Guacci, V, Koshland, D, Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 1997, 91:47–57.
Michaelis, C, Ciosk, R, Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997, 91:35–45.
Losada, A, Yokochi, T, Kobayashi, R, Hirano, T. Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J Cell Biol 2000, 150:405–416.
Onn, I, Heidinger‐Pauli, JM, Guacci, V, Unal, E, Koshland, DE. Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol 2008, 24:105–129.
Gruber, S, Haering, CH, Nasmyth, K. Chromosomal cohesin forms a ring. Cell 2003, 112:765–777.
Zhang, N, Kuznetsov, SG, Sharan, SK, Li, K, Rao, PH, Pati, D. A handcuff model for the cohesin complex. J Cell Biol 2008, 183:1019–1031.
Nasmyth, K. Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 2011, 13:1170–1177.
Ivanov, D, Schleiffer, A, Eisenhaber, F, Mechtler, K, Haering, CH, Nasmyth, K. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 2002, 12:323–328.
Vega, H, Waisfisz, Q, Gordillo, M, Sakai, N, Yanagihara, I, Yamada, M, van Gosliga, D, Kayserili, H, Xu, C, Ozono, K, et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 2005, 37:468–470.
Hou, F, Zou, H. Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister‐chromatid cohesion. Mol Biol Cell 2005, 16:3908–3918.
Panizza, S, Tanaka, T, Hochwagen, A, Eisenhaber, F, Nasmyth, K. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr Biol 2000, 10:1557–1564.
Kueng, S, Hegemann, B, Peters, BH, Lipp, JJ, Schleiffer, A, Mechtler, K, Peters, JM. Wapl controls the dynamic association of cohesin with chromatin. Cell 2006, 127:955–967.
Kitajima, TS, Kawashima, SA, Watanabe, Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 2004, 427:510–517.
Rankin, S, Ayad, NG, Kirschner, MW. Sororin, a substrate of the anaphase‐promoting complex, is required for sister chromatid cohesion in vertebrates. Mol Cell 2005, 18:185–200.
Waizenegger, IC, Hauf, S, Meinke, A, Peters, JM. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 2000, 103:399–410.
Gandhi, R, Gillespie, PJ, Hirano, T. Human Wapl is a cohesin‐binding protein that promotes sister‐chromatid resolution in mitotic prophase. Curr Biol 2006, 16:2406–2417.
Sumara, I, Vorlaufer, E, Stukenberg, PT, Kelm, O, Redemann, N, Nigg, EA, Peters, JM. The dissociation of cohesin from chromosomes in prophase is regulated by Polo‐like kinase. Mol Cell 2002, 9:515–525.
Hauf, S, Roitinger, E, Koch, B, Dittrich, CM, Mechtler, K, Peters, JM. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol 2005, 3:e69.
Uhlmann, F, Lottspeich, F, Nasmyth, K. Sister‐chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 1999, 400:37–42.
Deardorff, MA, Bando, M, Nakato, R, Watrin, E, Itoh, T, Minamino, M, Saitoh, K, Komata, M, Katou, Y, Clark, D, et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 2012, 489:313–317.
Borges, V, Lehane, C, Lopez‐Serra, L, Flynn, H, Skehel, M, Rolef Ben‐Shahar, T, Uhlmann, F. Hos1 deacetylates Smc3 to close the cohesin acetylation cycle. Mol Cell 2010, 39:677–688.
Beckouet, F, Hu, B, Roig, MB, Sutani, T, Komata, M, Uluocak, P, Katis, VL, Shirahige, K, Nasmyth, K. An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol Cell 2010, 39:689–699.
Xiong, B, Lu, S, Gerton, JL. Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin. Curr Biol 2010, 20:1660–1665.
Rollins, RA, Morcillo, P, Dorsett, D. Nipped‐B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 1999, 152:577–593.
Heidinger‐Pauli, JM, Mert, O, Davenport, C, Guacci, V, Koshland, D. Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr Biol 2010, 20:957–963.
