Wilson, SW, Houart, C. Early steps in the development of the forebrain. Dev Cell 2004, 6:167–181.
Hoch, RV, Rubenstein, JL, Pleasure, S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 2009, 20:378–386. doi:10.1016/j.semcdb.2009.02.005.
Dale, K, Sattar, N, Heemskerk, J, Clarke, JDW, Placzek, M, Dodd, J. Differential patterning of ventral midline cells by axial mesoderm is regulated by BMP7 and chordin. Development 1999, 126:397–408.
Chapman, SC, Brown, R, Lees, L, Schoenwolf, GC, Lumsden, A. Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev Dyn 2004, 229:668–676. doi:10.1002/dvdy.10491.
Erter, CE, Wilm, TP, Basler, N, Wright, CV, Solnica‐Krezel, L. Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 2001, 128:3571–3583.
Chatterjee, M, Li, JY. Patterning and compartment formation in the diencephalon. Front Neurosci 2012, 6:66. doi:10.3389/fnins.2012.00066.
Hatini, V, Tao, W, Lai, E. Expression of winged helix genes, BF‐1 and BF‐2, define adjacent domains within the developing forebrain and retina. J Neurobiol 1994, 25:1293–1309. doi:10.1002/neu.480251010.
Shimogori, T, Lee, DA, Miranda‐Angulo, A, Yang, Y, Wang, H, Jiang, L, Yoshida, AC, Kataoka, A, Mashiko, H, Avetisyan, M, et al. A genomic atlas of mouse hypothalamic development. Nat Neurosci 2010, 13:767–775. doi:10.1038/nn.2545.
Kapsimali, M, Caneparo, L, Houart, C, Wilson, SW. Inhibition of Wnt/Axin/β‐catenin pathway activity promotes ventral CNS midline tissue to adopt hypothalamic rather than floorplate identity. Development 2004, 131:5923–5933.
Kim, SH, Shin, J, Park, HC, Yeo, SY, Hong, SK, Han, S, Rhee, M, Kim, CH, Chitnis, AB, Huh, TL. Specification of an anterior neuroectoderm patterning by Frizzled8a‐mediated Wnt8b signalling during late gastrulation in zebrafish. Development 2002, 129:4443–4455.
Garda, AL, Puelles, L, Rubenstein, JL, Medina, L. Expression patterns of Wnt8b and Wnt7b in the chicken embryonic brain suggest a correlation with forebrain patterning centers and morphogenesis. Neuroscience 2002, 113:689–698.
Braun, MM, Etheridge, A, Bernard, A, Robertson, CP, Roelink, H. Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development 2003, 130:5579–5587. doi:10.1242/dev.00685.
Lagutin, OV, Zhu, CC, Kobayashi, D, Topczewski, J, Shimamura, K, Puelles, L, Russell, HR, McKinnon, PJ, Solnica‐Krezel, L, Oliver, G. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 2003, 17:368–379.
Chiang, C, Litingtung, Y, Lee, E, Young, KE, Corden, JL, Westphal, H, Beachy, PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996, 383:407–413. doi:10.1038/383407a0.
Mathieu, J, Barth, A, Rosa, FM, Wilson, SW, Peyrieras, N. Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development 2002, 129:3055–3065.
Dale, JK, Vesque, C, Lints, TJ, Sampath, TK, Furley, A, Dodd, J, Placzek, M. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 1997, 90:257–269.
Zhao, L, Zevallos, SE, Rizzoti, K, Jeong, Y, Lovell‐Badge, R, Epstein, DJ. Disruption of SoxB1‐dependent Sonic hedgehog expression in the hypothalamus causes septo‐optic dysplasia. Dev Cell 2012, 22:585–596. doi:10.1016/j.devcel.2011.12.023.
Geng, X, Speirs, C, Lagutin, O, Inbal, A, Liu, W, Solnica‐Krezel, L, Jeong, Y, Epstein, DJ, Oliver, G. Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev Cell 2008, 15:236–247. doi:10.1016/j.devcel.2008.07.003.
Jeong, Y, Leskow, FC, El‐Jaick, K, Roessler, E, Muenke, M, Yocum, A, Dubourg, C, Li, X, Geng, X, Oliver, G, et al. Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nat Genet 2008, 40:1348–1353. doi:10.1038/ng.230.
Ohyama, K, Das, R, Placzek, M. Temporal progression of hypothalamic patterning by a dual action of BMP. Development 2008, 135:3325–3331. doi:10.1242/dev.027078.
Manning, L, Ohyama, K, Saeger, B, Hatano, O, Wilson, SA, Logan, M, Placzek, M. Regional morphogenesis in the hypothalamus: a BMP‐Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev Cell 2006, 11:873–885.
Zeltser, M. Shh‐dependent formation of the ZLI is opposed by signals from the dorsal diencephalon. Development 2005, 132:2023–2033. doi:10.1242/dev.01783.
Vieira, C, Martinez, S. Sonic hedgehog from the basal plate and the zona limitans intrathalamica exhibits differential activity on diencephalic molecular regionalization and nuclear structure. Neuroscience 2006, 143:129–140. doi:10.1016/j.neuroscience.2006.08.032.
Alvarez‐Bolado, G, Paul, FA, Blaess, S. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Neural Dev 2012, 7:4.
Szabo, NE, Zhao, T, Cankaya, M, Theil, T, Zhou, X, Alvarez‐Bolado, G. Role of neuroepithelial Sonic hedgehog in hypothalamic patterning. J Neurosci 2009, 29:6989–7002.
