Sulston, JE, Schierenberg, E, White, JG, Thomson, JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64–119.
Seydoux, G, Fire, A. Soma‐germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 1994, 120:2823–2834.
Powell‐Coffman, JA, Knight, J, Wood, WB. Onset of C. elegans gastrulation is blocked by inhibition of embryonic transcription with an RNA polymerase antisense RNA. Dev Biol 1996, 178:472–483.
Lyczak, R, Gomes, J‐E, Bowerman, B. Heads or tails: cell polarity and axis formation in the early Caenorhabditis elegans embryo. Dev Cell 2002, 3:157–166.
Rose, LS, Kemphues, KJ. Early patterning of the C. elegans embryo. Annu Rev Genet 1998, 32:521–545.
Kemphues, KJ, Priess, JR, Morton, DG, Cheng, NS. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 1988, 52:311–320.
Goldstein, B, Macara, IG. The PAR proteins: fundamental players in animal cell polarization. Dev Cell 2007, 13:609–622.
Kemphues, K. PARsing embryonic polarity. Cell 2000, 101:345–348.
Schubert, CM, Lin, R, de Vries, CJ, Plasterk, RH, Priess, JR. MEX‐5 and MEX‐6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 2000, 5:671–682.
Guedes, S, Priess, JR. The C. elegans MEX‐1 protein is present in germline blastomeres and is a P granule component. Development 1997, 124:731–739.
Draper, BW, Mello, CC, Bowerman, B, Hardin, J, Priess, JR. MEX‐3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 1996, 87:205–216.
Mello, CC, Draper, BW, Krause, M, Weintraub, H, Priess, JR. The pie‐1 and mex‐1 genes and maternal control of blastomere identity in early C. elegans embryos. Cell 1992, 70:163–176.
Tabara, H, Hill, RJ, Mello, CC, Priess, JR, Kohara, Y. pos‐1 encodes a cytoplasmic zinc‐finger protein essential for germline specification in C. elegans. Development 1999, 126:1–11.
Strome, S, Wood, WB. Immunofluorescence visualization of germ‐line‐specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc Natl Acad Sci USA 1982, 79:1558–1562.
Misteli, T. The concept of self‐organization in cellular architecture. J Cell Biol 2001, 155:181–186.
Hoege, C, Hyman, AA. Principles of PAR polarity in Caenorhabditis elegans embryos. Nat Rev Mol Cell Biol 2013, 14:315–322.
Motegi, F, Seydoux, G. The PAR network: redundancy and robustness in a symmetry‐breaking system. Philos Trans R Soc B 2013, 368:20130010.
Gönczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 2008, 9:355–366.
Tabuse, Y, Izumi, Y, Piano, F, Kemphues, KJ, Miwa, J, Ohno, S. Atypical protein kinase C cooperates with PAR‐3 to establish embryonic polarity in Caenorhabditis elegans. Development 1998, 125:3607–3614.
Etemad‐Moghadam, B, Guo, S, Kemphues, KJ. Asymmetrically distributed PAR‐3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 1995, 83:743–752.
Watts, JL, Etemad‐Moghadam, B, Guo, S, Boyd, L, Draper, BW, Mello, CC, Priess, JR, Kemphues, KJ. par‐6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR‐3. Development 1996, 122:3133–3140.
Guo, S, Kemphues, KJ. par‐1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995, 81:611–620.
Boyd, L, Guo, S, Levitan, D, Stinchcomb, DT, Kemphues, KJ. PAR‐2 is asymmetrically distributed and promotes association of P granules and PAR‐1 with the cortex in C. elegans embryos. Development 1996, 122:3075–3084.
Morton, DG, Shakes, DC, Nugent, S, Dichoso, D, Wang, W, Golden, A, Kemphues, KJ. The Caenorhabditis elegans par‐5 gene encodes a 14‐3‐3 protein required for cellular asymmetry in the early embryo. Dev Biol 2002, 241:47–58.