Schaaf, CA, Misulovin, Z, Sahota, G, Siddiqui, AM, Schwartz, YB, Kahn, TG, Pirrotta, V, Gause, M, Dorsett, D. Regulation of the Drosophila enhancer of split and invected‐engrailed gene complexes by sister chromatid cohesion proteins. PLoS One 2009, 4:e6202.
Pauli, A, Althoff, F, Oliveira, RA, Heidmann, S, Schuldiner, O, Lehner, CF, Dickson, BJ, Nasmyth, K. Cell‐type‐specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 2008, 14:239–251.
Schuldiner, O, Berdnik, D, Levy, JM, Wu, JS, Luginbuhl, D, Gontang, AC, Luo, L. piggyBac‐based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 2008, 14:227–238.
Seitan, VC, Hao, B, Tachibana‐Konwalski, K, Lavagnolli, T, Mira‐Bontenbal, H, Brown, KE, Teng, G, Carroll, T, Terry, A, Horan, K, et al. A role for cohesin in T‐cell‐receptor rearrangement and thymocyte differentiation. Nature 2011, 476:467–471.
Glynn, EF, Megee, PC, Yu, HG, Mistrot, C, Unal, E, Koshland, DE, DeRisi, JL, Gerton, JL. Genome‐wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2004, 2:E259.
Misulovin, Z, Schwartz, YB, Li, XY, Kahn, TG, Gause, M, MacArthur, S, Fay, JC, Eisen, MB, Pirrotta, V, Biggin, MD, et al. Association of cohesin and Nipped‐B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 2008, 117:89–102.
Dorsett, D, Merkenschlager, M. Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Curr Opin Cell Biol 2013, 25:327–333.
D`Ambrosio, C, Schmidt, CK, Katou, Y, Kelly, G, Itoh, T, Shirahige, K, Uhlmann, F. Identification of cis‐acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 2008, 22:2215–2227.
Haeusler, RA, Pratt‐Hyatt, M, Good, PD, Gipson, TA, Engelke, DR. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 2008, 22:2204–2214.
MacAlpine, HK, Gordan, R, Powell, SK, Hartemink, AJ, MacAlpine, DM. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 2010, 20:201–211.
Laloraya, S, Guacci, V, Koshland, D. Chromosomal addresses of the cohesin component Mcd1p. J Cell Biol 2000, 151:1047–1056.
Merkenschlager, M, Odom, DT. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 2013, 152:1285–1297.
Morey, L, Helin, K. Polycomb group protein‐mediated repression of transcription. Trends Biochem Sci 2010, 35:323–332.
van Steensel, B. Chromatin: constructing the big picture. EMBO J 2011, 30:1885–1895.
Galande, S, Purbey, PK, Notani, D, Kumar, PP. The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev 2007, 17:408–414.
Hadjur, S, Williams, LM, Ryan, NK, Cobb, BS, Sexton, T, Fraser, P, Fisher, AG, Merkenschlager, M. Cohesins form chromosomal cis‐interactions at the developmentally regulated IFNG locus. Nature 2009, 460:410–413.
Filippova, GN, Fagerlie, S, Klenova, EM, Myers, C, Dehner, Y, Goodwin, G, Neiman, PE, Collins, SJ, Lobanenkov, VV. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c‐myc oncogenes. Mol Cell Biol 1996, 16:2802–2813.
Beygo, J, Citro, V, Sparago, A, De Crescenzo, A, Cerrato, F, Heitmann, M, Rademacher, K, Guala, A, Enklaar, T, Anichini, C, et al. The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF‐binding sites. Hum Mol Genet 2013, 22:544–557.
Rhodes, JM, Bentley, FK, Print, CG, Dorsett, D, Misulovin, Z, Dickinson, EJ, Crosier, KE, Crosier, PS, Horsfield, JA. Positive regulation of c‐Myc by cohesin is direct, and evolutionarily conserved. Dev Biol 2010, 344:637–649.
Parelho, V, Hadjur, S, Spivakov, M, Leleu, M, Sauer, S, Gregson, HC, Jarmuz, A, Canzonetta, C, Webster, Z, Nesterova, T, et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 2008, 132:422–433.
Ong, CT, Corces, VG. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014, 15:234–246.
