5130.
Tran, PB, Banisadr, G, Ren, D, Chenn, A, Miller, RJ. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 2007, 500:1007–1033.
Chumley, MJ, Catchpole, T, Silvany, RE, Kernie, SG, Henkemeyer, M. EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. J Neurosci 2007, 27:13481–13490.
Forster, E, Tielsch, A, Saum, B, Weiss, KH, Johanssen, C, Graus‐Porta, D, Muller, U, Frotscher, M. Reelin, Disabled 1, and β 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci U S A 2002, 99:13178–13183.
Beggs, HE, Schahin‐Reed, D, Zang, K, Goebbels, S, Nave, KA, Gorski, J, Jones, KR, Sretavan, D, Reichardt, LF. FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron 2003, 40:501–514.
Niewmierzycka, A, Mills, J, St‐Arnaud, R, Dedhar, S, Reichardt, LF. Integrin‐linked kinase deletion from mouse cortex results in cortical lamination defects resembling cobblestone lissencephaly. J Neurosci 2005, 25:7022–7031.
Deng, W, Aimone, JB, Gage, FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 2010, 11:339–350.
Valiente, M, Marin, O. Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 2010, 20:68–78.