Franz‐Odendaal, TA. Induction and patterning of intramembranous bone. Front Biosci (Landmark Ed) 2011, 16:2734–2746.
Karaplis, AC. Embryonic development of bone and the molecular regulation of intramembranous and endochondral bone formation. In: Bilezikian, JP, Raisz, L, Rodan, GA, eds. Principles of Bone Biology, vol. 1. 2nd ed. San Diego, CA: Academic Press; 2002, 33–58.
Recker, R. Embryology, anatomy, and microstructure of bone. In: Coe, FL, Favus, MJ, eds. Disorders of Bone and Mineral Metabolism. New York: Raven Press; 1992.
Farnum, CE, Wilsman, NJ. Morphologic stages of the terminal hypertrophic chondrocyte of growth plate cartilage. Anat Rec 1987, 219:221–232.
Joiner, DM, Ke, J, Zhong, Z, Xu, HE, Williams, BO. LRP5 and LRP6 in development and disease. Trends Endocrinol Metab 2013, 24:31–39.
Nusse, R, Varmus, HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982, 31:99–109.
Rijsewijk, F, Schuermann, M, Wagenaar, E, Parren, P, Weigel, D, Nusse, R. The Drosophila homolog of the mouse mammary oncogene int‐1 is identical to the segment polarity gene wingless. Cell 1987, 50:649–657.
Nusse, R, Brown, A, Papkoff, J, Scambler, P, Shackleford, G, McMahon, A, Moon, R, Varmus, H. A new nomenclature for int‐1 and related genes: the Wnt gene family. Cell 1991, 64:231.
Clevers, H, Nusse, R. Wnt/β‐catenin signaling and disease. Cell 2012, 149:1192–1205.
He, X, Semenov, M, Tamai, K, Zeng, X. LDL receptor‐related proteins 5 and 6 in Wnt/β‐catenin signaling: arrows point the way. Development 2004, 131:1663–1677.
Nusse, R. The Wnt Gene Homepage. Available at: http://www.stanford.edu/∼rnusse/wntwindow.html, 2006.
Moon, RT, Kohn, AD, De Ferrari, GV, Kaykas, A. WNT and β‐catenin signalling: diseases and therapies. Nat Rev Genet 2004, 5:691–701.
Ellies, DL, Viviano, B, McCarthy, J, Rey, JP, Itasaki, N, Saunders, S, Krumlauf, R. Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5(G171V) to modulate Wnt activity. J Bone Miner Res 2006, 21:1738–1749.
Glass, DA 2nd, Karsenty, G. Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 2006, 73:43–84.
Li, X, Zhang, Y, Kang, H, Liu, W, Liu, P, Zhang, J, Harris, SE, Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 2005, 280:19883–19887.
Ott, SM. Sclerostin and Wnt signaling—the pathway to bone strength. J Clin Endocrinol Metab 2005, 90:6741–6743.
Semenov, M, Tamai, K, He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 2005, 280:26770–26775.
Semenov, MV, He, X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem 2006, 281:38276–38284.
Winkler, DG, Sutherland, MS, Ojala, E, Turcott, E, Geoghegan, JC, Shpektor, D, Skonier, JE, Yu, C, Latham, JA. Sclerostin inhibition of Wnt‐3a‐induced C3H10T1/2 cell differentiation is indirect and mediated by bone morphogenetic proteins. J Biol Chem 2005, 280:2498–2502.
Green, JL, Kuntz, SG, Sternberg, PW. Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol 2008, 18:536–544.
Takada, S, Stark, KL, Shea, MJ, Vassileva, G, McMahon, JA, McMahon, AP. Wnt‐3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 1994, 8:174–189.
Gong, Y, Slee, RB, Fukai, N, Rawadi, G, Roman‐Roman, S, Reginato, AM, Wang, H, Cundy, T, Glorieux, FH, Lev, D, et al. LDL receptor‐related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001, 107:513–523.
Little, RD, Carulli, JP, Del Mastro, RG, Dupuis, J, Osborne, M, Folz, C, Manning, SP, Swain, PM, Zhao, SC, Eustace, B, et al. A mutation in the LDL receptor‐related protein 5 gene results in the autosomal dominant high‐bone‐mass trait. Am J Hum Genet 2002, 70:11–19.
