Emsley, JG, Macklis, JD. Astroglial heterogeneity closely reflects the neuronal‐defined anatomy of the adult murine CNS. Neuron Glia Biol 2006, 2:175–186.
Tsai, H‐H, Li, H, Fuentealba, LC, Molofsky, AV, Taveira‐Marques, R, Zhuang, H, Tenney, A, Murnen, AT, Fancy, SPJ, Merkle, F, et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 2012, 337:358–362.
Cahoy, JD, Emery, B, Kaushal, A, Foo, LC, Zamanian, JL, Christopherson, KS, Xing, Y, Lubischer, JL, Krieg, PA, Krupenko, SA, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008, 28:264–278.
Doyle, JP, Dougherty, JD, Heiman, M, Schmidt, EF, Stevens, TR, Ma, G, Bupp, S, Shrestha, P, Shah, RD, Doughty, ML, et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 2008, 135:749–762.
Yeh, T‐H, Lee, DY, Gianino, SM, Gutmann, DH. Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)‐regulated glial proliferation. Glia 2009, 57:1239–1249.
Hatten, ME. Central nervous system neuronal migration. Annu Rev Neurosci 1999, 22:511–539.
Lemke, G. Glial control of neuronal development. Annu Rev Neurosci 2001, 24:87–105.
Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res 1971, 33:471–476.
Christopherson, KS, Ullian, EM, Stokes, CCA, Mullowney, CE, Hell, JW, Agah, A, Lawler, J, Mosher, DF, Bornstein, P, Barres, BA. Thrombospondins are astrocyte‐secreted proteins that promote CNS synaptogenesis. Cell 2005, 120:421–433.
Eroglu, C, Allen, NJ, Susman, MW, O`Rourke, NA, Park, CY, Ozkan, E, Chakraborty, C, Mulinyawe, SB, Annis, DS, Huberman, AD, et al. Gabapentin receptor α2δ‐1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 2009, 139:380–392.
Clarke, LE, Barres, BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 2013, 14:311–321.
Schafer, DP, Lehrman, EK, Kautzman, AG, Koyama, R, Mardinly, AR, Yamasaki, R, Ransohoff, RM, Greenberg, ME, Barres, BA, Stevens, B. Microglia sculpt postnatal neural circuits in an activity and complement‐dependent manner. Neuron 2012, 74:691–705.
Beattie, EC, Stellwagen, D, Morishita, W, Bresnahan, JC, Ha, BK, Von Zastrow, M, Beattie, MS, Malenka, RC. Control of synaptic strength by glial TNFα. Science 2002, 295:2282–2285.
Bezzi, P, Gundersen, V, Galbete, JL, Seifert, G, Steinhäuser, C, Pilati, E, Volterra, A. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 2004, 7:613–620.
Perea, G, Navarrete, M, Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009, 32:421–431.
Abbott, NJ, Rönnbäck, L, Hansson, E. Astrocyte‐endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006, 7:41–53.
Molofsky, AV, Kelley, KW, Tsai, H‐H, Redmond, SA, Chang, SM, Madireddy, L, Chan, JR, Baranzini, SE, Ullian, EM, Rowitch, DH. Astrocyte‐encoded positional cues maintain sensorimotor circuit integrity. Nature 2014, 509:189–194.
Deneen, B, Ho, R, Lukaszewicz, A, Hochstim, CJ, Gronostajski, RM, Anderson, DJ. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 2006, 52:953–968.
Stolt, CC, Lommes, P, Sock, E, Chaboissier, M‐C, Schedl, A, Wegner, M. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 2003, 17:1677–1689.
Rowitch, DH, Kriegstein, AR. Developmental genetics of vertebrate glial‐cell specification. Nature 2010, 468:214–222.
Genethliou, N, Panayiotou, E, Panayi, H, Orford, M, Mean, R, Lapathitis, G, Malas, S. Spatially distinct functions of PAX6 and NKX2.2 during gliogenesis in the ventral spinal cord. Biochem Biophys Res Commun 2009, 382:69–73.
Hochstim, C, Deneen, B, Lukaszewicz, A, Zhou, Q, Anderson, DJ. Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 2008, 133:510–522.
Muroyama, Y, Fujiwara, Y, Orkin, SH, Rowitch, DH. Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 2005, 438:360–363.
Zhou, Q, Anderson, DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 2002, 109:61–73.
Oland, LA, Tolbert, LP. Key interactions between neurons and glial cells during neural development in insects. Annu Rev Entomol 2003, 48:89–110.
Heiman, MG, Shaham, S. DEX‐1 and DYF‐7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell 2009, 137:344–355.
Bacaj, T, Tevlin, M, Lu, Y, Shaham, S. Glia are essential for sensory organ function in C. elegans. Science 2008, 322:744–747.
Colón‐Ramos, DA, Margeta, MA, Shen, K. Glia promote local synaptogenesis through UNC‐6 (netrin) signaling in C. elegans. Science 2007, 318:103–106.
Shao, Z, Watanabe, S, Christensen, R, Jorgensen, EM, Colón‐Ramos, DA. Synapse location during growth depends on glia location. Cell 2013, 154:337–350.
