Lui, JH, Hansen, DV, Kriegstein, AR. Development and evolution of the human neocortex. Cell 2011, 146:18–36. doi:10.1016/j.cell.2011.06.030.
Florio, M, Huttner, WB. Neural progenitors, neurogenesis and the evolution of the neocortex. Development 2014, 141:2182–2194. doi:10.1242/dev.090571.
Fuster, JM. Cortex and Mind: Unifying Cognition. Oxford and New York: Oxford University Press; 2003.
Grove, EA, Fukuchi‐Shimogori, T. Generating the cerebral cortical area map. Annu Rev Neurosci 2003, 26:355–380. doi:10.1146/annurev.neuro.26.041002.131137.
Alfano, C, Studer, M. Neocortical arealization: evolution, mechanisms, and open questions. Dev Neurobiol 2013, 73:411–447. doi:10.1002/dneu.22067.
Peters, A, Jones, EG. Cerebral cortex. New York: Plenum Press; 1984.
Ramón y Cajal, S. Histology of the Nervous System of Man and Vertebrates. New York: Oxford University Press; 1995.
Molyneaux, BJ, Arlotta, P, Menezes, JR, Macklis, JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007, 8:427–437. doi:10.1038/nrn2151.
Bayer, SA, Altman, J. Neocortical Development. New York: Raven Press; 1991.
Arlotta, P, Molyneaux, BJ, Chen, J, Inoue, J, Kominami, R, Macklis, JD. Neuronal subtype‐specific genes that control corticospinal motor neuron development in vivo. Neuron 2005, 45:207–221. doi:10.1016/j.neuron.2004.12.036.
Molyneaux, BJ, Arlotta, P, Fame, RM, MacDonald, JL, MacQuarrie, KL, Macklis, JD. Novel subtype‐specific genes identify distinct subpopulations of callosal projection neurons. J Neurosci 2009, 29:12343–12354. doi:10.1523/JNEUROSCI.6108-08.2009.
Molyneaux, BJ, Goff, LA, Brettler, AC, Chen, HH, Brown, JR, Hrvatin, S, Rinn, JL, Arlotta, P. DeCoN: genome‐wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 2015, 85:275–288. doi:10.1016/j.neuron.2014.12.024.
Zeisel, A, Manchado, AB, Codeluppi, S, Lonnerberg, P, La Manno, G, Jureus, A, Marques, S, Munguba, H, He, L, Betsholtz, C, et al. Cell types in the mouse cortex and hippocampus revealed by single‐cell RNA‐seq. Science 2015, 347:1138–1142. doi:10.1126/science.aaa1934.
Rudy, B, Fishell, G, Lee, S, Hjerling‐Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 2011, 71:45–61. doi:10.1002/dneu.20853.
Lee, S, Hjerling‐Leffler, J, Zagha, E, Fishell, G, Rudy, B. The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 2010, 30:16796–16808. doi:10.1523/JNEUROSCI.1869-10.2010.
Rossier, J, Bernard, A, Cabungcal, JH, Perrenoud, Q, Savoye, A, Gallopin, T, Hawrylycz, M, Cuenod, M, Do, K, Urban, A, et al. Cortical fast‐spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin. Mol Psychiatry 2015, 20:154–161. doi:10.1038/mp.2014.162.
Rubin, AN, Kessaris, N. PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. PLoS One 2013, 8:e77339. doi:10.1371/journal.pone.0077339.
Cahoy, JD, Emery, B, Kaushal, A, Foo, LC, Zamanian, JL, Christopherson, KS, Xing, Y, Lubischer, JL, Krieg, PA, Krupenko, SA, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008, 28:264–278. doi:10.1523/JNEUROSCI.4178-07.2008.
Dugas, JC, Tai, YC, Speed, TP, Ngai, J, Barres, BA. Functional genomic analysis of oligodendrocyte differentiation. J Neurosci 2006, 26:10967–10983. doi:10.1523/JNEUROSCI.2572-06.2006.
Butovsky, O, Jedrychowski, MP, Moore, CS, Cialic, R, Lanser, AJ, Gabriely, G, Koeglsperger, T, Dake, B, Wu, PM, Doykan, CE, et al. Identification of a unique TGF‐β‐dependent molecular and functional signature in microglia. Nat Neurosci 2014, 17:131–143. doi:10.1038/nn.3599.
Ahmed, Z, Shaw, G, Sharma, VP, Yang, C, McGowan, E, Dickson, DW. Actin‐binding proteins coronin‐1a and IBA‐1 are effective microglial markers for immunohistochemistry. J Histochem Cytochem 2007, 55:687–700. doi:10.1369/jhc.6A7156.2007.
Toyama, K, Matsunami, K, Ono, T, Tokashiki, S. An intracellular study of neuronal organization in the visual cortex. Exp Brain Res 1974, 21:45–66.