Blackshaw, S, Scholpp, S, Placzek, M, Ingraham, H, Simerly, R, Shimogori, T. Molecular pathways controlling development of thalamus and hypothalamus: from neural specification to circuit formation. J Neurosci 2010, 30:14925–14930.
Beccari, L, Marco‐Ferreres, R, Bovolenta, P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 2013, 130:95–111. doi:10.1016/j.mod.2012.10.004.
Scholpp, S, Wolf, O, Brand, M, Lumsden, A. Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development 2006, 133:855–864.
Vieira, C, Pombero, A, Garcia‐Lopez, R, Gimeno, L, Echevarria, D, Martinez, S. Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 2010, 54:7–20. doi:10.1387/ijdb.092853cv.
Ratié, L, Ware, M, Barloy‐Hubler, F, Rome, H, Gicquel, I, Dubourg, C, David, V, Dupe, V. Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development. Neural Dev 2013, 8:25.
Machluf, Y, Gutnick, A, Levkowitz, G. Development of the zebrafish hypothalamus. Ann N Y Acad Sci 2011, 1220:93–105. doi:10.1111/j.1749-6632.2010.05945.x.
Rohr, KB, Barth, KA, Varga, ZM, Wilson, SW. The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. Neuron 2001, 29:341–351.
Kobayashi, D, Kobayashi, M, Matsumoto, K, Ogura, T, Nakafuku, M, Shimamura, K. Early subdivisions in the neural plate define distinct competence for inductive signals. Development 2002, 129:83–93.
Byerly, MS, Blackshaw, S. Vertebrate retina and hypothalamus development. WIREs Syst Biol Med 2009, 1:380–389. doi:10.1002/wsbm.22.
Shimada, M, Nakamura, T. Time of neuron origin in mouse hypothalamic nuclei. Exp Neurol 1973, 41:163–173.
Markakis, EA, Swanson, LW. Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system. Brain Res Rev 1997, 24:255–291.
Padilla, SL, Carmody, JS, Zeltser, LM. Pomc‐expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat Med 2010, 16:403–405. doi:10.1038/nm.2126.
Ishibashi, M, McMahon, AP. A Sonic hedgehog‐dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development 2002, 129:4807–4819.
Lee, JE, Wu, SF, Goering, LM, Dorsky, RI. Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 2006, 133:4451–4461.
Wang, X, Lee, JE, Dorsky, RI. Identification of Wnt‐responsive cells in the zebrafish hypothalamus. Zebrafish 2009, 6:49–58. doi:10.1089/zeb.2008.0570.
Aujla, PK, Naratadam, GT, Xu, L, Raetzman, LT. Notch/Rbpjκ signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 2013, 140:3511–3521. doi:10.1242/dev.098681.
http://www.brain‐map.org/
Lu, F, Kar, D, Gruenig, N, Zhang, ZW, Cousins, N, Rodgers, HM, Swindell, EC, Jamrich, M, Schuurmans, C, Mathers, PH, et al. Rax is a selector gene for mediobasal hypothalamic cell types. J Neurosci 2013, 33:259–272.
Roy, A, de Melo, J, Chaturvedi, D, Thein, T, Cabrera‐Socorro, A, Houart, C, Meyer, G, Blackshaw, S, Tole, S. LHX2 is necessary for the maintenance of optic identity and for the progression of optic morphogenesis. J Neurosci 2013, 33:6877–6884.
VanDunk, C, Hunter, LA, Gray, PA. Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J Neurosci 2011, 31:6457–6467.
Bedont, JL, LeGates, TA, Slat, EA, Byerly, MS, Wang, H, Hu, J, Rupp, AC, Qian, J, Wong, GW, Herzog, ED, et al. Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep 2014, 7:609–622. doi:10.1016/j.celrep.2014.03.060.
Dalal, J, Roh, JH, Maloney, SE, Akuffo, A, Shah, S, Yuan, H, Wamsley, B, Jones, WB, Strong, C, Gray, PA, et al. Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes Dev 2013, 27:565–578. doi:10.1101/gad.207654.112.
Kovacs, S, Lissak, K, Endroczi, E. Effect of the lesion of paraventricular nucleus on the function of the pituitary, thyroid, adrenal cortex and gonadal systems. Acta Physiol Hung 1959, 15:137–144.
Wolter, R. Measurement of secretory activity of cells of the supraoptic nucleus in various experimental conditions. Archives De Biologie 1956, 67:555–568.
Pak, T, Yoo, S, Miranda‐Angulo, AM, Wang, H, Blackshaw, S. Rax‐CreERT2 knock‐in mice: a tool for selective and conditional gene deletion in progenitor cells and radial glia of the retina and hypothalamus. PLoS ONE 2014, 9:e90381. doi:10.1371/journal.pone.0090381.
Blechman, J, Borodovsky, N, Eisenberg, M, Nabel‐Rosen, H, Grimm, J, Levkowitz, G. Specification of hypothalamic neurons by dual regulation of the homeodomain protein Orthopedia. Development 2007, 134:4417–4426. doi:10.1242/dev.011262.
Borodovsky, N, Ponomaryov, T, Frenkel, S, Levkowitz, G. Neural protein Olig2 acts upstream of the transcriptional regulator Sim1 to specify diencephalic dopaminergic neurons. Dev Dyn 2009, 238:826–834. doi:10.1002/dvdy.21894.
Michaud, JL, DeRossi, C, May, NR, Holdener, BC, Fan, CM. ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev 2000, 90:253–261.
