Albertson, DG, Thomson, JN. The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1976, 275:299–325.
Sulston, JE, Schierenberg, E, White, JG, Thomson, JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64–119.
Avery, L, Shtonda, BB. Food transport in the C. elegans pharynx. J Exp Biol 2003, 206:2441–2457.
Raizen, DM, Avery, L. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron 1994, 12:483–495.
Gaudet, J, Mango, SE. Regulation of organogenesis by the Caenorhabditis elegans FoxA Protein PHA‐4. Science 2002, 295:821–825.
Avery, L, You, YJ. C. elegans feeding. In: WormBook, ed. The C. elegans Research Community, WormBook. doi/10.1895/wormbook.1.150.1. Available at: http://www.wormbook.org. (Accessed May 21, 2012).
Mango, SE. The molecular basis of organ formation: insights from the C. elegans foregut. Annu Rev Cell Dev Biol 2009, 25:597–628.
Song, B‐M, Avery, L. The pharynx of the nematode C. elegans: a model system for the study of motor control. Worm 2013, 2:e21833.
Kormish, JD, Gaudet, J, McGhee, JD. Development of the C. elegans digestive tract. Curr Opin Genet Dev 2010, 20:346–354.
Altun, ZF, Herndon, LA, Crocker, C, Lints, R, Hall, DH. WormAtlas, 2014. Available at: http://www.wormatlas.org. (Accessed March 1, 2014).
Pilon, M. Fishing lines, time‐delayed guideposts, and other tricks used by developing pharyngeal neurons in Caenorhabditis elegans. Dev Dyn 2008, 237:2073–2080.
Heustis, RJ, Ng, HK, Brand, KJ, Rogers, MC, Le, LT, Specht, CA, Fuhrman, JA. Pharyngeal polysaccharide deacetylases affect development in the nematode C. elegans and deacetylate chitin in vitro. PLoS One 2012, 7:e40426.
Graham, PL, Johnson, JJ, Wang, S, Sibley, MH, Gupta, MC, Kramer, JM. Type IV collagen is detectable in most, but not all, basement membranes of Caenorhabditis elegans and assembles on tissues that do not express it. J Cell Biol 1997, 137:1171–1183.
Smit, RB, Schnabel, R, Gaudet, J. The HLH‐6 transcription factor regulates C. elegans pharyngeal gland development and function. PLoS Genet 2008, 4:e1000222.
Avery, L, Horvitzt, HR. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 1989, 3:473–485.
Avery, L. Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. J Exp Biol 1993a, 175:283–297.
Wright, KA, Thomson, JN. The buccal capsule of C. elegans (Nematoda: Rhabditoidea): an ultrastructural study. Can J Zool 1981, 59:1952–1961.
Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 1993b, 133:897–917.
Avery, L, Raizen, D, Lockery, S. Electrophysiological methods. Methods Cell Biol 1995, 48:251–269.
Mörck, C, Axäng, C, Pilon, M. A genetic analysis of axon guidance in the C. elegans pharynx. Dev Biol 2003, 260:158–175.
Rasmussen, JP, Reddy, SS, Priess, JR. Laminin is required to orient epithelial polarity in the C. elegans pharynx. Development 2012, 139:2050–2060.
Podbilewicz, B. Cell fusion. WormBook 2006:1–32.
Portereiko, MF, Mango, SE. Early morphogenesis of the Caenorhabditis elegans pharynx. Dev Biol 2001, 233:482–494.
Rauthan, M, Morck, C, Pilon, M. The C. elegans M3 neuron guides the growth cone of its sister cell M2 via the Kruppel‐like zinc finger protein MNM‐2. Dev Biol 2007, 311:185–199.
Goldstein, B, Hird, SN. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 1996, 122:1467–1474.
Cheeks, RJ, Canman, JC, Gabriel, WN, Meyer, N, Strome, S, Goldstein, B. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol 2004, 14:851–862.
Duguay, D, Foty, RA, Steinberg, MS. Cadherin‐mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol 2003, 253:309–323.
