Albin, RL, Young, AB, Penney, JB. The functional‐anatomy of basal ganglia disorders. Trends Neurosci 1989, 12:366–375.
Winterer, G, Weinberger, DR. Genes, dopamine and cortical signal‐to‐noise ratio in schizophrenia. Trends Neurosci 2004, 27:683–690.
Milton, AL, Everitt, BJ. The persistence of maladaptive memory: addiction, drug memories and anti‐relapse treatments. Neurosci Biobehav Rev 2012, 36:1119–1139.
Tye, KM, Mirzabekov, JJ, Warden, MR, Ferenczi, EA, Tsai, HC, Finkelstein, J, Kim, SY, Adhikari, A, Thompson, KR, Andalman, AS, et al. Dopamine neurons modulate neural encoding and expression of depression‐related behaviour. Nature 2013, 493:537–541.
Dahlstroem, A, Fuxe, K. Evidence for the existence of monoamine‐containing neurons in the central nervous system. I. demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 1964, Suppl 232:1–55.
Björklund, A, Dunnett, SB. Dopamine neuron systems in the brain: an update. Trends Neurosci 2007, 30:194–202.
Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens‐olfactory tubercle complex. Brain Res Rev 2007, 56:27–78.
Roeper, J. Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 2013, 36:336–342.
Van den Heuvel, DMA, Pasterkamp, RJ. Getting connected in the dopamine system. Prog Neurobiol 2008, 85:75–93.
Danielian, PS, Muccino, D, Rowitch, DH, Michael, SK, McMahon, AP. Modification of gene activity in mouse embryos in utero by a tamoxifen‐inducible form of Cre recombinase. Curr Biol 1998, 8:1323–1326.
Kimmel, RA, Turnbull, DH, Blanquet, V, Wurst, W, Loomis, CA, Joyner, AL. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev 2000, 14:1377–1389.
Li, JYH, Lao, Z, Joyner, AL. Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 2002, 36:31–43.
Harfe, BD, Scherz, PJ, Nissim, S, Tian, H, McMahon, AP, Tabin, CJ. Evidence for an expansion‐based temporal Shh gradient in specifying vertebrate digit identities. Cell 2004, 118:517–528.
Tronche, F, Kellendonk, C, Kretz, O, Gass, P, Anlag, K, Orban, PC, Bock, R, Klein, R, Schütz, G. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 1999, 23:99–103.
Tang, M, Miyamoto, Y, Huang, EJ. Multiple roles of β‐catenin in controlling the neurogenic niche for midbrain dopamine neurons. Development 2009, 136:2027–2038.
Lindeberg, J, Usoskin, D, Bengtsson, H, Gustafsson, A, Kylberg, A, Söderström, S, Ebendal, T. Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus. Genesis 2004, 40:67–73.
Bäckman, CM, Malik, N, Zhang, Y, Shan, L, Grinberg, A, Hoffer, BJ, Westphal, H, Tomac, AC. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis 2006, 44:383–390.
Ekstrand, MI, Terzioglu, M, Galter, D, Zhu, S, Hofstetter, C, Lindqvist, E, Thams, S, Bergstrand, A, Hansson, FS, Trifunovic, A, et al. Progressive parkinsonism in mice with respiratory‐chain‐deficient dopamine neurons. Proc Natl Acad Sci USA 2007, 104:1325–1330.
Marín, F, Herrero, M‐T, Vyas, S, Puelles, L. Ontogeny of tyrosine hydroxylase mRNA expression in mid‐ and forebrain: neuromeric pattern and novel positive regions. Dev Dyn 2005, 234:709–717.
Vitalis, T, Cases, O, Engelkamp, D, Verney, C, Price, DJ. Defect of tyrosine hydroxylase‐immunoreactive neurons in the brains of mice lacking the transcription factor Pax6. J Neurosci 2000, 20:6501–6516.
Smits, SM, Burbach, JPH, Smidt, MP. Developmental origin and fate of meso‐diencephalic dopamine neurons. Prog Neurobiol 2006, 78:1–16.
Placzek, M, Briscoe, J. The floor plate: multiple cells, multiple signals. Nat Rev Neurosci 2005, 6:230–240.
Wallén, A, Zetterström, RH, Solomin, L, Arvidsson, M, Olson, L, Perlmann, T. Fate of mesencephalic AHD2‐expressing dopamine progenitor cells in NURR1 mutant mice. Exp Cell Res 1999, 253:737–746.