Acampora, D, Postiglione, MP, Avantaggiato, V, Di Bonito, M, Vaccarino, FM, Michaud, J, Simeone, A. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 1999, 13:2787–2800.
Goshu, E, Jin, H, Lovejoy, J, Marion, JF, Michaud, JL, Fan, CM. Sim2 contributes to neuroendocrine hormone gene expression in the anterior hypothalamus. Mol Endocrinol 2004, 18:1251–1262. doi:10.1210/me.2003-0372.
Hosoya, T, Oda, Y, Takahashi, S, Morita, M, Kawauchi, S, Ema, M, Yamamoto, M, Fujii‐Kuriyama, Y. Defective development of secretory neurones in the hypothalamus of Arnt2‐knockout mice. Genes Cells 2001, 6:361–374.
Michaud, JL, Rosenquist, T, May, NR, Fan, CM. Development of neuroendocrine lineages requires the bHLH‐PAS transcription factor SIM1. Genes Dev 1998, 12:3264–3275.
Ryu, S, Mahler, J, Acampora, D, Holzschuh, J, Erhardt, S, Omodei, D, Simeone, A, Driever, W. Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr Biol 2007, 17:873–880. doi:10.1016/j.cub.2007.04.003.
Wang, W, Lufkin, T. The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev Biol 2000, 227:432–449. doi:10.1006/dbio.2000.9902.
Levkowitz, G, Zeller, J, Sirotkin, HI, French, D, Schilbach, S, Hashimoto, H, Hibi, M, Talbot, WS, Rosenthal, A. Zinc finger protein too few controls the development of monoaminergic neurons. Nat Neurosci 2003, 6:28–33. doi:10.1038/nn979.
Schweitzer, J, Lohr, H, Bonkowsky, JL, Hubscher, K, Driever, W. Sim1a and Arnt2 contribute to hypothalamo‐spinal axon guidance by regulating Robo2 activity via a Robo3‐dependent mechanism. Development 2013, 140:93–106. doi:10.1242/dev.087825.
Tolson, KP, Gemelli, T, Gautron, L, Elmquist, JK, Zinn, AR, Kublaoui, BM. Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. J Neurosci 2010, 30:3803–3812.
Michaud, JL, Boucher, F, Melnyk, A, Gauthier, F, Goshu, E, Levy, E, Mitchell, GA, Himms‐Hagen, J, Fan, CM. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet 2001, 10:1465–1473.
Nakai, S, Kawano, H, Yudate, T, Nishi, M, Kuno, J, Nagata, A, Jishage, K, Hamada, H, Fujii, H, Kawamura, K. The POU domain transcription factor Brn‐2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev 1995, 9:3109–3121.
Schonemann, MD, Ryan, AK, McEvilly, RJ, O`Connell, SM, Arias, CA, Kalla, KA, Li, P, Sawchenko, PE, Rosenfeld, MG. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn‐2. Genes Dev 1995, 9:3122–3135.
Caqueret, A, Boucher, F, Michaud, JL. Laminar organization of the early developing anterior hypothalamus. Dev Biol 2006, 298:95–106.
Asbreuk, CH, van Doorninck, JH, Mansouri, A, Smidt, MP, Burbach, JP. Neurohypophysial dysmorphogenesis in mice lacking the homeobox gene Uncx4.1. J Mol Endocrinol 2006, 36:65–71.
Rabe, TI, Griesel, G, Blanke, S, Kispert, A, Leitges, M, van der Zwaag, B, Burbach, JP, Varoqueaux, F, Mansouri, A. The transcription factor Uncx4.1 acts in a short window of midbrain dopaminergic neuron differentiation. Neural Dev 2012, 7:39.
Aujla, PK, Bora, A, Monahan, P, Sweedler, JV, Raetzman, LT. The Notch effector gene Hes1 regulates migration of hypothalamic neurons, neuropeptide content and axon targeting to the pituitary. Dev Biol 2011, 353:61–71. doi:10.1016/j.ydbio.2011.02.018.
Brooks, LR, Chung, WC, Tsai, PS. Abnormal hypothalamic oxytocin system in fibroblast growth factor 8‐deficient mice. Endocrine 2010, 38:174–180. doi:10.1007/s12020-010-9366-9.
Tsai, PS, Brooks, LR, Rochester, JR, Kavanaugh, SI, Chung, WC. Fibroblast growth factor signaling in the developing neuroendocrine hypothalamus. Front Neuroendocrinol 2011, 32:95–107. doi:10.1016/j.yfrne.2010.11.002.
Jing, E, Nillni, EA, Sanchez, VC, Stuart, RC, Good, DJ. Deletion of the Nhlh2 transcription factor decreases the levels of the anorexigenic peptides alpha melanocyte‐stimulating hormone and thyrotropin‐releasing hormone and implicates prohormone convertases I and II in obesity. Endocrinology 2004, 145:1503–1513. doi:10.1210/en.2003-0834.
Dulcis, D, Jamshidi, P, Leutgeb, S, Spitzer, NC. Neurotransmitter switching in the adult brain regulates behavior. Science 2013, 340:449–453. doi:10.1126/science.1234152.
Moore, RY, Eichler, VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 1972, 42:201–206.
Stephan, FK, Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 1972, 69:1583–1586.
Clark, DD, Gorman, MR, Hatori, M, Meadows, JD, Panda, S, Mellon, PL. Aberrant development of the suprachiasmatic nucleus and circadian rhythms in mice lacking the homeodomain protein Six6. J Biol Rhythm 2013, 28:15–25. doi:10.1177/0748730412468084.