Watts, JL, Morton, DG, Bestman, J, Kemphues, KJ. The C. elegans par‐4 gene encodes a putative serine‐threonine kinase required for establishing embryonic asymmetry. Development 2000, 127:1467–1475.
Cheeks, RJ, Canman, JC, Gabriel, WN, Meyer, N, Strome, S, Goldstein, B. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol 2004, 14:851–862.
Goehring, NW, Hoege, C, Grill, SW, Hyman, AA. PAR proteins diffuse freely across the anterior‐posterior boundary in polarized C. elegans embryos. J Cell Biol 2011, 193:583–594.
Robin, FB, McFadden, WM, Yao, B, Munro, EM. Single‐molecule analysis of cell surface dynamics in Caenorhabditis elegans embryos. Nat Methods 2014, 11:677–682.
Motegi, F, Zonies, S, Hao, Y, Cuenca, AA, Griffin, E, Seydoux, G. Microtubules induce self‐organization of polarized PAR domains in Caenorhabditis elegans zygotes. Nat Cell Biol 2011, 13:1361–1367.
Hao, Y, Boyd, L, Seydoux, G. Stabilization of cell polarity by the C. elegans RING protein PAR‐2. Dev Cell 2006, 10:199–208.
Benton, R, St Johnston, D. A conserved oligomerization domain in drosophila Bazooka/PAR‐3 is important for apical localization and epithelial polarity. Curr Biol 2003, 13:1330–1334.
Dawes, AT, Munro, EM. PAR‐3 oligomerization may provide an actin‐independent mechanism to maintain distinct Par protein domains in the early Caenorhabditis elegans embryo. Biophys J 2011, 101:1412–1422.
Zonies, S, Motegi, F, Hao, Y, Seydoux, G. Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR‐2. Development 2010, 137:1669–1677.
Goehring, NW, Trong, PK, Bois, JS, Chowdhury, D, Nicola, EM, Hyman, AA, Grill, SW. Polarization of PAR proteins by advective triggering of a pattern‐forming system. Science 2011, 334:1137–1141.
Goldstein, B, Hird, SN. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 1996, 122:1467–1474.
Munro, E, Nance, J, Priess, JR. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior‐posterior polarity in the early C. elegans embryo. Dev Cell 2004, 7:413–424.
Munro, E, Bowerman, B. Cellular symmetry breaking during Caenorhabditis elegans development. Cold Spring Harb Perspect Biol 2009, 1:a003400.
Cowan, CR, Hyman, AA. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 2004, 431:92–96.
Cuenca, AA, Schetter, A, Aceto, D, Kemphues, K, Seydoux, G. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 2003, 130:1255–1265.
Motegi, F, Sugimoto, A. Sequential functioning of the ECT‐2 RhoGEF, RHO‐1 and CDC‐42 establishes cell polarity in Caenorhabditis elegans embryos. Nat Cell Biol 2006, 8:978–985.
Schonegg, S, Hyman, AA. CDC‐42 and RHO‐1 coordinate acto‐myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development 2006, 133:3507–3516.
Beatty, A, Morton, D, Kemphues, K. The C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR‐2 to maintain polarity in the early embryo. Development 2010, 137:3995–4004.
Hoege, C, Constantinescu, A‐T, Schwager, A, Goehring, NW, Kumar, P, Hyman, AA. LGL can partition the cortex of one‐cell Caenorhabditis elegans embryos into two domains. Curr Biol 2010, 20:1296–1303.
Aceto, D, Beers, M, Kemphues, KJ. Interaction of PAR‐6 with CDC‐42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Dev Biol 2006, 299:386–397.
Kay, AJ, Hunter, CP. CDC‐42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr Biol 2001, 11:474–481.
Gotta, M, Abraham, MC, Ahringer, J. CDC‐42 controls early cell polarity and spindle orientation in C. elegans. Curr Biol 2001, 11:482–488.