Andersson, E, Tryggvason, U, Deng, Q, Friling, S, Alekseenko, Z, Robert, B, Perlmann, T, Ericson, J. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 2006, 124:393–405.
Ono, Y, Nakatani, T, Sakamoto, Y, Mizuhara, E, Minaki, Y, Kumai, M, Hamaguchi, A, Nishimura, M, Inoue, Y, Hayashi, H, et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 2007, 134:3213–3225.
Fuccillo, M, Joyner, AL, Fishell, G. Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci 2006, 7:772–783.
Joksimovic, M, Anderegg, A, Roy, A, Campochiaro, L, Yun, B, Kittappa, R, McKay, R, Awatramani, R. Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic progenitor pools. Proc Natl Acad Sci USA 2009, 106:19185–19190.
Blaess, S, Bodea, GO, Kabanova, A, Chanet, S, Mugniery, E, Derouiche, A, Stephen, D, Joyner, AL. Temporal‐spatial changes in Sonic Hedgehog expression and signaling reveal different potentials of ventral mesencephalic progenitors to populate distinct ventral midbrain nuclei. Neural Dev 2011, 6:29.
Hayes, L, Zhang, Z, Albert, P, Zervas, M, Ahn, S. Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J Comp Neurol 2011, 519:3001–3018.
Bonilla, S, Hall, AC, Pinto, L, Attardo, A, Götz, M, Huttner, WB, Arenas, E. Identification of midbrain floor plate radial glia‐like cells as dopaminergic progenitors. Glia 2008, 56:809–820.
Jessell, TM, Sanes, JR. Development. The decade of the developing brain. Curr Opin Neurobiol 2000, 10:599–611.
Schwarz, M, Alvarez‐Bolado, G, Urbánek, P, Busslinger, M, Gruss, P. Conserved biological function between Pax‐2 and Pax‐5 in midbrain and cerebellum development: evidence from targeted mutations. Proc Natl Acad Sci USA 1997, 94:14518–14523.
Simon, HH, Saueressig, H, Wurst, W, Goulding, MD, O`Leary, DD. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 2001, 21:3126–3134.
Simon, HH, Thuret, S, Alberi, L. Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res 2004, 318:53–61.
Liu, A, Joyner, AL. Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 2001, 24:869–896.
Acampora, D, Mazan, S, LALLEMAND, Y, Avantaggiato, V, Maury, M, Simeone, A, Brûlet, P. Forebrain and midbrain regions are deleted in Otx2‐/‐ mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 1995, 121:3279–3290.
Ang, SL, Jin, O, Rhinn, M, Daigle, N, Stevenson, L, Rossant, J. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 1996, 122:243–252.
Martinez, S, Crossley, PH, Cobos, I, Rubenstein, JL, Martin, GR. FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 1999, 126:1189–1200.
Meyers, EN, Lewandoski, M, Martin, GR. An Fgf8 mutant allelic series generated by Cre‐ and Flp‐mediated recombination. Nat Genet 1998, 18:136–141.
Ye, W, Shimamura, K, Rubenstein, JL, Hynes, MA, Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 1998, 93:755–766.
Chi, CL, Martinez, S, Wurst, W, Martin, GR. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 2003, 130:2633–2644.
Zervas, M, Millet, S, Ahn, S, Joyner, AL. Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 2004, 43:345–357.
Prakash, N, Brodski, C, Naserke, T, Puelles, E, Gogoi, R, Hall, A, Panhuysen, M, Echevarria, D, Sussel, L, Vogt Weissenhorn, DM, et al. A Wnt‐1 regulated genetic network controls the identity and the fate of midbrain‐dopaminergic progenitors in vivo. Development 2006, 133:89–98.
Ellisor, D, Rieser, C, Voelcker, B, Machan, JT, Zervas, M. Genetic dissection of midbrain dopamine neuron development in vivo. Dev Biol 2012, 372:249–262.
Andersson, ER, Saltó, C, Villaescusa, JC, Cajanek, L, Yang, S, Bryjova, L, Nagy, II, Vainio, SJ, Ramirez, C, Bryja, V. Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells. Proc Natl Acad Sci USA 2013, 110:E602–E610.
Zervas, M, Blaess, S, Joyner, AL. Classical embryological studies and modern genetic analysis of midbrain and cerebellum development. Curr Top Dev Biol 2005, 69:101–138.