Ebmeier, CC, Taatjes, DJ. Activator‐mediator binding regulates mediator‐cofactor interactions. Proc Natl Acad Sci USA 2010, 107:11283–11288.
Conaway, RC, Conaway, JW. The mediator complex and transcription elongation. Biochim Biophys Acta 2013, 1829:69–75.
Kagey, MH, Newman, JJ, Bilodeau, S, Zhan, Y, Orlando, DA, van Berkum, NL, Ebmeier, CC, Goossens, J, Rahl, PB, Levine, SS, et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010, 467:430–435.
Muto, A, Ikeda, S, Lopez‐Burks, ME, Kikuchi, Y, Calof, AL, Lander, AD, Schilling, TF. Nipbl and mediator cooperatively regulate gene expression to control limb development. PLoS Genet 2014, 10:e1004671.
Liu, J, Krantz, ID. Cornelia de Lange syndrome, cohesin, and beyond. Clin Genet 2009, 76:303–314.
Mayan, M, Aragon, L. Cis‐interactions between non‐coding ribosomal spacers dependent on RNAP‐II separate RNAP‐I and RNAP‐III transcription domains. Cell Cycle 2010, 9:4328–4337.
Harris, B, Bose, T, Lee, KK, Wang, F, Lu, S, Ross, RT, Zhang, Y, French, SL, Beyer, AL, Slaughter, BD, et al. Cohesion promotes nucleolar structure and function. Mol Biol Cell 2014, 25:337–346.
Bose, T, Lee, KK, Lu, S, Xu, B, Harris, B, Slaughter, B, Unruh, J, Garrett, A, McDowell, W, Box, A, et al. Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells. PLoS Genet 2012, 8:e1002749.
Xu, B, Sowa, N, Cardenas, ME, Gerton, JL. l‐leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome. Hum Mol Genet 2015, 24:1540–1555.
Zuin, J, Franke, V, van Ijcken, WF, van der Sloot, A, Krantz, ID, van der Reijden, MI, Nakato, R, Lenhard, B, Wendt, KS. A cohesin‐independent role for NIPBL at promoters provides insights in CdLS. PLoS Genet 2014, 10:e1004153.
Gullerova, M, Proudfoot, NJ. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 2008, 132:983–995.
Fay, A, Misulovin, Z, Li, J, Schaaf, CA, Gause, M, Gilmour, DS, Dorsett, D. Cohesin selectively binds and regulates genes with paused RNA polymerase. Curr Biol 2011, 21:1624–1634.
Vignali, M, Hassan, AH, Neely, KE, Workman, JL. ATP‐dependent chromatin‐remodeling complexes. Mol Cell Biol 2000, 20:1899–1910.
Jenuwein, T, Allis, CD. Translating the histone code. Science 2001, 293:1074–1080.
Huang, J, Hsu, JM, Laurent, BC. The RSC nucleosome‐remodeling complex is required for Cohesin`s association with chromosome arms. Mol Cell 2004, 13:739–750.
Lopez‐Serra, L, Kelly, G, Patel, H, Stewart, A, Uhlmann, F. The Scc2‐Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome‐free regions. Nat Genet 2014, 46:1147–1151.
Hakimi, MA, Bochar, DA, Schmiesing, JA, Dong, Y, Barak, OG, Speicher, DW, Yokomori, K, Shiekhattar, R. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 2002, 418:994–998.
Fryns, JP. On the nosology of the Cornelia de Lange and Coffin‐Siris syndromes. Clin Genet 1986, 29:263–264.
Jahnke, P, Xu, W, Wulling, M, Albrecht, M, Gabriel, H, Gillessen‐Kaesbach, G, Kaiser, FJ. The cohesin loading factor NIPBL recruits histone deacetylases to mediate local chromatin modifications. Nucleic Acids Res 2008, 36:6450–6458.
Subramanian, V, Mazumder, A, Surface, LE, Butty, VL, Fields, PA, Alwan, A, Torrey, L, Thai, KK, Levine, SS, Bathe, M, et al. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet 2013, 9:e1003725.