Leung, B, Hermann, GJ, Priess, JR. Organogenesis of the Caenorhabditis elegans intestine. Dev Biol 1999, 216:114–134.
Shaw, WR, Armisen, J, Lehrbach, NJ, Miska, EA. The conserved miR‐51 microRNA family is redundantly required for embryonic development and pharynx attachment in Caenorhabditis elegans. Genetics 2010, 185:897–905.
Bellocchio, EE, Reimer, RJ, Fremeau, RT Jr, Edwards, RH. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 2000, 289:957–960.
Lee, RY, Sawin, ER, Chalfie, M, Horvitz, HR, Avery, L. EAT‐4, a homolog of a mammalian sodium‐dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 1999, 19:159–167.
Starich, TA, Lee, RY, Panzarella, C, Avery, L, Shaw, JE. eat‐5 and unc‐7 represent a multigene family in Caenorhabditis elegans involved in cell‐cell coupling. J Cell Biol 1996, 134:537–548.
Jafari, G, Burghoorn, J, Kawano, T, Mathew, M, Mörck, C, Axäng, C, Ailion, M, Thomas, JH, Culotti, JG, Swoboda, P, et al. Genetics of extracellular matrix remodeling during organ growth using the Caenorhabditis elegans pharynx model. Genetics 2010, 186:969–982.
Mörck, C, Vivekanand, V, Jafari, G, Pilon, M. C. elegans ten‐1 is synthetic lethal with mutations in cytoskeleton regulators, and enhances many axon guidance defective mutants. BMC Dev Biol 2010, 10:55.
Schnabel, H, Schnabel, R. An organ‐specific differentiation Gene, pha‐1, from Caenorhabditis elegans. Science 1990, 250:686–688.
Benian, GM, Tinley, TL, Tang, X, Borodovsky, M. The Caenorhabditis elegans gene unc‐89, required fpr muscle M‐line assembly, encodes a giant modular protein composed of Ig and signal transduction domains. J Cell Biol 1996, 132:835–848.
Kalb, JM, Lau, KK, Goszczynski, B, Fukushige, T, Moons, D, Okkema, PG, McGhee, JD. pha‐4 is Ce‐fkh‐1, a fork head/HNF‐3α,β,γ homolog that functions in organogenesis of the C. elegans pharynx. Development 1998, 125:2171–2180.
Mango, SE, Lambie, EJ, Kimble, J. The pha‐4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development 1994, 120:3019–3031.
Morck, C, Rauthan, M, Wagberg, F, Pilon, M. pha‐2 encodes the C. elegans ortholog of the homeodomain protein HEX and is required for the formation of the pharyngeal isthmus. Dev Biol 2004, 272:403–418.
Ao, W, Gaudet, J, Kent, WJ, Muttumu, S, Mango, SE. Environmentally induced foregut remodeling by PHA‐4/FoxA and DAF‐12/NHR. Science 2004, 305:1743–1746.
Gaudet, J, Muttumu, S, Horner, M, Mango, SE. Whole‐genome analysis of temporal gene expression during foregut development. PLoS Biol 2004, 2:e352.
Raharjo, WH, Logan, BC, Wen, S, Kalb, JM, Gaudet, J. In vitro and in vivo characterization of Caenorhabditis elegans PHA‐4/FoxA response elements. Dev Dyn 2010, 239:2219–2232.
Fakhouri, THI, Stevenson, J, Chisholm, AD, Mango, SE. Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA‐4/FoxA. PLoS Genet 2010, 6:e1001060.
Labouesse, M, Mango, SE. Patterning the C. elegans embryo: moving beyond the cell lineage. Trends Genet 1999, 15:307–313.
Christensen, S, Kodoyianni, V, Bosenberg, M, Friedman, L, Kimble, J. lag‐1, a gene required for lin‐12 and glp‐1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 1996, 122:1373–1383.
Good, K, Ciosk, R, Nance, J, Neves, A, Hill, RJ, Priess, JR. The T‐box transcription factors TBX‐37 and TBX‐38 link GLP‐1/Notch signaling to mesoderm induction in C. elegans embryos. Development 2004, 131:1967–1978.