Chiang, C, Litingtung, Y, Lee, E, Young, KE, Corden, JL, Westphal, H, Beachy, PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996, 383:407–413.
Blaess, S, Corrales, \LY1/sab/m/n/10.04 the bal-ance between pro-lif-er-a-tion and neu-ro-ge-n-e-AL. Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development 2006, 133:1799–1809.
Fedtsova, N, Turner, EE. Signals from the ventral midline and isthmus regulate the development of Brn3.0‐expressing neurons in the midbrain. Mech Dev 2001, 105:129–144.
Fogel, JL, Chiang, C, Huang, X, Agarwala, S. Ventral specification and perturbed boundary formation in the mouse midbrain in the absence of Hedgehog signaling. Dev Dyn 2008, 237:1359–1372.
Ang, SL, Wierda, A, Wong, D, Stevens, KA, Cascio, S, Rossant, J, Zaret, KS. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 1993, 119:1301–1315.
Mavromatakis, YE, Lin, W, Metzakopian, E, Ferri, ALM, Yan, CH, Sasaki, H, Whisett, J, Ang, S‐L. Foxa1 and Foxa2 positively and negatively regulate Shh signalling to specify ventral midbrain progenitor identity. Mech Dev 2011, 128:90–103.
Metzakopian, E, Lin, W, Salmon‐Divon, M, Dvinge, H, Andersson, E, Ericson, J, Perlmann, T, Whitsett, JA, Bertone, P, Ang, S‐L. Genome‐wide characterization of Foxa2 targets reveals upregulation of floor plate genes and repression of ventrolateral genes in midbrain dopaminergic progenitors. Development 2012, 139:2625–2634.
Veenvliet, JV, Santos Dos, MTMA, Kouwenhoven, WM, Oerthel von, L, Lim, JL, van der Linden, AJA, Koerkamp, MJAG, Holstege, FCP, Smidt, MP. Specification of dopaminergic subsets involves interplay of En1 and Pitx3. Development 2013, 140:3373–3384.
Ferri, ALM, Lin, W, Mavromatakis, YE, Wang, JC, Sasaki, H, Whitsett, JA, Ang, S‐L. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage‐dependent manner. Development 2007, 134:2761–2769.
Lin, W, Metzakopian, E, Mavromatakis, YE, Gao, N, Balaskas, N, Sasaki, H, Briscoe, J, Whitsett, JA, Goulding, M, Kaestner, KH, et al. Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Dev Biol 2009, 333:386–396.
Nakatani, T, Kumai, M, Mizuhara, E, Minaki, Y, Ono, Y. Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev Biol 2010, 339:101–113.
Yan, CH, Levesque, M, Claxton, S, Johnson, RL, Ang, S‐L. Lmx1a and lmx1b function cooperatively to regulate proliferation, specification, and differentiation of midbrain dopaminergic progenitors. J Neurosci 2011, 31:12413–12425.
Deng, Q, Andersson, E, Hedlund, E, Alekseenko, Z, Coppola, E, Panman, L, Millonig, JH, Brunet, J‐F, Ericson, J, Perlmann, T. Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development 2011, 138:3399–3408.
Ono, Y, Nakatani, T, Minaki, Y, Kumai, M. The basic helix‐loop‐helix transcription factor Nato3 controls neurogenic activity in mesencephalic floor plate cells. Development 2010, 137:1897–1906.
Kele, J, Simplicio, N, Ferri, ALM, Mira, H, Guillemot, F, Arenas, E, Ang, S‐L. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 2006, 133:495–505.
Andersson, E, Jensen, JB, Parmar, M, Guillemot, F, Björklund, A. Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development 2006, 133:507–516.
Saucedo‐Cardenas, O, Quintana‐Hau, JD, Le, WD, Smidt, MP, Cox, JJ, De Mayo, F, Burbach, JP, Conneely, OM. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 1998, 95:4013–4018.
Zetterström, RH, Solomin, L, Jansson, L, Hoffer, BJ, Olson, L, Perlmann, T. Dopamine neuron agenesis in Nurr1‐deficient mice. Science 1997, 276:248–250.
Castillo, SO, Baffi, JS, Palkovits, M, Goldstein, DS, Kopin, IJ, Witta, J, Magnuson, MA, Nikodem, VM. Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol Cell Neurosci 1998, 11:36–46.
Smits, SM, Ponnio, T, Conneely, OM, Burbach, JPH, Smidt, MP. Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J Neurosci 2003, 18:1731–1738.