Hatori, M, Gill, S, Mure, LS, Goulding, M, O`Leary, DD, Panda, S. Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. Elife 2014, 3:e03357. doi:10.7554/eLife.03357.
Greenwood, M, Bordieri, L, Greenwood, MP, Rosso Melo, M, Colombari, DS, Colombari, E, Patton, JF, Murphy, D. Transcription factor CREB3L1 regulates vasopressin gene expression in the rat hypothalamus. J Neurosci 2014, 34:3810–3820.
Acosta‐Galvan, G, Yi, CX, van der Vliet, J, Jhamandas, JH, Panula, P, Angeles‐Castellanos, M, Del Carmen, BM, Escobar, C, Buijs, RM. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc Natl Acad Sci USA 2011, 108:5813–5818. doi:10.1073/pnas.1015551108.
Fuller, PM, Lu, J, Saper, CB. Differential rescue of light‐ and food‐entrainable circadian rhythms. Science 2008, 320:1074–1077. doi:10.1126/science.1153277.
Gooley, JJ, Schomer, A, Saper, CB. The dorsomedial hypothalamic nucleus is critical for the expression of food‐entrainable circadian rhythms. Nat Neurosci 2006, 9:398–407.
Landry, GJ, Yamakawa, GR, Webb, IC, Mear, RJ, Mistlberger, RE. The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food‐anticipatory activity in rats. J Biol Rhythm 2007, 22:467–478.
Kimura, S, Hara, Y, Pineau, T, Fernandez‐Salguero, P, Fox, CH, Ward, JM, Gonzalez, FJ. The T/ebp mouse: thyroid‐specific enhancer‐binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996, 10:60–69.
Yee, CL, Wang, Y, Anderson, S, Ekker, M, Rubenstein, JL. Arcuate nucleus expression of NKX2.1 and DLX and lineages expressing these transcription factors in neuropeptide Y(+), proopiomelanocortin(+), and tyrosine hydroxylase(+) neurons in neonatal and adult mice. J Comp Neurol 2009, 517:37–50. doi:10.1002/cne.22132.
Gold, RM, Quackenbush, PM, Kapatos, G. Obesity following combination of rostrolateral to VMH cut and contralateral mammillary area lesion. J Comp Physiol Psychol 1972, 79:210–218.
La Vaque, TJ, Rodgers, CH. Recovery of mating behavior in the female rat following VMH lesions. Physiol Behav 1975, 14:59–63.
McNay, DE, Pelling, M, Claxton, S, Guillemot, F, Ang, SL. Mash1 is required for generic and subtype differentiation of hypothalamic neuroendocrine cells. Mol Endocrinol 2006, 20:1623–1632. doi:10.1210/me.2005-0518.
Cheung, CC, Kurrasch, DM, Liang, JK, Ingraham, HA. Genetic labeling of steroidogenic factor‐1 (SF‐1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non‐SF‐1 neuronal cluster in the ventrolateral VMH. J Comp Neurol 2013, 521:1268–1288. doi:10.1002/cne.23226.
McClellan, KM, Parker, KL, Tobet, S. Development of the ventromedial nucleus of the hypothalamus. Front Neuroendocrinol 2006, 27:193–209.
Pelling, M, Anthwal, N, McNay, D, Gradwohl, G, Leiter, AB, Guillemot, F, Ang, SL. Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev Biol 2011, 349:406–416. doi:10.1016/j.ydbio.2010.11.007.
Kurrasch, DM, Cheung, CC, Lee, FY, Tran, PV, Hata, K, Ingraham, HA. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J Neurosci 2007, 27:13624–13634.
Ikeda, Y, Luo, X, Abbud, R, Nilson, JH, Parker, KL. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol 1995, 9:478–486. doi:10.1210/mend.9.4.7659091.
Shinoda, K, Lei, H, Yoshii, H, Nomura, M, Nagano, M, Shiba, H, Sasaki, H, Osawa, Y, Ninomiya, Y, Niwa, O, et al. Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz‐F1 disrupted mice. Dev Dyn 1995, 204:22–29. doi:10.1002/aja.1002040104.
Davis, AM, Seney, ML, Stallings, NR, Zhao, L, Parker, KL, Tobet, SA. Loss of steroidogenic factor 1 alters cellular topography in the mouse ventromedial nucleus of the hypothalamus. J Neurobiol 2004, 60:424–436. doi:10.1002/neu.20030.
Dellovade, TL, Young, M, Ross, EP, Henderson, R, Caron, K, Parker, K, Tobet, SA. Disruption of the gene encoding SF‐1 alters the distribution of hypothalamic neuronal phenotypes. J Comp Neurol 2000, 423:579–589.
Tran, PV, Lee, MB, Marin, O, Xu, B, Jones, KR, Reichardt, LF, Rubenstein, JR, Ingraham, HA. Requirement of the orphan nuclear receptor SF‐1 in terminal differentiation of ventromedial hypothalamic neurons. Mol Cell Neurosci 2003, 22:441–453.
Budefeld, T, Tobet, SA, Majdic, G. Altered position of cell bodies and fibers in the ventromedial region in SF‐1 knockout mice. Exp Neurol 2011, 232:176–184. doi:10.1016/j.expneurol.2011.08.021.
