Morrisey, EE, Hogan, BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 2010, 18:8–23.
Herriges, M, Morrisey, EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development 2014, 141:502–513.
Cardoso, WV, Lu, J. Regulation of early lung morphogenesis: questions, facts and controversies. Development 2006, 133:1611–1624.
Maeda, Y, Dave, V, Whitsett, JA. Transcriptional control of lung morphogenesis. Physiol Rev 2007, 87:219–244.
Que, J, Choi, M, Ziel, JW, Klingensmith, J, Hogan, BL. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation 2006, 74:422–437.
Gontan, C, de Munck, A, Vermeij, M, Grosveld, F, Tibboel, D, Rottier, R. Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol 2008, 317:296–309.
Daniely, Y, Liao, G, Dixon, D, Linnoila, RI, Lori, A, Randell, SH, Oren, M, Jetten, AM. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol 2004, 287:C171–181.
Goss, AM, Tian, Y, Tsukiyama, T, Cohen, ED, Zhou, D, Lu, MM, Yamaguchi, TP, Morrisey, EE. Wnt2/2b and β‐catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 2009, 17:290–298.
Weaver, M, Yingling, JM, Dunn, NR, Bellusci, S, Hogan, BL. Bmp signaling regulates proximal‐distal differentiation of endoderm in mouse lung development. Development 1999, 126:4005–4015.
Li, Y, Gordon, J, Manley, NR, Litingtung, Y, Chiang, C. Bmp4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol 2008, 322:145–155.
Harris‐Johnson, KS, Domyan, ET, Vezina, CM, Sun, X. β‐Catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci USA 2009, 106:16287–16292.
Domyan, ET, Ferretti, E, Throckmorton, K, Mishina, Y, Nicolis, SK, Sun, X. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 2011, 138:971–981.
Pearson, JC, Lemons, D, McGinnis, W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2005, 6:893–904.
Serls, AE, Doherty, S, Parvatiyar, P, Wells, JM, Deutsch, GH. Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 2005, 132:35–47.
Peng, T, Tian, Y, Boogerd, CJ, Lu, MM, Kadzik, RS, Stewart, KM, Evans, SM, Morrisey, EE. Coordination of heart and lung co‐development by a multipotent cardiopulmonary progenitor. Nature 2013, 500:589–592.
Minoo, P, Su, G, Drum, H, Bringas, P, Kimura, S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(‐/‐) mouse embryos. Dev Biol 1999, 209:60–71.
Que, J, Okubo, T, Goldenring, JR, Nam, KT, Kurotani, R, Morrisey, EE, Taranova, O, Pevny, LH, Hogan, BL. Multiple dose‐dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 2007, 134:2521–2531.
Cecconi, F, Roth, KA, Dolgov, O, Munarriz, E, Anokhin, K, Gruss, P, Salminen, M. Apaf1‐dependent programmed cell death is required for inner ear morphogenesis and growth. Development 2004, 131:2125–2135.
Fekete, DM, Homburger, SA, Waring, MT, Riedl, AE, Garcia, LF. Involvement of programmed cell death in morphogenesis of the vertebrate inner ear. Development 1997, 124:2451–2461.
Ioannides, AS, Massa, V, Ferraro, E, Cecconi, F, Spitz, L, Henderson, DJ, Copp, AJ. Foregut separation and tracheo‐oesophageal malformations: the role of tracheal outgrowth, dorso‐ventral patterning and programmed cell death. Dev Biol 2010, 337:351–362.
Clark, DC. Esophageal atresia and tracheoesophageal fistula. Am Fam Physician 1999, 59:910–916 919–920.
De Moerlooze, L, Spencer‐Dene, B, Revest, JM, Hajihosseini, M, Rosewell, I, Dickson, C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal‐epithelial signalling during mouse organogenesis. Development 2000, 127:483–492.
Sala, FG, Del Moral, PM, Tiozzo, C, Alam, DA, Warburton, D, Grikscheit, T, Veltmaat, JM, Bellusci, S. FGF10 controls the patterning of the tracheal cartilage rings via Shh. Development 2011, 138:273–282.