Kadkhodaei, B, Ito, T, Joodmardi, E, Mattsson, B, Rouillard, C, Carta, M, Muramatsu, S‐I, Sumi‐Ichinose, C, Nomura, T, Metzger, D, et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 2009, 29:15923–15932.
Omodei, D, Acampora, D, Mancuso, P, Prakash, N, Di Giovannantonio, LG, Wurst, W, Simeone, A. Anterior‐posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. Development 2008, 135:3459–3470.
Vernay, B, Koch, M, Vaccarino, F, Briscoe, J, Simeone, A, Kageyama, R, Ang, S‐L. Otx2 regulates subtype specification and neurogenesis in the midbrain. J Neurosci 2005, 25:4856–4867.
Di Salvio, M, Di Giovannantonio, LG, Acampora, D, Prosperi, R, Omodei, D, Prakash, N, Wurst, W, Simeone, A. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat Neurosci 2010, 13:1481–1488.
Maxwell, SL, Ho, H‐Y, Kuehner, E, Zhao, S, Li, M. Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 2005, 282:467–479.
Nunes, I, Tovmasian, LT, Silva, RM, Burke, RE, Goff, SP. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 2003, 100:4245–4250.
Smidt, MP, Smits, SM, Bouwmeester, H, Hamers, FPT, van der Linden, AJA, Hellemons, AJCGM, Graw, J, Burbach, JPH. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 2004, 131:1145–1155.
Lahti, L, Peltopuro, P, Piepponen, TP, Partanen, J. Cell‐autonomous FGF signaling regulates anteroposterior patterning and neuronal differentiation in the mesodiencephalic dopaminergic progenitor domain. Development 2012, 139:894–905.
Saarimäki‐Vire, J, Peltopuro, P, Lahti, L, Naserke, T, Blak, AA, Weisenhorn, DMV, Yu, K, Ornitz, DM, Wurst, W, Partanen, J. Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain. J Neurosci 2007, 27:8581–8592.
Sacchetti, P, Sousa, KM, Hall, AC, Liste, I, Steffensen, KR, Theofilopoulos, S, Parish, CL, Hazenberg, C, Richter, LA, Hovatta, O, et al. Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 2009, 5:409–419.
Perez‐Balaguer, A, Puelles, E, Wurst, W, Martinez, S. Shh dependent and independent maintenance of basal midbrain. Mech Dev 2009, 126:301–313.
Joksimovic, M, Yun, BA, Kittappa, R, Anderegg, AM, Chang, WW, Taketo, MM, McKay, RDG, Awatramani, RB. Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat Neurosci 2009, 12:125–131.
Tang, M, Luo, SX, Tang, V, Huang, EJ. Temporal and spatial requirements of smoothened in ventral midbrain neuronal development. Neural Dev 2013, 8:8.
Hayes, L, Ralls, S, Wang, H, Ahn, S. Duration of Shh signaling contributes to mDA neuron diversity. Dev Biol 2013, 374:115–126.
Yang, J, Brown, A, Ellisor, D, Paul, E, Hagan, N, Zervas, M. Dynamic temporal requirement of Wnt1 in midbrain dopamine neuron development. Development 2013, 140:1342–1352.
Sousa, KM, Villaescusa, JC, Arenas, E. WNT2 regulates progenitor proliferation in the developing ventral midbrain. J Biol Chem 2010, 285:7246–7253.
Andersson, ER, Prakash, N, Cajanek, L, Minina, E, Bryja, V, Bryjova, L, Yamaguchi, TP, Hall, AC, Wurst, W, Arenas, E. Wnt5a regulates ventral midbrain morphogenesis and the development of A9‐A10 dopaminergic cells in vivo. PLoS One 2008, 3:e3517.
Joksimovic, M, Patel, M, Taketo, MM, Johnson, R, Awatramani, R. Ectopic Wnt/β‐catenin signaling induces neurogenesis in the spinal cord and hindbrain floor plate. PLoS One 2012, 7:e30266.
Tang, M, Villaescusa, JC, Luo, SX, Guitarte, C, Lei, S, Miyamoto, Y, Taketo, MM, Arenas, E, Huang, EJ. Interactions of Wnt/β‐catenin signaling and sonic hedgehog regulate the neurogenesis of ventral midbrain dopamine neurons. J Neurosci 2010, 30:9280–9291.
Smidt, MP, Asbreuk, CH, Cox, JJ, Chen, H, Johnson, RL, Burbach, JP. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 2000, 3:337–341.