Majdic, G, Young, M, Gomez‐Sanchez, E, Anderson, P, Szczepaniak, LS, Dobbins, RL, McGarry, JD, Parker, KL. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 2002, 143:607–614. doi:10.1210/endo.143.2.8652.
Kim, KW, Li, S, Zhao, H, Peng, B, Tobet, SA, Elmquist, JK, Parker, KL, Zhao, L. CNS‐specific ablation of steroidogenic factor 1 results in impaired female reproductive function. Mol Endocrinol 2010, 24:1240–1250. doi:10.1210/me.2009-0206.
Zhao, L, Kim, KW, Ikeda, Y, Anderson, KK, Beck, L, Chase, S, Tobet, SA, Parker, KL. Central nervous system‐specific knockout of steroidogenic factor 1 results in increased anxiety‐like behavior. Mol Endocrinol 2008, 22:1403–1415. doi:10.1210/me.2008-0034.
Habiby, RL, Boepple, P, Nachtigall, L, Sluss, PM, Crowley, WF Jr, Jameson, JL. Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX‐1 mutations lead to combined hypothalmic and pituitary defects in gonadotropin production. J Clin Investig 1996, 98:1055–1062. doi:10.1172/JCI118866.
Ikeda, Y, Takeda, Y, Shikayama, T, Mukai, T, Hisano, S, Morohashi, KI. Comparative localization of Dax‐1 and Ad4BP/SF‐1 during development of the hypothalamic‐pituitary‐gonadal axis suggests their closely related and distinct functions. Dev Dyn 2001, 220:363–376. doi:10.1002/dvdy.1116.
Ito, M, Yu, R, Jameson, JL. DAX‐1 inhibits SF‐1‐mediated transactivation via a carboxy‐terminal domain that is deleted in adrenal hypoplasia congenita. Mol Cell Biol 1997, 17:1476–1483.
Kim, KW, Donato, J, Berglund, ED, Choi, YH, Kohno, D, Elias, CF, Dephinho, RA, Elmquist, JK. FOXO1 in the ventromedial hypothalamus regulates energy balance. J Clin Investig 2012, 122:2578–2589. doi:10.1172/JCI62848.
Aponte, Y, Atasoy, D, Sternson, SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 2011, 14:351–355. doi:10.1038/nn.2739.
Plant, TM, Krey, LC, Moossy, J, McCormack, JT, Hess, DL, Knobil, E. The arcuate nucleus and the control of gonadotropin and prolactin secretion in the female rhesus monkey (Macaca mulatta). Endocrinology 1978, 102:52–62. doi:10.1210/endo-102-1-52.
Dhillon, H, Zigman, JM, Ye, C, Lee, CE, McGovern, RA, Tang, V, Kenny, CD, Christiansen, LM, White, RD, Edelstein, EA, et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body‐weight homeostasis. Neuron 2006, 49:191–203.
Atkin, SD, Owen, BM, Bookout, AL, Cravo, RM, Lee, C, Elias, CF, Elmquist, JK, Kliewer, SA, Mangelsdorf, DJ. Nuclear receptor LRH‐1 induces the reproductive neuropeptide kisspeptin in the hypothalamus. Mol Endocrinol 2013, 27:598–605. doi:10.1210/me.2012-1371.
Diez‐Roux, G, Banfi, S, Sultan, M, Geffers, L, Anand, S, Rozado, D, Magen, A, Canidio, E, Pagani, M, Peluso, I, et al. A high‐resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 2011, 9:e1000582. doi:10.1371/journal.pbio.1000582.
de Souza, FS, Santangelo, AM, Bumaschny, V, Avale, ME, Smart, JL, Low, MJ, Rubinstein, M. Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting. Mol Cell Biol 2005, 25:3076–3086.
Fabbro, D, Tell, G, Pellizzari, L, Leonardi, A, Pucillo, C, Lonigro, R, Damante, G. Definition of the DNA‐binding specificity of TTF‐1 homeodomain by chromatographic selection of binding sequences. Biochem Biophys Res Commun 1995, 213:781–788. doi:10.1006/bbrc.1995.2198.
Morohashi, K, Honda, S, Inomata, Y, Handa, H, Omura, T. A common trans‐acting factor, Ad4‐binding protein, to the promoters of steroidogenic P‐450 s. J Biol Chem 1992, 267:17913–17919.
Huszar, D, Lynch, CA, Fairchild‐Huntress, V, Dunmore, JH, Fang, Q, Berkemeier, LR, Gu, W, Kesterson, RA, Boston, BA, Cone, RD, et al. Targeted disruption of the melanocortin‐4 receptor results in obesity in mice. Cell 1997, 88:131–141.
Yaswen, L, Diehl, N, Brennan, MB, Hochgeschwender, U. Obesity in the mouse model of pro‐opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 1999, 5:1066–1070. doi:10.1038/12506.
Carmody, JS, Wan, P, Accili, D, Zeltser, LM, Leibel, RL. Respective contributions of maternal insulin resistance and diet to metabolic and hypothalamic phenotypes of progeny. Obesity 2011, 19:492–499. doi:10.1038/oby.2010.245.
Luquet, S, Perez, FA, Hnasko, TS, Palmiter, RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 2005, 310:683–685. doi:10.1126/science.1115524.
Fox, DL, Good, DJ. Nescient helix‐loop‐helix 2 interacts with signal transducer and activator of transcription 3 to regulate transcription of prohormone convertase 1/3. Mol Endocrinol 2008, 22:1438–1448. doi:10.1210/me.2008-0010.