Shen, Y, Yue, F, McCleary, DF, Ye, Z, Edsall, L, Kuan, S, Wagner, U, Dixon, J, Lee, L, Lobanenkov, VV, et al. A map of the cis‐regulatory sequences in the mouse genome. Nature 2012, 488:116–120.
Liu, Z, Scannell, DR, Eisen, MB, Tjian, R. Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 2011, 146:720–731.
Rahl, PB, Lin, CY, Seila, AC, Flynn, RA, McCuine, S, Burge, CB, Sharp, PA, Young, RA. c‐Myc regulates transcriptional pause release. Cell 2010, 141:432–445.
Whyte, WA, Orlando, DA, Hnisz, D, Abraham, BJ, Lin, CY, Kagey, MH, Rahl, PB, Lee, TI, Young, RA. Master transcription factors and mediator establish super‐enhancers at key cell identity genes. Cell 2013, 153:307–319.
Hnisz, D, Abraham, BJ, Lee, TI, Lau, A, Saint‐Andre, V, Sigova, AA, Hoke, HA, Young, RA. Super‐enhancers in the control of cell identity and disease. Cell 2013, 155:934–947.
Dowen, JM, Bilodeau, S, Orlando, DA, Hubner, MR, Abraham, BJ, Spector, DL, Young, RA. Multiple structural maintenance of chromosome complexes at transcriptional regulatory elements. Stem Cell Rep 2013, 1:371–378.
Carriere, L, Graziani, S, Alibert, O, Ghavi‐Helm, Y, Boussouar, F, Humbertclaude, H, Jounier, S, Aude, JC, Keime, C, Murvai, J, et al. Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells. Nucleic Acids Res 2012, 40:270–283.
Chen, X, Xu, H, Yuan, P, Fang, F, Huss, M, Vega, VB, Wong, E, Orlov, YL, Zhang, W, Jiang, J, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008, 133:1106–1117.
Ye, T, Krebs, AR, Choukrallah, MA, Keime, C, Plewniak, F, Davidson, I, Tora, L. seqMINER: an integrated ChIP‐seq data interpretation platform. Nucleic Acids Res 2011, 39:e35.
Xiao, T, Wallace, J, Felsenfeld, G. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin‐dependent insulation activity. Mol Cell Biol 2011, 31:2174–2183.
Wang, L, Tang, Y, Cole, PA, Marmorstein, R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 2008, 18:741–747.
Das, C, Lucia, MS, Hansen, KC, Tyler, JK. CBP/p300‐mediated acetylation of histone H3 on lysine 56. Nature 2009, 459:113–117.
Wang, F, Marshall, CB, Ikura, M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 2013, 70:3989–4008.
Roelfsema, JH, White, SJ, Ariyurek, Y, Bartholdi, D, Niedrist, D, Papadia, F, Bacino, CA, den Dunnen, JT, van Ommen, GJ, Breuning, MH, et al. Genetic heterogeneity in Rubinstein‐Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet 2005, 76:572–580.
Skibbens, RV, Colquhoun, JM, Green, MJ, Molnar, CA, Sin, DN, Sullivan, BJ, Tanzosh, EE. Cohesinopathies of a feather flock together. PLoS Genet 2013, 9:e1004036.
Gerton, JL. Translational mechanisms at work in the cohesinopathies. Nucleus 2012, 3:520–525.
Gordillo, M, Vega, H, Trainer, AH, Hou, F, Sakai, N, Luque, R, Kayserili, H, Basaran, S, Skovby, F, Hennekam, RC, et al. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 2008, 17:2172–2180.
Van Den Berg, DJ, Francke, U. Roberts syndrome: a review of 100 cases and a new rating system for severity. Am J Med Genet 1993, 47:1104–1123.
Gordillo, M, Vega, H, Jabs, EW. Roberts syndrome. In: Pagon, RA, Adam, MP, Ardinger, HH, Bird, TD, Dolan, CR, Fong, CT, Smith, RJH, Stephens, K, eds. GeneReviews(R). Seattle, WA: University of Washington; 1993.