Anderegg, A, Lin, H‐P, Chen, J‐A, Caronia‐Brown, G, Cherepanova, N, Yun, B, Joksimovic, M, Rock, J, Harfe, BD, Johnson, R. An Lmx1b‐miR135a2 regulatory circuit modulates Wnt1/Wnt signaling and determines the size of the midbrain dopaminergic progenitor pool. PLoS Genet 2013, 9:e1003973.
Guo, C, Qiu, H‐Y, Huang, Y, Chen, H, Yang, R‐Q, Chen, S‐D, Johnson, RL, Chen, Z‐F, Ding, Y‐Q. Lmx1b is essential for Fgf8 and Wnt1 expression in the isthmic organizer during tectum and cerebellum development in mice. Development 2007, 134:317–325.
Puelles, E, Annino, A, Tuorto, F, Usiello, A, Acampora, D, Czerny, T, Brodski, C, Ang, S‐L, Wurst, W, Simeone, A. Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 2004, 131:2037–2048.
Gennet, N, Gale, E, Nan, X, Farley, E, Takacs, K, Oberwallner, B, Chambers, D, Li, M. Doublesex and mab‐3‐related transcription factor 5 promotes midbrain dopaminergic identity in pluripotent stem cells by enforcing a ventral‐medial progenitor fate. Proc Natl Acad Sci USA 2011, 108:9131–9136.
Bayer, SA, Wills, KV, Triarhou, LC, Ghetti, B. Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp Brain Res 1995, 105:191–199.
Chung, S, Leung, A, Han, B‐S, Chang, M‐Y, Moon, J‐I, Kim, C‐H, Hong, S, Pruszak, J, Isacson, O, Kim, K‐S. Wnt1‐lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH‐FoxA2 pathway. Cell Stem Cell 2009, 5:646–658.
Lahti, L, Saarimäki‐Vire, J, Rita, H, Partanen, J. FGF signaling gradient maintains symmetrical proliferative divisions of midbrain neuronal progenitors. Dev Biol 2011, 349:270–282.
Theofilopoulos, S, Wang, Y, Kitambi, SS, Sacchetti, P, Sousa, KM, Bodin, K, Kirk, J, Saltó, C, Gustafsson, M, Toledo, EM, et al. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat Chem Biol 2013, 9:126–133.
Kim, K‐S, Kim, C‐H, Hwang, D‐Y, Seo, H, Chung, S, Hong, SJ, Lim, J‐K, Anderson, T, Isacson, O. Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell‐specific manner. J Neurochem 2003, 85:622–634.
Jacobs, FMJ, van Erp, S, van der Linden, AJA, Oerthel von, L, Burbach, JPH, Smidt, MP. Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT‐mediated repression. Development 2009, 136:531–540.
Jacobs, FMJ, van der Linden, AJA, Wang, Y, Oerthel von, L, Sul, HS, Burbach, JPH, Smidt, MP. Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso‐diencephalic dopamine neurons. Development 2009, 136:2363–2373.
Volpicelli, F, De Gregorio, R, Pulcrano, S, Perrone‐Capano, C, di Porzio, U, Bellenchi, GC. Direct regulation of Pitx3 expression by Nurr1 in culture and in developing mouse midbrain. PLoS One 2012, 7:e30661.
Yi, SH, He, XB, Rhee, YH, Park, CH, Takizawa, T, Nakashima, K, Lee, SH. Foxa2 acts as a co‐activator potentiating expression of the Nurr1‐induced DA phenotype via epigenetic regulation. Development 2014, 141:761–772.
Smidt, MP, van Schaick, HS, Lanctôt, C, Tremblay, JJ, Cox, JJ, van der Kleij, AA, Wolterink, G, Drouin, J, Burbach, JP. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 1997, 94:13305–13310.
Luk, KC, Rymar, VV, van den Munckhof, P, Nicolau, S, Steriade, C, Bifsha, P, Drouin, J, Sadikot, AF. The transcription factor Pitx3 is expressed selectively in midbrain dopaminergic neurons susceptible to neurodegenerative stress. J Neurochem 2013, 125:932–943.
Jacobs, FMJ, Smits, SM, Noorlander, CW, Oerthel von, L, van der Linden, AJA, Burbach, JPH, Smidt, MP. Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. Development 2007, 134:2673–2684.