Wankhade, UD, Good, DJ. Melanocortin 4 receptor is a transcriptional target of nescient helix‐loop‐helix‐2. Mol Cell Endocrinol 2011, 341:39–47. doi:10.1016/j.mce.2011.05.022.
Good, DJ, Porter, FD, Mahon, KA, Parlow, AF, Westphal, H, Kirsch, IR. Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nat Genet 1997, 15:397–401. doi:10.1038/ng0497-397.
Poulin, G, Turgeon, B, Drouin, J. NeuroD1/β2 contributes to cell‐specific transcription of the proopiomelanocortin gene. Mol Cell Biol 1997, 17:6673–6682.
Sohn, JW, Xu, Y, Jones, JE, Wickman, K, Williams, KW, Elmquist, JK. Serotonin 2C receptor activates a distinct population of arcuate pro‐opiomelanocortin neurons via TRPC channels. Neuron 2011, 71:488–497. doi:10.1016/j.neuron.2011.06.012.
Williams, KW, Margatho, LO, Lee, CE, Choi, M, Lee, S, Scott, MM, Elias, CF, Elmquist, JK. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci 2010, 30:2472–2479.
Sakkou, M, Wiedmer, P, Anlag, K, Hamm, A, Seuntjens, E, Ettwiller, L, Tschop, MH, Treier, M. A role for brain‐specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell Metab 2007, 5:450–463.
Peng, CY, Mukhopadhyay, A, Jarrett, JC, Yoshikawa, K, Kessler, JA. BMP receptor 1A regulates development of hypothalamic circuits critical for feeding behavior. J Neurosci 2012, 32:17211–17224.
Li, H, Zeitler, PS, Valerius, MT, Small, K, Potter, SS. Gsh‐1, an orphan Hox gene, is required for normal pituitary development. EMBO J 1996, 15:714–724.
Wang, W, Grimmer, JF, Van De Water, TR, Lufkin, T. Hmx2 and Hmx3 homeobox genes direct development of the murine inner ear and hypothalamus and can be functionally replaced by Drosophila Hmx. Dev Cell 2004, 7:439–453. doi:10.1016/j.devcel.2004.06.016.
Danguir, J, Nicolaidis, S. Cortical activity and sleep in the rat lateral hypothalamic syndrome. Brain Res 1980, 185:305–321.
Zhao, T, Szabo, N, Ma, J, Luo, L, Zhou, X, Alvarez‐Bolado, G. Genetic mapping of Foxb1‐cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus. Eur J Neurosci 2008, 28:1941–1955. doi:10.1111/j.1460-9568.2008.06503.x.
Chemelli, RM, Willie, JT, Sinton, CM, Elmquist, JK, Scammell, T, Lee, C, Richardson, JA, Williams, SC, Xiong, Y, Kisanuki, Y, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999, 98:437–451.
Lin, L, Faraco, J, Li, R, Kadotani, H, Rogers, W, Lin, X, Qiu, X, de Jong, PJ, Nishino, S, Mignot, E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999, 98:365–376.
Delay, J, Brion, S, Elissalde, B. The mammillary bodies and Korsakoff`s syndrome; anatomical study of eight cases of Korsakoff`s syndrome of alcoholic origin without any significant changes in the cerebral cortex I. Anatomo‐clinical study. Presse Med 1958, 66:1849–1852.
Wolf, A, Ryu, S. Specification of posterior hypothalamic neurons requires coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development 2013, 140:1762–1773. doi:10.1242/dev.085357.
Wehr, R, Mansouri, A, de Maeyer, T, Gruss, P. Fkh5‐deficient mice show dysgenesis in the caudal midbrain and hypothalamic mammillary body. Development 1997, 124:4447–4456.
Bittencourt, JC, Vaughan, J, Arias, C, Rissman, RA, Vale, WW, Sawchenko, PE. Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin‐containing projections with targets bearing type 2 CRF receptors. J Comp Neurol 1999, 415:285–312.
Kiss, J, Csaki, A, Bokor, H, Kocsis, K, Szeiffert, G. Topographic localization of calretinin, calbindin, VIP, substance P, CCK and metabotropic glutamate receptor immunoreactive neurons in the supramammillary and related areas of the rat. Neurobiology 1997, 5:361–388.
Marion, JF, Yang, C, Caqueret, A, Boucher, F, Michaud, JL. Sim1 and Sim2 are required for the correct targeting of mammillary body axons. Development 2005, 132:5527–5537. doi:10.1242/dev.02142.
Alvarez‐Bolado, G, Zhou, X, Voss, AK, Thomas, T, Gruss, P. Winged helix transcription factor Foxb1 is essential for access of mammillothalamic axons to the thalamus. Development 2000, 127:1029–1038.
Szabo, NE, Zhao, T, Cankaya, M, Stoykova, A, Zhou, X, Alvarez‐Bolado, G. Interaction between axons and specific populations of surrounding cells is indispensable for collateral formation in the mammillary system. PLoS ONE 2011, 6:e20315. doi:10.1371/journal.pone.0020315.
Valverde, F, Garcia, C, Lopez‐Mascaraque, L, De Carlos, JA. Development of the mammillothalamic tract in normal and Pax‐6 mutant mice. J Comp Neurol 2000, 419:485–504.
Skidmore, JM, Waite, MR, Alvarez‐Bolado, G, Puelles, L, Martin, DM. A novel TaulacZ allele reveals a requirement for Pitx2 in formation of the mammillothalamic tract. Genesis 2012, 50:67–73. doi:10.1002/dvg.20793.