Smith, PA, Mango, SE. Role of T‐box gene tbx‐2 for anterior foregut muscle development in C. elegans. Dev Biol 2014, 196:211–223.
Neves, A, Priess, JR. The REF‐1 family of bHLH transcription factors pattern C. elegans embryos through Notch‐dependent and Notch‐independent pathways. Dev Cell 2005, 8:867–879.
Moskowitz, IP, Gendreau, SB, Rothman, JH. Combinatorial specification of blastomere identity by glp‐1‐dependent cellular interactions in the nematode Caenorhabditis elegans. Development 1994, 120:3325–3338.
Moskowitz, IP, Rothman, JH. lin‐12 and glp‐1 are required zygotically for early embryonic cellular interactions and are regulated by maternal GLP‐1 signaling in Caenorhabditis elegans. Development 1996, 122:4105–4117.
Broitman‐Maduro, G, Lin, KT‐H, Hung, WWK, Maduro, MF. Specification of the C. elegans MS blastomere by the T‐box factor TBX‐35. Development 2006, 133:3097–3106.
Marshall, SD, McGhee, JD. Coordination of ges‐1 expression between the Caenorhabditis pharynx and intestine. Dev Biol 2001, 239:350–363.
Zhong, M, Niu, W, Lu, ZJ, Sarov, M, Murray, JI, Janette, J, Raha, D, Sheaffer, KL, Lam, HYK, Preston, E, et al. Genome‐wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA‐4/FOXA in development and environmental response. PLoS Genet 2010, 6:e1000848.
Fay, DS, Qiu, X, Large, E, Smith, CP, Mango, S, Johanson, BL. The coordinate regulation of pharyngeal development in C. elegans by lin‐35/Rb, pha‐1, and ubc‐18. Dev Biol 2004, 271:11–25.
Granato, M, Schnabel, H, Schnabel, R. Genesis of an organ: molecular analysis of the pha‐1 gene. Development 1994, 120:3005–3017.
Mani, K, Fay, DS. A mechanistic basis for the coordinated regulation of pharyngeal morphogenesis in Caenorhabditis elegans by LIN‐35/Rb and UBC‐18‐ARI‐1. PLoS Genet 2009, 5:e1000510.
Polley, SRG, Kuzmanov, A, Kuang, J, Karpel, J, Lazetic, V, Karina, EI, Veo, BL, Fay, DS. Implicating SCF complexes in organogenesis in Caenorhabditis elegans. Genetics 2014, 196:211–223.
Fay, DS, Large, E, Han, M, Darland, M. lin‐35/Rb and ubc‐18, an E2 ubiquitin‐conjugating enzyme, function redundantly to control pharyngeal morphogenesis in C. elegans. Development 2003, 130:3319–3330.
Morck, C, Axang, C, Goksor, M, Pilon, M. Misexpression of acetylcholinesterases in the C. elegans pha‐2 mutant accompanies ultrastructural defects in pharyngeal muscle cells. Dev Biol 2006, 297:446–460.
Okkema, PG, Fire, A. The Caenorhabditis elegans NK‐2 class homeoprotein CEH‐22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development 1994, 120:2175–2186.
Haun, C, Alexander, J, Stainier, DY, Okkema, PG. Rescue of Caenorhabditis elegans pharyngeal development by a vertebrate heart specification gene. Proc Natl Acad Sci USA 1998, 95:5072–5075.
Okkema, PG, Ha, E, Haun, C, Chen, W, Fire, A. The Caenorhabditis elegans NK‐2 homeobox gene ceh‐22 activates pharyngeal muscle gene expression in combination with pha‐1 and is required for normal pharyngeal development. Development 1997, 124:3965–3973.
Lam, N, Chesney, MA, Kimble, J. Wnt signaling and CEH‐22/tinman/Nkx2.5 specify a stem cell niche in C. elegans. Curr Biol 2006, 16:287–295.