Boyden, LM, Mao, J, Belsky, J, Mitzner, L, Farhi, A, Mitnick, MA, Wu, D, Insogna, K, Lifton, RP. High bone density due to a mutation in LDL‐receptor‐related protein 5. N Engl J Med 2002, 346:1513–1521.
Van Wesenbeeck, L, Cleiren, E, Gram, J, Beals, RK, Benichou, O, Scopelliti, D, Key, L, Renton, T, Bartels, C, Gong, Y, et al. Six novel missense mutations in the LDL receptor‐related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003, 72:763–771.
Johnson, ML, Summerfield, DT. Parameters of LRP5 from a structural and molecular perspective. Crit Rev Eukaryot Gene Expr 2005, 15:229–242.
Mani, A, Radhakrishnan, J, Wang, H, Mani, MA, Nelson‐Williams, C, Carew, KS, Mane, S, Najmabadi, H, Wu, D, Lifton, RP. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 2007, 315:1278–1282.
Leupin, O, Piters, E, Halleux, C, Hu, S, Kramer, I, Morvan, F, Bouwmeester, T, Schirle, M, Bueno‐Lozano, M, Fuentes, FJ, et al. Bone overgrowth‐associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem 2011a, 286:19489–19500.
Balemans, W, Ebeling, M, Patel, N, Van Hul, E, Olson, P, Dioszegi, M, Lacza, C, Wuyts, W, Van Den Ende, J, Willems, P, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 2001, 10:537–543.
Williams, BO. Insights into the mechanisms of sclerostin action in regulating bone mass accrual. J Bone Miner Res 2014, 29:24–28.
Balemans, W, Patel, N, Ebeling, M, Van Hul, E, Wuyts, W, Lacza, C, Dioszegi, M, Dikkers, FG, Hildering, P, Willems, PJ, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 2002, 39:91–97.
Staehling‐Hampton, K, Proll, S, Paeper, BW, Zhao, L, Charmley, P, Brown, A, Gardner, JC, Galas, D, Schatzman, RC, Beighton, P, et al. A 52‐kb deletion in the SOST‐MEOX1 intergenic region on 17q12‐q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 2002, 110:144–152.
van Bezooijen, RL, Roelen, BA, Visser, A, van der Wee‐Pals, L, de Wilt, E, Karperien, M, Hamersma, H, Papapoulos, SE, ten Dijke, P, Lowik, CW. Sclerostin is an osteocyte‐expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 2004, 199:805–814.
Kedlaya, R, Veera, S, Horan, DJ, Moss, RE, Ayturk, UM, Jacobsen, CM, Bowen, ME, Paszty, C, Warman, ML, Robling, AG. Sclerostin inhibition reverses skeletal fragility in an Lrp5‐deficient mouse model of OPPG syndrome. Sci Transl Med 2013, 5:211ra158.
Chang, MK, Kramer, I, Keller, H, Gooi, JH, Collett, C, Jenkins, D, Ettenberg, SA, Cong, F, Halleux, C, Kneissel, M. Reversing LRP5‐dependent osteoporosis and SOST‐deficiency induced sclerosing bone disorders by altering WNT signaling activity. J Bone Miner Res 2013, 29:29–42.
Baron, R, Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013, 19:179–192.
Lammi, L, Arte, S, Somer, M, Jarvinen, H, Lahermo, P, Thesleff, I, Pirinen, S, Nieminen, P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004, 74:1043–1050.
Niemann, S, Zhao, C, Pascu, F, Stahl, U, Aulepp, U, Niswander, L, Weber, JL, Muller, U. Homozygous WNT3 mutation causes tetra‐amelia in a large consanguineous family. Am J Hum Genet 2004, 74:558–563.
Faqeih, E, Shaheen, R, Alkuraya, FS. WNT1 mutation with recessive osteogenesis imperfecta and profound neurological phenotype. J Med Genet 2013, 50:491–492.
Laine, CM, Joeng, KS, Campeau, PM, Kiviranta, R, Tarkkonen, K, Grover, M, Lu, JT, Pekkinen, M, Wessman, M, Heino, TJ, et al. WNT1 mutations in early‐onset osteoporosis and osteogenesis imperfecta. N Engl J Med 2013, 368:1809–1816.
Pyott, SM, Tran, TT, Leistritz, DF, Pepin, MG, Mendelsohn, NJ, Temme, RT, Fernandez, BA, Elsayed, SM, Elsobky, E, Verma, I, et al. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 2013, 92:590–597.