Rubenstein, JL, Martinez, S, Shimamura, K, Puelles, L. The embryonic vertebrate forebrain: the prosomeric model. Science 1994, 266:578–580.
Bulfone, A, Smiga, SM, Shimamura, K, Peterson, A, Puelles, L, Rubenstein, JL. T‐brain‐1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 1995, 15:63–78.
Puelles, L, Rubenstein, JL. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 2003, 26:469–476.
Puelles, L, Harrison, M, Paxinos, G, Watson, C. A developmental ontology for the mammalian brain based on the prosomere model. Trends Neurosci 2013, 36:570–578. doi:10.1016/j.tins.2013.06.00.
Alvarez‐Bolado, G, Swanson, LW. Developmental Brain Maps: Structure of the Embryonic Rat Brain. New York: Elsevier Science; 1996, 1–142.
Tessmar‐Raible, K, Raible, F, Christodoulou, F, Guy, K, Rembold, M, Hausen, H, Arendt, D. Conserved sensory‐neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 2007, 129:1389–1400.
Tomer, R, Denes, AS, Tessmar‐Raible, K, Arendt, D. Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 2010, 142:800–809. doi:10.1016/j.cell.2010.07.043.
Tosches, MA, Arendt, D. The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 2013, 23:1080–1089. doi:10.1016/j.conb.2013.09.005.
Arendt, D, Tessmar, K, de Campos‐Baptista, MI, Dorresteijn, A, Wittbrodt, J. Development of pigment‐cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 2002, 129:1143–1154.
Arendt, D, Wittbrodt, J. Reconstructing the eyes of Urbilateria. Philos Trans R Soc Lond B Biol Sci 2001, 356:1545–1563. doi:10.1098/rstb.2001.0971.
Lavado, A, Lagutin, OV, Oliver, G. Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 2008, 135:441–450.
MacDonald, RB, Pollack, JN, Debiais‐Thibaud, M, Heude, E, Talbot, JC, Ekker, M. The ascl1a and dlx genes have a regulatory role in the development of GABAergic interneurons in the zebrafish diencephalon. Dev Biol 2013, 381:276–285. doi:10.1016/j.ydbio.2013.05.025.
Lee, DA, Bedont, JL, Pak, T, Wang, H, Song, J, Miranda‐Angulo, A, Takiar, V, Charubhumi, V, Balordi, F, Takebayashi, H, et al. Tanycytes of the hypothalamic median eminence form a diet‐responsive neurogenic niche. Nat Neurosci 2012, 15:700–702. doi:10.1038/nn.3079.
Haan, N, Goodman, T, Najdi‐Samiei, A, Stratford, CM, Rice, R, El Agha, E, Bellusci, S, Hajihosseini, MK. Fgf10‐expressing tanycytes add new neurons to the appetite/energy‐balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 2013, 33:6170–6180.
Robins, SC, Stewart, I, McNay, DE, Taylor, V, Giachino, C, Goetz, M, Ninkovic, J, Briancon, N, Maratos‐Flier, E, Flier, JS, et al. Alpha‐tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF‐responsive neural progenitors. Nature. Communications 2013, 4:2049. doi:10.1038/ncomms3049.
Xu, Y, Tamamaki, N, Noda, T, Kimura, K, Itokazu, Y, Matsumoto, N, Dezawa, M, Ide, C. Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 2005, 192:251–264.
Lee, DA, Blackshaw, S. Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci 2012, 30:615–621. doi:10.1016/j.ijdevneu.2012.07.003.
Lee, DA, Blackshaw, S. Feed your head: neurodevelopmental control of feeding and metabolism. Annu Rev Physiol 2014, 76:197–223. doi:10.1146/annurev-physiol-021113-170347.
Miranda‐Angulo, AL, Byerly, MS, Mesa, J, Wang, H, Blackshaw, S. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J Comp Neurol 2014, 522:876–899. doi:10.1002/cne.23451.
Salvatierra, J, Lee, DA, Zibetti, C, Duran‐Moreno, M, Yoo, S, Newman, EA, Wang, H, Bedont, JL, de Melo, J, Miranda‐Angulo, AL, et al. The LIM Homeodomain Factor Lhx2 Is Required for Hypothalamic Tanycyte Specification and Differentiation. J Neurosci 2014, 34:16809–16820.
Tetreault, N, Champagne, MP, Bernier, G. The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans‐activation. Dev Biol 2009, 327:541–550. doi:10.1016/j.ydbio.2008.12.022.
Arnold‐Aldea, SA, Cepko, CL. Dispersion patterns of clonally related cells during development of the hypothalamus. Dev Biol 1996, 173:148–161. doi:10.1006/dbio.1996.0013.
Schwanzel‐Fukuda, M, Pfaff, DW. Origin of luteinizing hormone‐releasing hormone neurons. Nature 1989, 338:161–164. doi:10.1038/338161a0.
Wray, S, Grant, P, Gainer, H. Evidence that cells expressing luteinizing hormone‐releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA 1989, 86:8132–8136.
Simonian, SX, Herbison, AE. Regulation of gonadotropin‐releasing hormone (GnRH) gene expression during GnRH neuron migration in the mouse. Neuroendocrinology 2001, 73:149–156.
Chung, WC, Moyle, SS, Tsai, PS. Fibroblast growth factor 8 signaling through fibroblast growth factor receptor 1 is required for the emergence of gonadotropin‐releasing hormone neurons. Endocrinology 2008, 149:4997–5003. doi:10.1210/en.2007-1634.