Chiang, JT, Steciuk, M, Shtonda, B, Avery, L. Evolution of pharyngeal behaviors and neuronal functions in free‐living soil nematodes. J Exp Biol 2006, 209:1859–1873.
Chilton, JK. Molecular mechanisms of axon guidance. Dev Biol 2006, 292:13–24.
Dickson, BJ. Molecular mechanisms of axon guidance. Science 2002, 298:1959–1964.
Tessier‐Lavigne, M, Goodman, CS. The molecular biology of axon guidance. Science 1996, 274:1123–1133.
Ogura, K, Wicky, C, Magnenat, L, Tobler, H, Mori, I, Muller, F, Ohshima, Y. Caenorhabditis elegans unc‐51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev 1994, 8:2389–2400.
Okazaki, N, Yan, J, Yuasa, S, Ueno, T, Kominami, E, Masuho, Y, Koga, H, Muramatsu, M. Interaction of the Unc‐51‐like kinase and microtubule‐associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res 2000, 85:1–12.
Steven, R, Kubiseski, TJ, Zheng, H, Kulkarni, S, Mancillas, J, Ruiz Morales, A, Hogue, CW, Pawson, T, Culotti, J. UNC‐73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 1998, 92:785–795.
Steven, R, Zhang, L, Culotti, J, Pawson, T. The UNC‐73/Trio RhoGEF‐2 domain is required in separate isoforms for the regulation of pharynx pumping and normal neurotransmission in C. elegans. Genes Dev 2005, 19:2016–2029.
Hedgecock, EM, Culotti, JG, Hall, DH. The unc‐5, unc‐6, and unc‐40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 1990, 4:61–85.
Ishii, N, Wadsworth, WG, Stern, BD, Culotti, JG, Hedgecock, EM. UNC‐6, a laminin‐related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 1992, 9:873–881.
Levy‐Strumpf, N, Culotti, JG. VAB‐8, UNC‐73 and MIG‐2 regulate axon polarity and cell migration functions of UNC‐40 in C. elegans. Nat Neurosci 2007, 10:161–168.
Quinn, CC, Pfeil, DS, Chen, E, Stovall, EL, Harden, MV, Gavin, MK, Forrester, WC, Ryder, EF, Soto, MC, Wadsworth, WG. UNC‐6/netrin and SLT‐1/slit guidance cues orient axon outgrowth mediated by MIG‐10/RIAM/lamellipodin. Curr Biol 2006, 16:845–853.
Watari‐Goshima, N, Ogura, K, Wolf, FW, Goshima, Y, Garriga, G. C. elegans VAB‐8 and UNC‐73 regulate the SAX‐3 receptor to direct cell and growth‐cone migrations. Nat Neurosci 2007, 10:169–176.
Hao, JC, Yu, TW, Fujisawa, K, Culotti, JG, Gengyo‐Ando, K, Mitani, S, Moulder, G, Barstead, R, Tessier‐Lavigne, M, Bargmann, CI. C. elegans slit acts in midline, dorsal‐ventral, and anterior‐posterior guidance via the SAX‐3/Robo receptor. Neuron 2001, 32:25–38.
Zallen, JA, Yi, BA, Bargmann, CI. The conserved immunoglobulin superfamily member SAX‐3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 1998, 92:217–227.
Knobel, KM, Davis, WS, Jorgensen, EM, Bastiani, MJ. UNC‐119 suppresses axon branching in C. elegans. Development 2001, 128:4079–4092.
Maduro, M, Pilgrim, D. Identification and cloning of unc‐119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 1995, 141:977–988.
Much, JW, Slade, DJ, Klampert, K, Garriga, G, Wightman, B. The fax‐1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression. Development 2000, 127:703–712.
Luo, S, Nonet, ML. Regulators of kinesin involved in polarized trafficking and axon outgrowth. J Biol 2006, 5:8.