Jacobs, FMJ, Veenvliet, JV, Almirza, WH, Hoekstra, EJ, Oerthel von, L, van der Linden, AJA, Neijts, R, Koerkamp, MG, van Leenen, D, Holstege, FCP, et al. Retinoic acid‐dependent and ‐independent gene‐regulatory pathways of Pitx3 in meso‐diencephalic dopaminergic neurons. Development 2011, 138:5213–5222.
Albéri, L, Sgadò, P, Simon, HH. Engrailed genes are cell‐autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 2004, 131:3229–3236.
Di Salvio, M, Di Giovannantonio, LG, Omodei, D, Acampora, D, Simeone, A. Otx2 expression is restricted to dopaminergic neurons of the ventral tegmental area in the adult brain. Int J Dev Biol 2010, 54:939–945.
Di Giovannantonio, LG, Di Salvio, M, Acampora, D, Prakash, N, Wurst, W, Simeone, A. Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1‐dependent neuronal loss and MPTP vulnerability. Dev Biol 2013, 373:176–183.
Chung, CY, Licznerski, P, Alavian, KN, Simeone, A, Lin, Z, Martin, E, Vance, J, Isacson, O. The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain 2010, 133:2022–2031.
Hanaway, J, McConnell, JA, Netsky, MG. Histogenesis of the substantia nigra, ventral tegmental area of Tsai and interpeduncular nucleus: an autoradiographic study of the mesencephalon in the rat. J Comp Neurol 1971, 142:59–73.
Kawano, H, Ohyama, K, Kawamura, K, Nagatsu, I. Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res Dev Brain Res 1995, 86:101–113.
Shults, CW, Hashimoto, R, Brady, RM, Gage, FH. Dopaminergic cells align along radial glia in the developing mesencephalon of the rat. Neuroscience 1990, 38:427–436.
Bodea, GO, Spille, JH, Abe, P, Andersson, AS, Acker‐Palmer, A, Stumm, R, Kubitscheck, U, Blaess, S. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. Development 2014, 141:661–673.
Yang, S, Edman, LC, Sánchez‐Alcañiz, JA, Fritz, N, Bonilla, S, Hecht, J, Uhlén, P, Pleasure, SJ, Villaescusa, JC, Marín, O, et al. Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9‐A10 dopaminergic neurons. Development 2013, 140:4554–4564.
Stumm, R, Höllt, V. CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: implications for neuronal regeneration in the adult brain. J Mol Endocrinol 2007, 38:377–382.
Ohyama, K, Kawano, H, Asou, H, Fukuda, T, Oohira, A, Uyemura, K, Kawamura, K. Coordinate expression of L1 and 6B4 proteoglycan/phosphacan is correlated with the migration of mesencephalic dopaminergic neurons in mice. Brain Res Dev Brain Res 1998, 107:219–226.
Demyanenko, GP, Shibata, Y, Maness, PF. Altered distribution of dopaminergic neurons in the brain of L1 mice. Brain Res Dev Brain Res 2001, 126:21–30.
Zhao, S, Frotscher, M. Go or stop? divergent roles of reelin in radial neuronal migration. Neuroscientist 2010, 16:421–434.
Nishikawa, S, Goto, S, Yamada, K, Hamasaki, T, Ushio, Y. Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Reln(rl) mutant mice. J Comp Neurol 2003, 461:166–173.
Kang, W‐Y, Kim, S‐S, Cho, S‐K, Kim, S, Suh‐Kim, H, Lee, Y‐D. Migratory defect of mesencephalic dopaminergic neurons in developing reelermice. Anat Cell Biol 2010, 43:241.
Sharaf, A, Bock, HH, Spittau, B, Bouché, E, Krieglstein, K. ApoER2 and VLDLr are required for mediating reelin signalling pathway for normal migration and positioning of mesencephalic dopaminergic neurons. PLoS One 2013, 8:e71091.
Arenas, E. Towards stem cell replacement therapies for Parkinson`s disease. Biochem Biophys Res Commun 2010, 396:152–156.
Panman, L, Papathanou, M, Laguna, A, Oosterveen, T, Volakakis, N, Acampora, D, Kurtsdotter, I, Yoshitake, T, Kehr, J, Joodmardi, E, et al. Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep 2014, 8:1018–1025.
Poulin, JF, Zou, J, Drouin‐Ouellet, J, Kim, KY, Cicchetti, F, Awatramani, RB. Defining midbrain dopaminergic neuron diversity by single‐cell gene expression profiling. Cell Rep 2014, 9:930–943.