Sekine, K, Ohuchi, H, Fujiwara, M, Yamasaki, M, Yoshizawa, T, Sato, T, Yagishita, N, Matsui, D, Koga, Y, Itoh, N, et al. Fgf10 is essential for limb and lung formation. Nat Genet 1999, 21:138–141.
Sharpe, J, Ahlgren, U, Perry, P, Hill, B, Ross, A, Hecksher‐Sorensen, J, Baldock, R, Davidson, D. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 2002, 296:541–545.
Bellusci, S, Grindley, J, Emoto, H, Itoh, N, Hogan, BL. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 1997, 124:4867–4878.
Warburton, D, Schwarz, M, Tefft, D, Flores‐Delgado, G, Anderson, KD, Cardoso, WV. The molecular basis of lung morphogenesis. Mech Dev 2000, 92:55–81.
Motoyama, J, Liu, J, Mo, R, Ding, Q, Post, M, Hui, CC. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 1998, 20:54–57.
Metzger, RJ, Klein, OD, Martin, GR, Krasnow, MA. The branching programme of mouse lung development. Nature 2008, 453:745–750.
Menshykau, D, Kraemer, C, Iber, D. Branch mode selection during early lung development. PLoS Comput Biol 2012, 8:e1002377.
Clement, R, Blanc, P, Mauroy, B, Sapin, V, Douady, S. Shape self‐regulation in early lung morphogenesis. PLoS One 2012, 7:e36925.
Metzger, RJ, Krasnow, MA. Genetic control of branching morphogenesis. Science 1999, 284:1635–1639.
Schnatwinkel, C, Niswander, L. Multiparametric image analysis of lung branching morphogenesis. Dev Dyn 2013, 242:622–637.
Kim, HY, Varner, VD, Nelson, CM. Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development 2013, 140:3146–3155.
Nogawa, H, Morita, K, Cardoso, WV. Bud formation precedes the appearance of differential cell proliferation during branching morphogenesis of mouse lung epithelium in vitro. Dev Dyn 1998, 213:228–235.
Liu, Y, Hogan, BL. Differential gene expression in the distal tip endoderm of the embryonic mouse lung. Gene Expr Patterns 2002, 2:229–233.
Lu, J, Qian, J, Izvolsky, KI, Cardoso, WV. Global analysis of genes differentially expressed in branching and non‐branching regions of the mouse embryonic lung. Dev Biol 2004, 273:418–435.
Herriges, JC, Yi, L, Hines, EA, Harvey, JF, Xu, G, Gray, PA, Ma, Q, Sun, X. Genome‐scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012, 241:1432–1453.
Diez‐Roux, G, Banfi, S, Sultan, M, Geffers, L, Anand, S, Rozado, D, Magen, A, Canidio, E, Pagani, M, Peluso, I, et al. A high‐resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 2011, 9:e1000582.
Shannon, JM. Induction of alveolar type II cell differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev Biol 1994, 166:600–614.
Volckaert, T, Campbell, A, Dill, E, Li, C, Minoo, P, De Langhe, S. Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 2013, 140:3731–3742.
Rajagopal, J, Carroll, TJ, Guseh, JS, Bores, SA, Blank, LJ, Anderson, WJ, Yu, J, Zhou, Q, McMahon, AP, Melton, DA. Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development 2008, 135:1625–1634.
Chuang, PT, Kawcak, T, McMahon, AP. Feedback control of mammalian Hedgehog signaling by the Hedgehog‐binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev 2003, 17:342–347.
Harris, KS, Zhang, Z, McManus, MT, Harfe, BD, Sun, X. Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA 2006, 103:2208–2213.
Chang, DR, Martinez Alanis, D, Miller, RK, Ji, H, Akiyama, H, McCrea, PD, Chen, J. Lung epithelial branching program antagonizes alveolar differentiation. Proc Natl Acad Sci USA 2013, 110:18042–18051.