Fahiminiya, S, Majewski, J, Mort, J, Moffatt, P, Glorieux, FH, Rauch, F. Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 2013, 50:345–348.
Bone marrow stromal cells influence myeloma progression via Dkk1. Bonekey Rep 2012, 1:104.
Day, TF, Guo, X, Garrett‐Beal, L, Yang, Y. Wnt/β‐catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005, 8:739–750.
Rudnicki, JA, Brown, AM. Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev Biol 1997, 185:104–118.
Reinhold, MI, Kapadia, RM, Liao, Z, Naski, MC. The Wnt‐inducible transcription factor Twist1 inhibits chondrogenesis. J Biol Chem 2006, 281:1381–1388.
Hill, TP, Spater, D, Taketo, MM, Birchmeier, W, Hartmann, C. Canonical Wnt/β‐catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005, 8:727–738.
Hu, H, Hilton, MJ, Tu, X, Yu, K, Ornitz, DM, Long, F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005, 132:49–60.
Rodda, SJ, McMahon, AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006, 133:3231–3244.
Holmen, SL, Zylstra, CR, Mukherjee, A, Sigler, RE, Faugere, MC, Bouxsein, ML, Deng, L, Clemens, TL, Williams, BO. Essential role of β‐catenin in postnatal bone acquisition. J Biol Chem 2005, 280:21162–21168.
Glass, DA 2nd, Bialek, P, Ahn, JD, Starbuck, M, Patel, MS, Clevers, H, Taketo, MM, Long, F, McMahon, AP, Lang, RA, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005, 8:751–764.
Boyle, WJ, Simonet, WS, Lacey, DL. Osteoclast differentiation and activation. Nature 2003, 423:337–342.
Khosla, S. Minireview: the OPG/RANKL/RANK system. Endocrinology 2001, 142:5050–5055.
Simonet, WS, Lacey, DL, Dunstan, CR, Kelley, M, Chang, MS, Luthy, R, Nguyen, HQ, Wooden, S, Bennett, L, Boone, T, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997, 89:309–319.
Miyazaki, T, Tokimura, F, Tanaka, S. A review of denosumab for the treatment of osteoporosis. Patient Prefer Adherence 2014, 8:463–471.
Silva‐Fernandez, L, Rosario, MP, Martinez‐Lopez, JA, Carmona, L, Loza, E. Denosumab for the treatment of osteoporosis: a systematic literature review. Reumatol Clin 2013, 9:42–52.
Willert, K, Nusse, R. Wnt proteins. Cold Spring Harb Perspect Biol 2012, 4:a007864.
Port, F, Basler, K. Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 2010, 11:1265–1271.
Janda, CY, Waghray, D, Levin, AM, Thomas, C, Garcia, KC. Structural basis of Wnt recognition by Frizzled. Science 2012, 337:59–64.
Zhong, Z, Zylstra‐Diegel, CR, Schumacher, CA, Baker, JJ, Carpenter, AC, Rao, S, Yao, W, Guan, M, Helms, JA, Lane, NE, et al. Wntless functions in mature osteoblasts to regulate bone mass. Proc Natl Acad Sci USA 2012, 109:E2197–E2204.
Wan, Y, Lu, C, Cao, J, Zhou, R, Yao, Y, Yu, J, Zhang, L, Zhao, H, Li, H, Zhao, J, et al. Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells. Bone 2013, 55:258–267.
Lu, C, Wan, Y, Cao, J, Zhu, X, Yu, J, Zhou, R, Yao, Y, Zhang, L, Zhao, H, Li, H, et al. Wnt‐mediated reciprocal regulation between cartilage and bone development during endochondral ossification. Bone 2013, 53:566–574.
Maruyama, T, Jiang, M, Hsu, W. Gpr177, a novel locus for bone mineral density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development. J Bone Miner Res 2013, 28:1150–1159.
Maupin, KA, Droscha, CJ, Williams, BO. A comprehensive overview of skeletal phenotypes associated with alterations in Wnt/β‐catenin signaling in humans and mice. Bone Res 2013, 1:27–71.
Bennett, CN, Longo, KA, Wright, WS, Suva, LJ, Lane, TF, Hankenson, KD, MacDougald, OA. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 2005, 102:3324–3329.