Gill, JC, Moenter, SM, Tsai, PS. Developmental regulation of gonadotropin‐releasing hormone neurons by fibroblast growth factor signaling. Endocrinology 2004, 145:3830–3839. doi:10.1210/en.2004-0214.
Jayakody, SA, Andoniadou, CL, Gaston‐Massuet, C, Signore, M, Cariboni, A, Bouloux, PM, Le Tissier, P, Pevny, LH, Dattani, MT, Martinez‐Barbera, JP. SOX2 regulates the hypothalamic‐pituitary axis at multiple levels. J Clin Investig 2012, 122:3635–3646. doi:10.1172/JCI64311.
Givens, ML, Rave‐Harel, N, Goonewardena, VD, Kurotani, R, Berdy, SE, Swan, CH, Rubenstein, JL, Robert, B, Mellon, PL. Developmental regulation of gonadotropin‐releasing hormone gene expression by the MSX and DLX homeodomain protein families. J Biol Chem 2005, 280:19156–19165. doi:10.1074/jbc.M502004200.
Wierman, ME, Xiong, X, Kepa, JK, Spaulding, AJ, Jacobsen, BM, Fang, Z, Nilaver, G, Ojeda, SR. Repression of gonadotropin‐releasing hormone promoter activity by the POU homeodomain transcription factor SCIP/Oct‐6/Tst‐1: a regulatory mechanism of phenotype expression? Mol Cell Biol 1997, 17:1652–1665.
Larder, R, Mellon, PL. Otx2 induction of the gonadotropin‐releasing hormone promoter is modulated by direct interactions with Grg co‐repressors. J Biol Chem 2009, 284:16966–16978. doi:10.1074/jbc.M109.002485.
Pierce, A, Bliesner, B, Xu, M, Nielsen‐Preiss, S, Lemke, G, Tobet, S, Wierman, ME. Axl and Tyro3 modulate female reproduction by influencing gonadotropin‐releasing hormone neuron survival and migration. Mol Endocrinol 2008, 22:2481–2495. doi:10.1210/me.2008-0169.
Rave‐Harel, N, Miller, NL, Givens, ML, Mellon, PL. The Groucho‐related gene family regulates the gonadotropin‐releasing hormone gene through interaction with the homeodomain proteins MSX1 and OCT1. J Biol Chem 2005, 280:30975–30983. doi:10.1074/jbc.M502315200.
Berghard, A, Hagglund, AC, Bohm, S, Carlsson, L. Lhx2‐dependent specification of olfactory sensory neurons is required for successful integration of olfactory, vomeronasal, and GnRH neurons. FASEB J 2012, 26:3464–3472. doi:10.1096/fj.12-206193.
Clark, ME, Mellon, PL. The POU homeodomain transcription factor Oct‐1 is essential for activity of the gonadotropin‐releasing hormone neuron‐specific enhancer. Mol Cell Biol 1995, 15:6169–6177.
Diaczok, D, DiVall, S, Matsuo, I, Wondisford, FE, Wolfe, AM, Radovick, S. Deletion of Otx2 in GnRH neurons results in a mouse model of hypogonadotropic hypogonadism. Mol Endocrinol 2011, 25:833–846. doi:10.1210/me.2010-0271.
Kelley, CG, Lavorgna, G, Clark, ME, Boncinelli, E, Mellon, PL. The Otx2 homeoprotein regulates expression from the gonadotropin‐releasing hormone proximal promoter. Mol Endocrinol 2000, 14:1246–1256. doi:10.1210/mend.14.8.0509.
Larder, R, Clark, DD, Miller, NL, Mellon, PL. Hypothalamic dysregulation and infertility in mice lacking the homeodomain protein Six6. J Neurosci 2011, 31:426–438.
Larder, R, Kimura, I, Meadows, J, Clark, DD, Mayo, S. Mellon PL Gene dosage of Otx2 is important for fertility in male mice. Mol Cell Endocrinol 2013, 377:16–22. doi:10.1016/j.mce.2013.06.026.
Lawson, MA, Whyte, DB, Mellon, PL. GATA factors are essential for activity of the neuron‐specific enhancer of the gonadotropin‐releasing hormone gene. Mol Cell Biol 1996, 16:3596–3605.
Miller, NL, Wevrick, R, Mellon, PL. Necdin, a Prader‐Willi syndrome candidate gene, regulates gonadotropin‐releasing hormone neurons during development. Hum Mol Genet 2009, 18:248–260. doi:10.1093/hmg/ddn344.
Rave‐Harel, N, Givens, ML, Nelson, SB, Duong, HA, Coss, D, Clark, ME, Hall, SB, Kamps, MP, Mellon, PL. TALE homeodomain proteins regulate gonadotropin‐releasing hormone gene expression independently and via interactions with Oct‐1. J Biol Chem 2004, 279:30287–30297. doi:10.1074/jbc.M402960200.
Wolfe, A, Kim, HH, Tobet, S, Stafford, DE, Radovick, S. Identification of a discrete promoter region of the human GnRH gene that is sufficient for directing neuron‐specific expression: a role for POU homeodomain transcription factors. Mol Endocrinol 2002, 16:435–449. doi:10.1210/mend.16.3.0780.
Hebert, JM, McConnell, SK. Targeting of cre to the Foxg1 (BF‐1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol 2000, 222:296–306. doi:10.1006/dbio.2000.9732.