Nakayama, Y, Shivas, JM, Poole, DS, Squirrell, JM, Kulkoski, JM, Schleede, JB, Skop, AR. Dynamin participates in the maintenance of anterior polarity in the Caenorhabditis elegans embryo. Dev Cell 2009, 16:889–900.
Schenk, C, Bringmann, H, Hyman, AA, Cowan, CR. Cortical domain correction repositions the polarity boundary to match the cytokinesis furrow in C. elegans embryos. Development 2010, 137:1743–1753.
Pagano, JM, Farley, BM, Mccoig, LM, Ryder, SP. Molecular basis of RNA recognition by the embryonic polarity determinant MEX‐5. J Biol Chem 2007, 282:8883–8894.
Wang, JT, Seydoux, G. Germ cell specification. Adv Exp Med Biol 2013, 757:17–39.
Griffin, EE, Odde, DJ, Seydoux, G. Regulation of the MEX‐5 gradient by a spatially segregated kinase/phosphatase cycle. Cell 2011, 146:955–968.
Tenlen, JR, Molk, JN, London, N, Page, BD, Priess, JR. MEX‐5 asymmetry in one‐cell C. elegans embryos requires PAR‐4‐ and PAR‐1‐dependent phosphorylation. Development 2008, 135:3665–3675.
Labbé, J‐C, Pacquelet, A, Marty, T, Gotta, M. A genomewide screen for suppressors of par‐2 uncovers potential regulators of PAR protein‐dependent cell polarity in Caenorhabditis elegans. Genetics 2006, 174:285–295.
Kaymak, E, Wee, LM, Ryder, SP. Structure and function of nematode RNA‐binding proteins. Curr Opin Struct Biol 2010, 20:305–312.
Brooks, SA, Blackshear, PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta Gene Regul Mech 2013, 1829:666–679.
Lai, WS, Carballo, E, Strum, JR, Kennington, EA, Phillips, RS, Blackshear, PJ. Evidence that tristetraprolin binds to AU‐rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 1999, 19:4311–4323.
Detwiler, MR, Reuben, M, Li, X, Rogers, E, Lin, R. Two zinc finger proteins, OMA‐1 and OMA‐2, are redundantly required for oocyte maturation in C. elegans. Dev Cell 2001, 1:187–199.
Mello, CC, Schubert, C, Draper, B, Zhang, W, Lobel, R, Priess, JR. The PIE‐1 protein and germline specification in C. elegans embryos. Nature 1996, 382:710–712.
Tenenhaus, C, Schubert, C, Seydoux, G. Genetic requirements for PIE‐1 localization and inhibition of gene expression in the embryonic germ lineage of Caenorhabditis elegans. Dev Biol 1998, 200:212–224.
Kaymak, E, Ryder, SP. RNA recognition by the Caenorhabditis elegans oocyte maturation determinant OMA‐1. J Biol Chem 2013, 288:30463–30472.
Farley, BM, Pagano, JM, Ryder, SP. RNA target specificity of the embryonic cell fate determinant POS‐1. RNA 2008, 14:2685–2697.
Guven‐Ozkan, T, Nishi, Y, Robertson, SM, Lin, R. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF‐4. Cell 2008, 135:149–160.
Tenenhaus, C, Subramaniam, K, Dunn, MA, Seydoux, G. PIE‐1 is a bifunctional protein that regulates maternal and zygotic gene expression in the embryonic germ line of Caenorhabditis elegans. Genes Dev 2001, 15:1031–1040.
Ghosh, D, Seydoux, G. Inhibition of transcription by the Caenorhabditis elegans germline protein PIE‐1: genetic evidence for distinct mechanisms targeting initiation and elongation. Genetics 2008, 178:235–243.
Zhang, F, Barboric, M, Blackwell, TK, Peterlin, BM. A model of repression: CTD analogs and PIE‐1 inhibit transcriptional elongation by P‐TEFb. Genes Dev 2003, 17:748–758.