Whelan, G, Kreidl, E, Peters, JM, Eichele, G. The non‐redundant function of cohesin acetyltransferase Esco2: some answers and new questions. Nucleus 2012, 3:330–334.
Whelan, G, Kreidl, E, Wutz, G, Egner, A, Peters, JM, Eichele, G. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin. EMBO J 2012, 31:71–82.
Xu, B, Lu, S, Gerton, JL. Roberts syndrome: a deficit in acetylated cohesin leads to nucleolar dysfunction. Rare Dis 2014, 2:e27743.
Xu, B, Lee, KK, Zhang, L, Gerton, JL. Stimulation of mTORC1 with L‐leucine rescues defects associated with Roberts syndrome. PLoS Genet 2013, 9:e1003857.
Dorsett, D, Krantz, ID. On the molecular etiology of Cornelia de Lange syndrome. Ann N Y Acad Sci 2009, 1151:22–37.
Krantz, ID, McCallum, J, DeScipio, C, Kaur, M, Gillis, LA, Yaeger, D, Jukofsky, L, Wasserman, N, Bottani, A, Morris, CA, et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped‐B. Nat Genet 2004, 36:631–635.
Tonkin, ET, Wang, TJ, Lisgo, S, Bamshad, MJ, Strachan, T. NIPBL, encoding a homolog of fungal Scc2‐type sister chromatid cohesion proteins and fly Nipped‐B, is mutated in Cornelia de Lange syndrome. Nat Genet 2004, 36:636–641.
Musio, A, Selicorni, A, Focarelli, ML, Gervasini, C, Milani, D, Russo, S, Vezzoni, P, Larizza, L. X‐linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 2006, 38:528–530.
Deardorff, MA, Kaur, M, Yaeger, D, Rampuria, A, Korolev, S, Pie, J, Gil‐Rodriguez, C, Arnedo, M, Loeys, B, Kline, AD, et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 2007, 80:485–494.
Borck, G, Zarhrate, M, Bonnefont, JP, Munnich, A, Cormier‐Daire, V, Colleaux, L. Incidence and clinical features of X‐linked Cornelia de Lange syndrome due to SMC1L1 mutations. Hum Mutat 2007, 28:205–206.
Deardorff, MA, Wilde, JJ, Albrecht, M, Dickinson, E, Tennstedt, S, Braunholz, D, Monnich, M, Yan, Y, Xu, W, Gil‐Rodriguez, MC, et al. RAD21 mutations cause a human cohesinopathy. Am J Hum Genet 2012, 90:1014–1027.
Gimigliano, A, Mannini, L, Bianchi, L, Puglia, M, Deardorff, MA, Menga, S, Krantz, ID, Musio, A, Bini, L. Proteomic profile identifies dysregulated pathways in Cornelia de Lange syndrome cells with distinct mutations in SMC1A and SMC3 genes. J Proteome Res 2012, 11:6111–6123.
Marygold, SJ, Roote, J, Reuter, G, Lambertsson, A, Ashburner, M, Millburn, GH, Harrison, PM, Yu, Z, Kenmochi, N, Kaufman, TC, et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol 2007, 8:R216.
Kondrashov, N, Pusic, A, Stumpf, CR, Shimizu, K, Hsieh, AC, Xue, S, Ishijima, J, Shiroishi, T, Barna, M. Ribosome‐mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 2011, 145:383–397.
Draptchinskaia, N, Gustavsson, P, Andersson, B, Pettersson, M, Willig, TN, Dianzani, I, Ball, S, Tchernia, G, Klar, J, Matsson, H, et al. The gene encoding ribosomal protein S19 is mutated in Diamond‐Blackfan anaemia. Nat Genet 1999, 21:169–175.
Ebert, BL, Pretz, J, Bosco, J, Chang, CY, Tamayo, P, Galili, N, Raza, A, Root, DE, Attar, E, Ellis, SR, et al. Identification of RPS14 as a 5q‐syndrome gene by RNA interference screen. Nature 2008, 451:335–339.
Giagounidis, AA, Germing, U, Aul, C. Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res 2006, 12:5–10.