Stevens, JR, Miranda‐Carboni, GA, Singer, MA, Brugger, SM, Lyons, KM, Lane, TF. Wnt10b deficiency results in age‐dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res 2010, 25:2138–2147.
Keupp, K, Beleggia, F, Kayserili, H, Barnes, AM, Steiner, M, Semler, O, Fischer, B, Yigit, G, Janda, CY, Becker, J, et al. Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 2013, 92:565–574.
Garcia‐Ibarbia, C, Perez‐Nunez, MI, Olmos, JM, Valero, C, Perez‐Aguilar, MD, Hernandez, JL, Zarrabeitia, MT, Gonzalez‐Macias, J, Riancho, JA. Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos Int 2013, 24:2449–2454.
Zheng, HF, Tobias, JH, Duncan, E, Evans, DM, Eriksson, J, Paternoster, L, Yerges‐Armstrong, LM, Lehtimaki, T, Bergstrom, U, Kahonen, M, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 2012, 8:e1002745.
Veeman, MT, Axelrod, JD, Moon, RT. A second canon. Functions and mechanisms of β‐catenin‐independent Wnt signaling. Dev Cell 2003, 5:367–377.
Yang, Y, Topol, L, Lee, H, Wu, J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 2003, 130:1003–1015.
Grumolato, L, Liu, G, Mong, P, Mudbhary, R, Biswas, R, Arroyave, R, Vijayakumar, S, Economides, AN, Aaronson, SA. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 2010, 24:2517–2530.
Oishi, I, Suzuki, H, Onishi, N, Takada, R, Kani, S, Ohkawara, B, Koshida, I, Suzuki, K, Yamada, G, Schwabe, GC, et al. The receptor tyrosine kinase Ror2 is involved in non‐canonical Wnt5a/JNK signalling pathway. Genes Cells 2003, 8:645–654.
Maeda, K, Kobayashi, Y, Udagawa, N, Uehara, S, Ishihara, A, Mizoguchi, T, Kikuchi, Y, Takada, I, Kato, S, Kani, S, et al. Wnt5a‐Ror2 signaling between osteoblast‐lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 2012, 18:405–412.
Gofflot, F, Hall, M, Morriss‐Kay, GM. Genetic patterning of the posterior neuropore region of curly tail mouse embryos: deficiency of Wnt5a expression. Int J Dev Biol 1998, 42:637–644.
Tu, X, Joeng, KS, Nakayama, KI, Nakayama, K, Rajagopal, J, Carroll, TJ, McMahon, AP, Long, F. Noncanonical Wnt signaling through G protein‐linked PKCdelta activation promotes bone formation. Dev Cell 2007, 12:113–127.
Chen, J, Tu, X, Esen, E, Joeng, KS, Lin, C, Arbeit, JM, Ruegg, MA, Hall, MN, Ma, L, Long, F. WNT7B promotes bone formation in part through mTORC1. PLoS Genet 2014, 10:e1004145.
Esen, E, Chen, J, Karner, CM, Okunade, AL, Patterson, BW, Long, F. WNT‐LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab 2013, 17:745–755.
Holmen, SL, Giambernardi, TA, Zylstra, CR, Buckner‐Berghuis, BD, Resau, JH, Hess, JF, Glatt, V, Bouxsein, ML, Ai, M, Warman, ML, et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res 2004, 19:2033–2040.
Kato, M, Patel, MS, Levasseur, R, Lobov, I, Chang, BH, Glass, DA 2nd, Hartmann, C, Li, L, Hwang, TH, Brayton, CF, et al. Cbfa1‐independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002, 157:303–314.
Fujino, T, Asaba, H, Kang, MJ, Ikeda, Y, Sone, H, Takada, S, Kim, DH, Ioka, RX, Ono, M, Tomoyori, H, et al. Low‐density lipoprotein receptor‐related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose‐induced insulin secretion. Proc Natl Acad Sci USA 2003, 100:229–234.
Iwaniec, UT, Wronski, TJ, Liu, J, Rivera, MF, Arzaga, RR, Hansen, G, Brommage, R. PTH stimulates bone formation in mice deficient in Lrp5. J Bone Miner Res 2007, 22:394–402.
Clement‐Lacroix, P, Ai, M, Morvan, F, Roman‐Roman, S, Vayssiere, B, Belleville, C, Estrera, K, Warman, ML, Baron, R, Rawadi, G. Lrp5‐independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 2005, 102:17406–17411.