Wang, Y, Tian, Y, Morley, MP, Lu, MM, Demayo, FJ, Olson, EN, Morrisey, EE. Development and regeneration of Sox2+ endoderm progenitors are regulated by a HDAC1/2‐Bmp4/Rb1 regulatory pathway. Dev Cell 2013, 24:345–358.
White, AC, Xu, J, Yin, Y, Smith, C, Schmid, G, Ornitz, DM. FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Development 2006, 133:1507–1517.
Clark, JC, Tichelaar, JW, Wert, SE, Itoh, N, Perl, AK, Stahlman, MT, Whitsett, JA. FGF‐10 disrupts lung morphogenesis and causes pulmonary adenomas in vivo. Am J Physiol Lung Cell Mol Physiol 2001, 280:L705–715.
Tang, N, Marshall, WF, McMahon, M, Metzger, RJ, Martin, GR. Control of mitotic spindle angle by the RAS‐regulated ERK1/2 pathway determines lung tube shape. Science 2011, 333:342–345.
Chen, J, Krasnow, MA. Integrin β 1 suppresses multilayering of a simple epithelium. PLoS One 2012, 7:e52886.
Wan, H, Liu, C, Wert, SE, Xu, W, Liao, Y, Zheng, Y, Whitsett, JA. CDC42 is required for structural patterning of the lung during development. Dev Biol 2013, 374:46–57.
Yates, LL, Schnatwinkel, C, Hazelwood, L, Chessum, L, Paudyal, A, Hilton, H, Romero, MR, Wilde, J, Bogani, D, Sanderson, J, et al. Scribble is required for normal epithelial cell‐cell contacts and lumen morphogenesis in the mammalian lung. Dev Biol 2013, 373:267–280.
Yates, LL, Schnatwinkel, C, Murdoch, JN, Bogani, D, Formstone, CJ, Townsend, S, Greenfield, A, Niswander, LA, Dean, CH. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Hum Mol Genet 2010, 19:2251–2267.
Hoffmann, C, Mazari, E, Lallet, S, Le Borgne, R, Marchi, V, Gosse, C, Gueroui, Z. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles. Nat Nanotechnol 2013, 8:199–205.
Perl, AK, Wert, SE, Nagy, A, Lobe, CG, Whitsett, JA. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci USA 2002, 99:10482–10487.
Rawlins, EL, Clark, CP, Xue, Y, Hogan, BL. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 2009, 136:3741–3745.
Weibel, ER, Gomez, DM. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 1962, 137:577–585.
Murray, CD. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 1926, 12:207–214.
Lubarsky, B, Krasnow, MA. Tube morphogenesis: making and shaping biological tubes. Cell 2003, 112:19–28.
Evans, CM, Williams, OW, Tuvim, MJ, Nigam, R, Mixides, GP, Blackburn, MR, DeMayo, FJ, Burns, AR, Smith, C, Reynolds, SD, et al. Mucin is produced by clara cells in the proximal airways of antigen‐challenged mice. Am J Respir Cell Mol Biol 2004, 31:382–394.
Roy, MG, Livraghi‐Butrico, A, Fletcher, AA, McElwee, MM, Evans, SE, Boerner, RM, Alexander, SN, Bellinghausen, LK, Song, AS, Petrova, YM, et al. Muc5b is required for airway defence. Nature 2014, 505:412–416.
Song, H, Yao, E, Lin, C, Gacayan, R, Chen, MH, Chuang, PT. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci USA 2012, 109:17531–17536.
Park, KS, Liang, MC, Raiser, DM, Zamponi, R, Roach, RR, Curtis, SJ, Walton, Z, Schaffer, BE, Roake, CM, Zmoos, AF, et al. Characterization of the cell of origin for small cell lung cancer. Cell Cycle 2011, 10:2806–2815.
Rawlins, EL, Ostrowski, LE, Randell, SH, Hogan, BL. Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci USA 2007, 104:410–417.