Su, CW, Tharin, S, Jin, Y, Wightman, B, Spector, M, Meili, D, Tsung, N, Rhiner, C, Bourikas, D, Stoeckli, E, et al. The short coiled‐coil domain‐containing protein UNC‐69 cooperates with UNC‐76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans. J Biol 2006, 5:9.
Gitai, Z, Yu, TW, Lundquist, EA, Tessier‐Lavigne, M, Bargmann, CI. The netrin receptor UNC‐40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC‐115/AbLIM. Neuron 2003, 37:53–65.
Lundquist, EA, Herman, RK, Shaw, JE, Bargmann, CI. UNC‐115, a conserved protein with predicted LIM and actin‐binding domains, mediates axon guidance in C. elegans. Neuron 1998, 21:385–392.
Axäng, C, Rauthan, M, Hall, DH, Pilon, M. Developmental genetics of the C. elegans pharyngeal neurons NSML and NSMR. BMC Dev Biol 2008, 8:38.
George, SE, Simokat, K, Hardin, J, Chisholm, AD. The VAB‐1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 1998, 92:633–643.
Ghenea, S, Boudreau, JR, Lague, NP, Chin‐Sang, ID. The VAB‐1 Eph receptor tyrosine kinase and SAX‐3/Robo neuronal receptors function together during C. elegans embryonic morphogenesis. Development 2005, 132:3679–3690.
Refai, O, Rohs, P, Mains, PE, Gaudet, J. Extension of the Caenorhabditis elegans Pharyngeal M1 neuron axon is regulated by multiple mechanisms. G3 (Bethesda) 2013, 3:2015–2029.
Bray, D. Axonal growth in response to experimentally applied mechanical tension. Dev Biol 1984, 102:379–389.
Heiman, MG, Shaham, S. DEX‐1 and DYF‐7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell 2009, 137:344–355.
Komuro, H, Yacubova, E. Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 2003, 60:1084–1098.
Schmucker, D, Jackle, H, Gaul, U. Genetic analysis of the larval optic nerve projection in Drosophila. Development 1997, 124:937–948.
Bentley, D, Keshishian, H. Pathfinding by peripheral pioneer neurons in grasshoppers. Science 1982, 218:1082–1088.
Palka, J, Whitlock, KE, Murray, MA. Guidepost cells. Curr Opin Neurobiol 1992, 2:48–54.
Keleman, K, Ribeiro, C, Dickson, BJ. Comm function in commissural axon guidance: cell‐autonomous sorting of Robo in vivo. Nat Neurosci 2005, 8:156–163.
Kidd, T, Bland, KS, Goodman, CS. Slit is the midline repellent for the robo receptor in Drosophila. Cell 1999, 96:785–794.
Shen, K, Fetter, RD, Bargmann, CI. Synaptic specificity is generated by the synaptic guidepost protein SYG‐2 and its receptor, SYG‐1. Cell 2004, 116:869–881.
Horvitz, HR, Chalfie, M, Trent, C, Sulston, JE, Evans, PD. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 1982, 216:1012–1014.
Sze, JY, Victor, M, Loer, C, Shi, Y, Ruvkun, G. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin‐synthesis mutant. Nature 2000, 403:560–564.
Nathoo, AN, Moeller, RA, Westlund, BA, Hart, AC. Identification of neuropeptide‐like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 2001, 98:14000–14005.
Sawin, ER, Ranganathan, R, Horvitz, HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000, 26:619–631.
Kamiguchi, H, Yoshihara, F. The role of endocytic l1 trafficking in polarized adhesion and migration of nerve growth cones. J Neurosci 2001, 21:9194–9203.
Ye, B, Zhang, Y, Song, W, Younger, SH, Jan, LY, Jan, YN. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 2007, 130:717–729.
Colavita, A, Culotti, JG. Suppressors of ectopic UNC‐5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Dev Biol 1998, 194:72–85.
Forrester, WC, Garriga, G. Genes necessary for C. elegans cell and growth cone migrations. Development 1997, 124:1831–1843.
Zallen, JA, Kirch, SA, Bargmann, CI. Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development 1999, 126:3679–3692.
Barriere, A, Felix, MA. High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr Biol 2005, 15:1176–1184.