Kubota, T, Michigami, T, Sakaguchi, N, Kokubu, C, Suzuki, A, Namba, N, Sakai, N, Nakajima, S, Imai, K, Ozono, K. Lrp6 hypomorphic mutation affects bone mass through bone resorption in mice and impairs interaction with Mesd. J Bone Miner Res 2008, 23:1661–1671.
Kokubu, C, Heinzmann, U, Kokubu, T, Sakai, N, Kubota, T, Kawai, M, Wahl, MB, Galceran, J, Grosschedl, R, Ozono, K, et al. Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development 2004, 131:5469–5480.
Riddle, RC, Diegel, CR, Leslie, JM, Van Koevering, KK, Faugere, MC, Clemens, TL, Williams, BO. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition. PLoS One 2013, 8:e63323.
Cui, Y, Niziolek, PJ, MacDonald, BT, Zylstra, CR, Alenina, N, Robinson, DR, Zhong, Z, Matthes, S, Jacobsen, CM, Conlon, RA, et al. Lrp5 functions in bone to regulate bone mass. Nat Med 2011, 17:684–691.
Yadav, VK, Ryu, JH, Suda, N, Tanaka, KF, Gingrich, JA, Schutz, G, Glorieux, FH, Chiang, CY, Zajac, JD, Insogna, KL, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008, 135:825–837.
Inose, H, Zhou, B, Yadav, VK, Guo, XE, Karsenty, G, Ducy, P. Efficacy of serotonin inhibition in mouse models of bone loss. J Bone Miner Res 2011, 26:2002–2011.
Lee, GS, Simpson, C, Sun, BH, Yao, C, Foer, D, Sullivan, B, Matthes, S, Alenina, N, Belsky, J, Bader, M, et al. Measurement of plasma, serum, and platelet serotonin in individuals with high bone mass and mutations in LRP5. J Bone Miner Res 2014, 29:976–981.
Joeng, KS, Schumacher, CA, Zylstra‐Diegel, CR, Long, F, Williams, BO. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev Biol 2011, 359:222–229.
Leupin, O, Piters, E, Halleux, C, Hu, S, Kramer, I, Morvan, F, Bouwmeester, T, Schirle, M, Bueno‐Lozano, M, Fuentes, FJ, et al. Bone overgrowth‐associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem 2011, 286:19489–19500.
Choi, HY, Dieckmann, M, Herz, J, Niemeier, A. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 2009, 4:e7930.
Li, Y, Pawlik, B, Elcioglu, N, Aglan, M, Kayserili, H, Yigit, G, Percin, F, Goodman, F, Nurnberg, G, Cenani, A, et al. LRP4 mutations alter Wnt/β‐catenin signaling and cause limb and kidney malformations in Cenani‐Lenz syndrome. Am J Hum Genet 2010, 86:696–706.
Ohazama, A, Porntaveetus, T, Ota, MS, Herz, J, Sharpe, PT. Lrp4: a novel modulator of extracellular signaling in craniofacial organogenesis. Am J Med Genet A 2010, 152A:2974–2983.
Kumar, J, Swanberg, M, McGuigan, F, Callreus, M, Gerdhem, P, Akesson, K. LRP4 association to bone properties and fracture and interaction with genes in the Wnt‐ and BMP signaling pathways. Bone 2011, 49:343–348.
Ohazama, A, Johnson, EB, Ota, MS, Choi, HY, Porntaveetus, T, Oommen, S, Itoh, N, Eto, K, Gritli‐Linde, A, Herz, J, et al. Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS One 2008, 3:e4092.
Terrand, J, Bruban, V, Zhou, L, Gong, W, El Asmar, Z, May, P, Zurhove, K, Haffner, P, Philippe, C, Woldt, E, et al. LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J Biol Chem 2009, 284:381–388.
Zilberberg, A, Yaniv, A, Gazit, A. The low density lipoprotein receptor‐1, LRP1, interacts with the human frizzled‐1 (HFz1) and down‐regulates the canonical Wnt signaling pathway. J Biol Chem 2004, 279:17535–17542.
Rey, JP, Ellies, DL. Wnt modulators in the biotech pipeline. Dev Dyn 2010, 239:102–114.
Lum, L, Clevers, H. Cell biology. The unusual case of Porcupine. Science 2012, 337:922–923.
Phiel, CJ, Klein, PS. Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 2001, 41:789–813.