Rawlins, EL, Okubo, T, Xue, Y, Brass, DM, Auten, RL, Hasegawa, H, Wang, F, Hogan, BL. The role of Scgb1a1+ Clara cells in the long‐term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 2009, 4:525–534.
Rock, JR, Onaitis, MW, Rawlins, EL, Lu, Y, Clark, CP, Xue, Y, Randell, SH, Hogan, BL. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 2009, 106:12771–12775.
Tata, PR, Mou, H, Pardo‐Saganta, A, Zhao, R, Prabhu, M, Law, BM, Vinarsky, V, Cho, JL, Breton, S, Sahay, A, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 2013, 503:218–223.
Giangreco, A, Arwert, EN, Rosewell, IR, Snyder, J, Watt, FM, Stripp, BR. Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci USA 2009, 106:9286–9291.
Que, J, Luo, X, Schwartz, RJ, Hogan, BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development 2009, 136:1899–1907.
Tompkins, DH, Besnard, V, Lange, AW, Wert, SE, Keiser, AR, Smith, AN, Lang, R, Whitsett, JA. Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLoS One 2009, 4:e8248.
Brody, SL, Yan, XH, Wuerffel, MK, Song, SK, Shapiro, SD. Ciliogenesis and left‐right axis defects in forkhead factor HFH‐4‐ mice. Am J Respir Cell Mol Biol 2000, 23:45–51.
Chen, J, Knowles, HJ, Hebert, JL, Hackett, BP. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left‐right asymmetry. J Clin Invest 1998, 102:1077–1082.
Borges, M, Linnoila, RI, van de Velde, HJ, Chen, H, Nelkin, BD, Mabry, M, Baylin, SB, Ball, DW. An achaete‐scute homologue essential for neuroendocrine differentiation in the lung. Nature 1997, 386:852–855.
Ito, T, Udaka, N, Yazawa, T, Okudela, K, Hayashi, H, Sudo, T, Guillemot, F, Kageyama, R, Kitamura, H. Basic helix‐loop‐helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 2000, 127:3913–3921.
Tan, FE, Vladar, EK, Ma, L, Fuentealba, LC, Hoh, R, Espinoza, FH, Axelrod, JD, Alvarez‐Buylla, A, Stearns, T, Kintner, C, et al. Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development 2013, 140:4277–4286.
Tsao, PN, Vasconcelos, M, Izvolsky, KI, Qian, J, Lu, J, Cardoso, WV. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 2009, 136:2297–2307.
Morimoto, M, Liu, Z, Cheng, HT, Winters, N, Bader, D, Kopan, R. Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell Sci 2010, 123:213–224.
Morimoto, M, Nishinakamura, R, Saga, Y, Kopan, R. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 2012, 139:4365–4373.
Guha, A, Vasconcelos, M, Cai, Y, Yoneda, M, Hinds, A, Qian, J, Li, G, Dickel, L, Johnson, JE, Kimura, S, et al. Neuroepithelial body microenvironment is a niche for a distinct subset of Clara‐like precursors in the developing airways. Proc Natl Acad Sci USA 2012, 109:12592–12597.
Zhang, S, Loch, AJ, Radtke, F, Egan, SE, Xu, K. Jagged1 is the major regulator of Notch‐dependent cell fate in proximal airways. Dev Dyn 2013, 242:678–686.
Stripp, BR, Maxson, K, Mera, R, Singh, G. Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. Am J Physiol 1995, 269:L791–799.
Nord, M, Cassel, TN, Braun, H, Suske, G. Regulation of the Clara cell secretory protein/uteroglobin promoter in lung. Ann N Y Acad Sci 2000, 923:154–165.
Guseh, JS, Bores, SA, Stanger, BZ, Zhou, Q, Anderson, WJ, Melton, DA, Rajagopal, J. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development 2009, 136:1751–1759.
Rock, JR, Gao, X, Xue, Y, Randell, SH, Kong, YY, Hogan, BL. Notch‐dependent differentiation of adult airway basal stem cells. Cell Stem Cell 2011, 8:639–648.