DeRenzo, C, Reese, KJ, Seydoux, G. Exclusion of germ plasm proteins from somatic lineages by cullin‐dependent degradation. Nature 2003, 424:685–689.
Daniels, BR, Dobrowsky, TM, Perkins, EM, Sun, SX, Wirtz, D. MEX‐5 enrichment in the C. elegans early embryo mediated by differential diffusion. Development 2010, 137:2579–2585.
Schlaitz, A‐L, Srayko, M, Dammermann, A, Quintin, S, Wielsch, N, MacLeod, I, de Robillard, Q, Zinke, A, Yates, JR, Müller‐Reichert, T, et al. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 2007, 128:115–127.
Lipkow, K, Odde, DJ. Model for protein concentration gradients in the cytoplasm. Cel Mol Bioeng 2008, 1:84–92.
Daniels, BR, Perkins, EM, Dobrowsky, TM, Sun, SX, Wirtz, D. Asymmetric enrichment of PIE‐1 in the Caenorhabditis elegans zygote mediated by binary counterdiffusion. J Cell Biol 2009, 184:473–479.
Gregor, T, Wieschaus, EF, McGregor, AP, Bialek, W, Tank, DW. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 2007, 130:141–152.
Muller, P, Rogers, KW, Yu, SR, Brand, M, Schier, AF. Morphogen transport. Development 2013, 140:1621–1638.
Kiekebusch,, D.; Thanbichler,, M. Spatiotemporal organization of microbial cells by protein concentration gradients. Trends Microbiol 2013 22: 65‐73.
Kiekebusch, D, Michie, KA, Essen, L‐O, Löwe, J, Thanbichler, M. Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol Cell 2012, 46:245–259.
Brown, GC, Kholodenko, BN. Spatial gradients of cellular phospho‐proteins. FEBS Lett 1999, 457:452–454.
Kholodenko, BN, Hancock, JF, Kolch, W. Signalling ballet in space and time. Nat Rev Mol Cell Biol 2010, 11:414–426.
Fuller, BG. Self‐organization of intracellular gradients during mitosis. Cell Div 2010, 5:5.
Updike, D, Strome, S. P granule assembly and function in Caenorhabditis elegans germ cells. J Androl 2010, 31:53–60.
Voronina, E. The diverse functions of germline P‐granules in Caenorhabditis elegans. Mol Reprod Dev 2013, 80:624–631.
Ogura, K‐I, Kishimoto, N, Mitani, S, Gengyo‐Ando, K, Kohara, Y. Translational control of maternal glp‐1 mRNA by POS‐1 and its interacting protein SPN‐4 in Caenorhabditis elegans. Development 2003, 130:2495–2503.
Zhang, Y, Yan, L, Zhou, Z, Yang, P, Tian, E, Zhang, K, Zhao, Y, Li, Z, Song, B, Han, J, et al. SEPA‐1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 2009, 136:308–321.
Reese, K, Dunn, M, Waddle, J, Seydoux, G. Asymmetric segregation of PIE‐1 in C. elegans is mediated by two complementary mechanisms that act through seprate PIE‐1 protein domains. Mol Cell 2000, 6:445–455.
Pitt, JN, Schisa, JA, Priess, JR. P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA. Dev Biol 2000, 219:315–333.
Gruidl, ME, Smith, PA, Kuznicki, KA, McCrone, JS, Kirchner, J, Roussell, DL, Strome, S, Bennett, KL. Multiple potential germ‐line helicases are components of the germ‐line‐specific P granules of Caenorhabditis elegans. Proc Natl Acad Sci USA 1996, 93:13837–13842.
Kawasaki, I, Shim, YH, Kirchner, J, Kaminker, J, Wood, WB, Strome, S. PGL‐1, a predicted RNA‐binding component of germ granules, is essential for fertility in C. elegans. Cell 1998, 94:635–645.