Hall, DH, Hedgecock, EM. Kinesin‐related gene unc‐104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 1991, 65:837–847.
Raharjo, WH, Ghai, V, Dineen, A, Bastiani, M, Gaudet, J. Cell architecture: surrounding muscle cells shape gland cell morphology in the Caenorhabditis elegans pharynx. Genetics 2011, 189:885–897.
Ghai, V, Gaudet, J. The CSL transcription factor LAG‐1 directly represses hlh‐6 expression in C. elegans. Dev Biol 2008, 322:334–344.
Ghai, V, Smit, RB, Gaudet, J. Transcriptional regulation of HLH‐6‐independent and subtype‐specific genes expressed in the Caenorhabditis elegans pharyngeal glands. Mech Dev 2012, 129:284–297.
Ferrier, A, Charron, A, Sadozai, Y, Switaj, L, Szutenbach, A, Smith, PA. Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PLoS One 2011, 6:e26594.
Norman, KR, Moerman, DG. α spectrin is essential for morphogenesis and body wall muscle formation in Caenorhabditis elegans. J Cell Biol 2002, 157:665–677.
McKeown, C, Praitis, V, Austin, J. sma‐1 encodes a βH‐spectrin homolog required for Caenorhabditis elegans morphogenesis. Development 1998, 125:2087–2098.
Straud, S, Lee, I, Song, B, Avery, L, You, Y‐j. The jaw of the worm: GTPase‐activating protein EAT‐17 regulates grinder formation in Caenorhabditis elegans. Genetics 2013, 195:115–125.
Avery, L, Horvitz, HR. A cell that dies during wild‐type C. elegans development can function as a neuron in a ced‐3 mutant. Cell 1987, 51:1071–1078.
Riddle, MR, Weintraub, A, Nguyen, KCQ, Hall, DH, Rothman, JH. Transdifferentiation and remodeling of post‐embryonic C. elegans cells by a single transcription factor. Development 2013, 140:4844–4849.
Axäng, C, Rauthan, M, Hall, DH, Pilon, M. The twisted pharynx phenotype in C. elegans. BMC Dev Biol 2007, 7:61.
Johnston, J, Iser, WB, Chow, DK, Goldberg, IG, Wolkow, CA. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues. PLoS One 2008, 3:e2821.
Shamir, L, Wolkow, CA, Goldberg, IG. Quantitative measurement of aging using image texture entropy. Bioinformatics 2009, 25:3060–3063.
Shen, EZ, Song, CQ, Lin, Y, Zhang, WH, Su, PF, Liu, WY, Zhang, P, Xu, J, Lin, N, Zhan, C, et al. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature 2014, 508:128–132.
Budovskaya, YV, Wu, K, Southworth, LK, Jiang, M, Tedesco, P, Johnson, TE, Kim, SK. An elt‐3/elt‐5/elt‐6 GATA transcription circuit guides aging in C. elegans. Cell 2008, 134:291–303.
Hardin, J. To thine own self be true: self‐fusion in single‐celled tubes. Dev Cell 2008, 14:465–466.
Laughlin, ST, Bertozzi, CR. In vivo imaging of Caenorhabditis elegans glycans. ACS Chem Biol 2009, 4:1068–1072.
Keskiaho, K, Kukkola, L, Page, AP, Winter, AD, Vuoristo, J, Sormunen, R, Nissi, R, Riihimaa, P, Myllyharju, J. Characterization of a novel Caenorhabditis elegans prolyl 4‐hydroxylase with a unique substrate specificity and restricted expression in the pharynx and excretory duct. J Biol Chem 2008, 283:10679–10689.
Wadsworth, WG, Bhatt, H, Hedgecock, EM. Neuroglia and pioneer neurons express UNC‐6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 1996, 16:35–46.
Colavita, A, Krishna, S, Zheng, H, Padgett, RW, Culotti, JG. Pioneer axon guidance by UNC‐129, a C. elegans TGF‐β. Science 1998, 281:706–709.