Snyder, EL, Watanabe, H, Magendantz, M, Hoersch, S, Chen, TA, Wang, DG, Crowley, D, Whittaker, CA, Meyerson, M, Kimura, S, et al. Nkx2‐1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol Cell 2013, 50:185–199.
Tsao, PN, Wei, SC, Wu, MF, Huang, MT, Lin, HY, Lee, MC, Lin, KM, Wang, IJ, Kaartinen, V, Yang, LT, et al. Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development 2011, 138:3533–3543.
Park, KS, Korfhagen, TR, Bruno, MD, Kitzmiller, JA, Wan, H, Wert, SE, Khurana Hershey, GK, Chen, G, Whitsett, JA. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest 2007, 117:978–988.
Chen, G, Korfhagen, TR, Xu, Y, Kitzmiller, J, Wert, SE, Maeda, Y, Gregorieff, A, Clevers, H, Whitsett, JA. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest 2009, 119:2914–2924.
Weibel, ER. How to make an alveolus. Eur Respir J 2008, 31:483–485.
Vasilescu, DM, Gao, Z, Saha, PK, Yin, L, Wang, G, Haefeli‐Bleuer, B, Ochs, M, Weibel, ER, Hoffman, EA. Assessment of morphometry of pulmonary acini in mouse lungs by nondestructive imaging using multiscale microcomputed tomography. Proc Natl Acad Sci USA 2012, 109:17105–17110.
Muhlfeld, C, Knudsen, L, Ochs, M. Stereology and morphometry of lung tissue. Methods Mol Biol 2013, 931:367–390.
Weibel, ER. The mystery of "non‐nucleated plates" in the alveolar epithelium of the lung explained. Acta Anat (Basel) 1971, 78:425–443.
Desai, TJ, Brownfield, DG, Krasnow, MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014, 507:190–194.
Kropski, JA, Lawson, WE, Young, LR, Blackwell, TS. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech 2013, 6:9–17.
Onaitis, M, D`Amico, TA, Clark, CP, Guinney, J, Harpole, DH, Rawlins, EL. A 10‐gene progenitor cell signature predicts poor prognosis in lung adenocarcinoma. Ann Thorac Surg 2011, 91:1046–1050 (Discussion 1050).
Xu, Y, Wang, Y, Besnard, V, Ikegami, M, Wert, SE, Heffner, C, Murray, SA, Donahue, LR, Whitsett, JA. Transcriptional programs controlling perinatal lung maturation. PLoS One 2012, 7:e37046.
Barkauskas, CE, Cronce, MJ, Rackley, CR, Bowie, EJ, Keene, DR, Stripp, BR, Randell, SH, Noble, PW, Hogan, BL. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 2013, 123:3025–3036.
Martis, PC, Whitsett, JA, Xu, Y, Perl, AK, Wan, H, Ikegami, M. C/EBPα is required for lung maturation at birth. Development 2006, 133:1155–1164.
Bird, AD, Flecknoe, SJ, Tan, KH, Olsson, PF, Antony, N, Mantamadiotis, T, Mollard, R, Hooper, SB, Cole, TJ. cAMP response element binding protein is required for differentiation of respiratory epithelium during murine development. PLoS One 2011, 6:e17843.
O`Brien, KB, Alberich‐Jorda, M, Yadav, N, Kocher, O, Diruscio, A, Ebralidze, A, Levantini, E, Sng, NJ, Bhasin, M, Caron, T, et al. CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development 2010, 137:2147–2156.
Muglia, LJ, Bae, DS, Brown, TT, Vogt, SK, Alvarez, JG, Sunday, ME, Majzoub, JA. Proliferation and differentiation defects during lung development in corticotropin‐releasing hormone‐deficient mice. Am J Respir Cell Mol Biol 1999, 20:181–188.
Muglia, L, Jacobson, L, Dikkes, P, Majzoub, JA. Corticotropin‐releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 1995, 373:427–432.