Fuentes‐Medel, Y, Logan, MA, Ashley, J, Ataman, B, Budnik, V, Freeman, MR. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol 2009, 7:e1000184.
Ward, S, Thomson, N, White, JG, Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 1975, 160:313–337.
Doroquez, DB, Berciu, C, Anderson, JR, Sengupta, P, Nicastro, D. A high‐resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife 2014, 3:e01948.
White, JG, Southgate, E, Thomson, JN, Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986, 314:1–340.
Bargmann,, CI. Chemosensation in C. elegans, WormBook, ed. The C. elegans Research Community, WormBook. doi/10.1895/wormbook.1.123.1. http://www.wormbook.org. (Accessed October 25, 2006).
Perkins, LA, Hedgecock, EM, Thomson, JN, Culotti, JG. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 1986, 117:456–487.
Wadsworth, WG, Bhatt, H, Hedgecock, EM. Neuroglia and pioneer neurons express UNC‐6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 1996, 16:35–46.
Yoshimura, S, Murray, JI, Lu, Y, Waterston, RH, Shaham, S. mls‐2 and vab‐3 Control glia development, hlh‐17/Olig expression and glia‐dependent neurite extension in C. elegans. Dev Camb Engl 2008, 135:2263–2275.
Hao, L, Johnsen, R, Lauter, G, Baillie, D, Bürglin, TR. Comprehensive analysis of gene expression patterns of hedgehog‐related genes. BMC Genomics 2006, 7:280.
Perens, EA, Shaham, S. C. elegans daf‐6 encodes a patched‐related protein required for lumen formation. Dev. Cell 2005, 8:893–906.
Oikonomou, G, Perens, EA, Lu, Y, Watanabe, S, Jorgensen, EM, Shaham, S. Opposing activities of LIT‐1/NLK and DAF‐6/patched‐related direct sensory compartment morphogenesis in C. elegans. PLoS Biol 2011, 9:e1001121.
Garcia, ADR, Petrova, R, Eng, L, Joyner, AL. Sonic hedgehog regulates discrete populations of astrocytes in the adult mouse forebrain. J Neurosci 2010, 30:13597–13608.
Orentas, DM, Hayes, JE, Dyer, KL, Miller, RH. Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Dev Camb Engl 1999, 126:2419–2429.
Sulston, JE, Schierenberg, E, White, JG, Thomson, JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64–119.
Felton, CM, Johnson, CM. Modulation of dopamine‐dependent behaviors by the Caenorhabditis elegans Olig homolog HLH‐17. J Neurosci Res 2011, 89:1627–1636.
McMiller, TL, Johnson, CM. Molecular characterization of HLH‐17, a C. elegans bHLH protein required for normal larval development. Gene 2005, 356:1–10.
Han, L, Wang, Y, Sangaletti, R, D`Urso, G, Lu, Y, Shaham, S, Bianchi, L. Two novel DEG/ENaC channel subunits expressed in glia are needed for nose‐touch sensitivity in Caenorhabditis elegans. J Neurosci 2013, 33:936–949.
Wang, Y, Apicella, A, Lee, S‐K, Ezcurra, M, Slone, RD, Goldmit, M, Schafer, WR, Shaham, S, Driscoll, M, Bianchi, L. A glial DEG/ENaC channel functions with neuronal channel DEG‐1 to mediate specific sensory functions in C. elegans. EMBO J 2008, 27:2388–2399.
Wang, Y, D`Urso, G, Bianchi, L. Knockout of glial channel ACD‐1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons. J Neurophysiol 2012, 107:148–158.
Procko, C, Lu, Y, Shaham, S. Glia delimit shape changes of sensory neuron receptive endings in C. elegans. Dev Camb Engl 2011, 138:1371–1381.
Labouesse, M, Hartwieg, E, Horvitz, HR. The Caenorhabditis elegans LIN‐26 protein is required to specify and/or maintain all non‐neuronal ectodermal cell fates. Dev Camb Engl 1996, 122:2579–2588.
Tucker, M, Sieber, M, Morphew, M, Han, M. The Caenorhabditis elegans aristaless orthologue, alr‐1, is required for maintaining the functional and structural integrity of the amphid sensory organs. Mol Biol Cell 2005, 16:4695–4704.
Boulin, T, Hobert, O. From genes to function: the C. elegans genetic toolbox. WIREs Dev Biol 2012, 1:114–137.
Gerstein, MB, Lu, ZJ, Van Nostrand, EL, Cheng, C, Arshinoff, BI, Liu, T, Yip, KY, Robilotto, R, Rechtsteiner, A, Ikegami, K, et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 2010, 330:1775–1787.
Hobert, O. Regulation of terminal differentiation programs in the nervous system. Annu Rev Cell Dev Biol 2011, 27:681–696.
Hobert, O. Neurogenesis in the nematode Caenorhabditis elegans, WormBook, ed. The C. elegans Research Community, WormBook. doi/10.1895/wormbook.1.12.2. http://www.wormbook.org. (Accessed October 4, 2010).