Kawasaki, I, Amiri, A, Fan, Y, Meyer, N, Dunkelbarger, S, Motohashi, T, Karashima, T, Bossinger, O, Strome, S. The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics 2004, 167:645–661.
Kuznicki, KA, Smith, PA, Leung‐Chiu, WM, Estevez, AO, Scott, HC, Bennett, KL. Combinatorial RNA interference indicates GLH‐4 can compensate for GLH‐1; these two P granule components are critical for fertility in C. elegans. Development 2000, 127:2907–2916.
Updike, DL, Knutson, AK, Egelhofer, TA, Campbell, AC, Strome, S. Germ‐Granule Ccomponents prevent somatic development in the C. elegans germline. Curr Biol 2014, 24:970–975.
Gallo, CM, Wang, JT, Motegi, F, Seydoux, G. Cytoplasmic partitioning of P granule components is not required to specify the germline in C. elegans. Science 2010, 330:1685–1689.
Brangwynne, CP, Eckmann, CR, Courson, DS, Rybarska, A, Hoege, C, Gharakhani, J, Jülicher, F, Hyman, AA. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 2009, 324:1729–1732.
Hubstenberger, A, Noble, SL, Cameron, C, Evans, TC. Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev Cell 2013, 27:161–173.
Sheth, U, Pitt, J, Dennis, S, Priess, JR. Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells. Development 2010, 137:1305–1314.
Lee, CF, Brangwynne, CP, Gharakhani, J, Hyman, AA, Jülicher, F. Spatial organization of the cell cytoplasm by position‐dependent phase separation. Phys Rev Lett 2013, 111:088101.
Brangwynne, CP. Phase transitions and size scaling of membrane‐less organelles. J Cell Biol 2013, 203:875–881.
Weber, SC, Brangwynne, CP. Getting RNA and protein in phase. Cell 2012, 149:1188–1191.
Kedersha, N, Ivanov, P, Anderson, P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 2013, 38:494–506.
Li, P, Banjade, S, Cheng, H‐C, Kim, S, Chen, B, Guo, L, Llaguno, M, Hollingsworth, JV, King, DS, Banani, SF, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012, 483:336–340.
Han, TW, Kato, M, Xie, S, Wu, LC, Mirzaei, H, Pei, J, Chen, M, Xie, Y, Allen, J, Xiao, G, et al. Cell‐free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 2012, 149:768–779.
Malinovska, L, Kroschwald, S, Alberti, S. Protein disorder, prion propensities, and self‐organizing macromolecular collectives. Biochim Biophys Acta Proteins Proteomics 2013, 1834:918–931.
Hanazawa, M, Yonetani, M, Sugimoto, A. PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans. J Cell Biol 2011, 192:929–937.
Updike, DL, Hachey, SJ, Kreher, J, Strome, S. P granules extend the nuclear pore complex environment in the C. elegans germ line. J Cell Biol 2011, 192:939–948.
Niwayama, R, Shinohara, K, Kimura, A. Hydrodynamic property of the cytoplasm is sufficient to mediate cytoplasmic streaming in the Caenorhabiditis elegans embryo. Proc Natl Acad Sci USA 2011, 108:11900–11905.
Hird, SN, Paulsen, JE, Strome, S. Segregation of germ granules in living Caenorhabditis elegans embryos: cell‐type‐specific mechanisms for cytoplasmic localisation. Development 1996, 122:1303–1312.
Shimada, M, Yokosawa, H, Kawahara, H. OMA‐1 is a P granules‐associated protein that is required for germline specification in Caenorhabditis elegans embryos. Genes Cells 2006, 11:383–396.
Seydoux, G, Dunn, MA. Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 1997, 124:2191–2201.
Seydoux, G, Mello, C, Pettitt, J, Wood, W, Priess, J. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 1996, 382:713–716.