Brewer, JA, Kanagawa, O, Sleckman, BP, Muglia, LJ. Thymocyte apoptosis induced by T cell activation is mediated by glucocorticoids in vivo. J Immunol 2002, 169:1837–1843.
Cole, TJ, Blendy, JA, Monaghan, AP, Krieglstein, K, Schmid, W, Aguzzi, A, Fantuzzi, G, Hummler, E, Unsicker, K, Schutz, G. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 1995, 9:1608–1621.
Smith, BT. Lung maturation in the fetal rat: acceleration by injection of fibroblast‐pneumonocyte factor. Science 1979, 204:1094–1095.
Habermehl, D, Parkitna, JR, Kaden, S, Brugger, B, Wieland, F, Grone, HJ, Schutz, G. Glucocorticoid activity during lung maturation is essential in mesenchymal and less in alveolar epithelial cells. Mol Endocrinol 2011, 25:1280–1288.
Bird, AD, Choo, YL, Hooper, SB, McDougall, AR, Cole, TJ. Mesenchymal glucocorticoid receptor regulates the development of multiple cell layers of the mouse lung. Am J Respir Cell Mol Biol 2014, 50:419–428.
Li, A, Hardy, R, Stoner, S, Tuckermann, J, Seibel, M, Zhou, H. Deletion of mesenchymal glucocorticoid receptor attenuates embryonic lung development and abdominal wall closure. PLoS One 2013, 8:e63578.
Manwani, N, Gagnon, S, Post, M, Joza, S, Muglia, L, Cornejo, S, Kaplan, F, Sweezey, NB. Reduced viability of mice with lung epithelial‐specific knockout of glucocorticoid receptor. Am J Respir Cell Mol Biol 2010, 43:599–606.
Bourbon, JR, Boucherat, O, Boczkowski, J, Crestani, B, Delacourt, C. Bronchopulmonary dysplasia and emphysema: in search of common therapeutic targets. Trends Mol Med 2009, 15:169–179.
Stocker, JT. Cystic lung disease in infants and children. Fetal Pediatr Pathol 2009, 28:155–184.
Rockich, BE, Hrycaj, SM, Shih, HP, Nagy, MS, Ferguson, MA, Kopp, JL, Sander, M, Wellik, DM, Spence, JR. Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proc Natl Acad Sci USA 2013, 110:E4456–4464.
Williams, MC, Cao, Y, Hinds, A, Rishi, AK, Wetterwald, A. T1 α protein is developmentally regulated and expressed by alveolar type I cells, choroid plexus, and ciliary epithelia of adult rats. Am J Respir Cell Mol Biol 1996, 14:577–585.
Wert, SE, Glasser, SW, Korfhagen, TR, Whitsett, JA. Transcriptional elements from the human SP‐C gene direct expression in the primordial respiratory epithelium of transgenic mice. Dev Biol 1993, 156:426–443.
Joshi, S, Kotecha, S. Lung growth and development. Early Hum Dev 2007, 83:789–794.
Ten Have‐Opbroek, AA. The development of the lung in mammals: an analysis of concepts and findings. Am J Anat 1981, 162:201–219.
Burri, PH. Fetal and postnatal development of the lung. Annu Rev Physiol 1984, 46:617–628.
Prodhan, P, Kinane, TB. Developmental paradigms in terminal lung development. Bioessays 2002, 24:1052–1059.
Smith, LJ, McKay, KO, van Asperen, PP, Selvadurai, H, Fitzgerald, DA. Normal development of the lung and premature birth. Paediatr Respir Rev 2010, 11:135–142.
Kitaoka, H, Burri, PH, Weibel, ER. Development of the human fetal airway tree: analysis of the numerical density of airway endtips. Anat Rec 1996, 244:207–213.
El Agha, E, Herold, S, Al Alam, D, Quantius, J, MacKenzie, B, Carraro, G, Moiseenko, A, Chao, CM, Minoo, P, Seeger, W, et al. Fgf10‐positive cells represent a progenitor cell population during lung development and postnatally. Development 2014, 141:296–306.