Nakashima, E, Mabuchi, A, Makita, Y, Masuno, M, Ohashi, H, Nishimura, G, Ikegawa, S. Novel SBDS mutations caused by gene conversion in Japanese patients with Shwachman‐Diamond syndrome. Hum Genet 2004, 114:345–348.
Boocock, GR, Morrison, JA, Popovic, M, Richards, N, Ellis, L, Durie, PR, Rommens, JM. Mutations in SBDS are associated with Shwachman‐Diamond syndrome. Nat Genet 2003, 33:97–101.
Brooks, SS, Wall, AL, Golzio, C, Reid, DW, Kondyles, A, Willer, JR, Botti, C, Nicchitta, CV, Katsanis, N, Davis, EE. A novel ribosomopathy caused by dysfunction of RPL10 disrupts neurodevelopment and causes X‐linked microcephaly in humans. Genetics 2014, 198:723–733.
Dokal, I. Dyskeratosis congenita in all its forms. Br J Haematol 2000, 110:768–779.
Alter, BP, Giri, N, Savage, SA, Rosenberg, PS. Cancer in dyskeratosis congenita. Blood 2009, 113:6549–6557.
Jack, K, Bellodi, C, Landry, DM, Niederer, RO, Meskauskas, A, Musalgaonkar, S, Kopmar, N, Krasnykh, O, Dean, AM, Thompson, SR, et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell 2011, 44:660–666.
Bellodi, C, Krasnykh, O, Haynes, N, Theodoropoulou, M, Peng, G, Montanaro, L, Ruggero, D. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res 2010, 70:6026–6035.
Marsh, KL, Dixon, J, Dixon, MJ. Mutations in the Treacher Collins syndrome gene lead to mislocalization of the nucleolar protein treacle. Hum Mol Genet 1998, 7:1795–1800.
Winokur, ST, Shiang, R. The Treacher Collins syndrome (TCOF1) gene product, treacle, is targeted to the nucleolus by signals in its C‐terminus. Hum Mol Genet 1998, 7:1947–1952.
Dauwerse, JG, Dixon, J, Seland, S, Ruivenkamp, CA, van Haeringen, A, Hoefsloot, LH, Peters, DJ, Boers, AC, Daumer‐Haas, C, Maiwald, R, et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat Genet 2011, 43:20–22.
Dixon, MJ. Treacher Collins syndrome. J Med Genet 1995, 32:806–808.
Shiasi Arani, K. Cartilage hair hypoplasia: first report from Iran. Med J Islam Repub Iran 2013, 27:157–160.
Liu, JM, Ellis, SR. Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood 2006, 107:4583–4588.
Yoon, A, Peng, G, Brandenburger, Y, Zollo, O, Xu, W, Rego, E, Ruggero, D. Impaired control of IRES‐mediated translation in X‐linked dyskeratosis congenita. Science 2006, 312:902–906.
Welch, JS, Ley, TJ, Link, DC, Miller, CA, Larson, DE, Koboldt, DC, Wartman, LD, Lamprecht, TL, Liu, F, Xia, J, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012, 150:264–278.
Solomon, DA, Kim, T, Diaz‐Martinez, LA, Fair, J, Elkahloun, AG, Harris, BT, Toretsky, JA, Rosenberg, SA, Shukla, N, Ladanyi, M, et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 2011, 333:1039–1043.
Miller, MA, Olivas, WM. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA 2011, 2:471–492.
Tsuda, M, Sasaoka, Y, Kiso, M, Abe, K, Haraguchi, S, Kobayashi, S, Saga, Y. Conserved role of nanos proteins in germ cell development. Science 2003, 301:1239–1241.
Bywater, MJ, Poortinga, G, Sanij, E, Hein, N, Peck, A, Cullinane, C, Wall, M, Cluse, L, Drygin, D, Anderes, K, et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer‐specific activation of p53. Cancer Cell 2012, 22:51–65.
Pistocchi, A, Fazio, G, Cereda, A, Ferrari, L, Bettini, LR, Messina, G, Cotelli, F, Biondi, A, Selicorni, A, Massa, V. Cornelia de Lange syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts. Cell Death Dis 2013, 4:e866.