Oldenbroek, M, Robertson, SM, Guven‐Ozkan, T, Spike, C, Greenstein, D, Lin, R. Regulation of maternal Wnt mRNA translation in C. elegans embryos. Development 2013, 140:4614–4623.
Farley, BM, Ryder, SP. POS‐1 and GLD‐1 repress glp‐1 translation through a conserved binding site cluster. Mol Biol Cell 2012, 23:4473–4483.
Jadhav, S, Rana, M, Subramaniam, K. Multiple maternal proteins coordinate to restrict the translation of C. elegans nanos‐2 to primordial germ cells. Development 2008, 135:1803–1812.
Oldenbroek, M, Robertson, SM, Guven‐Ozkan, T, Gore, S, Nishi, Y, Lin, R. Multiple RNA‐binding proteins function combinatorially to control the soma‐restricted expression pattern of the E3 ligase subunit ZIF‐1. Dev Biol 2012, 363:388–398.
Guven‐Ozkan, T, Robertson, SM, Nishi, Y, Lin, R. zif‐1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development 2010, 137:3373–3382.
Robertson, S, Lin, R. The oocyte‐to‐embryo transition. Adv Exp Med Biol 2013, 757:351–372.
Pellettieri, J, Reinke, V, Kim, SK, Seydoux, G. Coordinate activation of maternal protein degradation during the egg‐to‐embryo transition in C. elegans. Dev Cell 2003, 5:451–462.
Quintin, S, Mains, PE, Zinke, A, Hyman, AA. The mbk‐2 kinase is required for inactivation of MEI‐1/katanin in the one‐cell Caenorhabditis elegans embryo. EMBO Rep 2003, 4:1175–1181.
Pang, KM, Ishidate, T, Nakamura, K, Shirayama, M, Trzepacz, C, Schubert, CM, Priess, JR, Mello, CC. The minibrain kinase homolog, mbk‐2, is required for spindle positioning and asymmetric cell division in early C. elegans embryos. Dev Biol 2004, 265:127–139.
Nishi, Y, Rogers, E, Robertson, SM, Lin, R. Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2‐primed MEX‐5 and MEX‐6. Development 2008, 135:687–697.
Budirahardja, Y, Gönczy, P. Coupling the cell cycle to development. Development 2009, 136:2861–2872.
Noatynska, A, Tavernier, N, Gotta, M, Pintard, L. Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms? Open Biol 2013, 3:130083.
Budirahardja, Y, Gönczy, P. PLK‐1 asymmetry contributes to asynchronous cell division of C. elegans embryos. Development 2008, 135:1303–1313.
Rivers, DM, Moreno, S, Abraham, M, Ahringer, J. PAR proteins direct asymmetry of the cell cycle regulators Polo‐like kinase and Cdc25. J Cell Biol 2008, 180:877–885.
Chase, D, Serafinas, C, Ashcroft, N, Kosinski, M. The polo‐like kinase PLK‐1 is required for nuclear envelope breakdown and the completion of meiosis in Caenorhabditis elegans. Genesis 2000, 26:26–41.
Sumiyoshi, E, Sugimoto, A, Yamamoto, M. Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis in C. elegans. J Cell Sci 2002, 115:1403–1410.
Brauchle, M, Baumer, K, Gönczy, P. Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. Curr Biol 2003, 13:819–827.
Benkemoun, L, Descoteaux, C, Chartier, NT, Pintard, L, Labbe, J‐C. PAR‐4/LKB1 regulates DNA replication during asynchronous division of the early C. elegans embryo. J Cell Biol 2014, 205:447–455.
Wang, JT, Smith, J, Chen, BC, Schmidt, H, Rasoloson, D, Paix, A, Lambrus, BG, Calidas, D, Betzig, E, Seydoux, G. Regulation of RNA granule dynamics by phosphorylation of serine‐rich, intrinsically disordered proteins in C. elegans. eLife 2014, 3:e04591.