Migliore, M, Shepherd, GM. Opinion: an integrated approach to classifying neuronal phenotypes. Nat Rev Neurosci 2005, 6:810–818. doi:10.1038/nrn1769.
Tamamaki, N, Yanagawa, Y, Tomioka, R, Miyazaki, J, Obata, K, Kaneko, T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse. J Comp Neurol 2003, 467:60–79. doi:10.1002/cne.10905.
Parnavelas, JG. The origin and migration of cortical neurones: new vistas. Trends Neurosci 2000, 23:126–131.
Greig, LC, Woodworth, MB, Galazo, MJ, Padmanabhan, H, Macklis, JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 2013, 14:755–769. doi:10.1038/nrn3586.
Aboitiz, F, Montiel, J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 2003, 36:409–420.
Fame, RM, MacDonald, JL, Macklis, JD. Development, specification, and diversity of callosal projection neurons. Trends Neurosci 2011, 34:41–50. doi:10.1016/j.tins.2010.10.002.
Bedogni, F, Hodge, RD, Elsen, GE, Nelson, BR, Daza, RA, Beyer, RP, Bammler, TK, Rubenstein, JL, Hevner, RF. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc Natl Acad Sci USA 2010, 107:13129–13134. doi:10.1073/pnas.1002285107.
McKenna, WL, Betancourt, J, Larkin, KA, Abrams, B, Guo, C, Rubenstein, JL, Chen, B. Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci 2011, 31:549–564. doi:10.1523/JNEUROSCI.4131-10.2011.
Molnar, Z, Cheung, AF. Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 2006, 55:105–115. doi:10.1016/j.neures.2006.02.008.
Chen, B, Schaevitz, LR, McConnell, SK. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc Natl Acad Sci USA 2005, 102:17184–17189. doi:10.1073/pnas.0508732102.
Molyneaux, BJ, Arlotta, P, Hirata, T, Hibi, M, Macklis, JD. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 2005, 47:817–831. doi:10.1016/j.neuron.2005.08.030.
Sohur, US, Padmanabhan, HK, Kotchetkov, IS, Menezes, JR, Macklis, JD. Anatomic and molecular development of corticostriatal projection neurons in mice. Cereb Cortex 2014, 24:293–303. doi:10.1093/cercor/bhs342.
Shapiro, E, Biezuner, T, Linnarsson, S. Single‐cell sequencing‐based technologies will revolutionize whole‐organism science. Nat Rev Genet 2013, 14:618–630. doi:10.1038/nrg3542.
Anthony, TE, Klein, C, Fishell, G, Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 2004, 41:881–890.
Shimogori, T, Banuchi, V, Ng, HY, Strauss, JB, Grove, EA. Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 2004, 131:5639–5647. doi:10.1242/dev.01428.
Campbell, K. Dorsal‐ventral patterning in the mammalian telencephalon. Curr Opin Neurobiol 2003, 13:50–56.
O`Leary, DD, Sahara, S. Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 2008, 18:90–100. doi:10.1016/j.conb.2008.05.011.
The Boulder Committee. Embryonic vertebrate central nervous system: revised terminology. Anat Rec 1970, 166:257–261. doi:10.1002/ar.1091660214.
Pontious, A, Kowalczyk, T, Englund, C, Hevner, RF. Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 2008, 30:24–32. doi:10.1159/000109848.
Gotz, M, Huttner, WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005, 6:777–788. doi:10.1038/nrm1739.
Angevine, JB Jr, Sidman, RL. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 1961, 192:766–768.
Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 1972, 145:61–83. doi:10.1002/cne.901450105.
Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 1974, 183:425–427.
Kepecs, A, Fishell, G. Interneuron cell types are fit to function. Nature 2014, 505:318–326. doi:10.1038/nature12983.
DeFelipe, J, Lopez‐Cruz, PL, Benavides‐Piccione, R, Bielza, C, Larranaga, P, Anderson, S, Burkhalter, A, Cauli, B, Fairen, A, Feldmeyer, D, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 2013, 14:202–216. doi:10.1038/nrn3444.
Petilla Interneuron Nomenclature Group, Ascoli, GA, Alonso‐Nanclares, L, Anderson, SA, Barrionuevo, G, Benavides‐Piccione, R, Burkhalter, A, Buzsaki, G, Cauli, B, Defelipe, J, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 2008, 9:557–568. doi:10.1038/nrn2402.
Lodato, S, Rouaux, C, Quast, KB, Jantrachotechatchawan, C, Studer, M, Hensch, TK, Arlotta, P. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 2011, 69:763–779. doi:10.1016/j.neuron.2011.01.015.
Kawaguchi, Y, Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 1997, 7:476–486.
Ma, Y, Hu, H, Berrebi, AS, Mathers, PH, Agmon, A. Distinct subtypes of somatostatin‐containing neocortical interneurons revealed in transgenic mice. J Neurosci 2006, 26:5069–5082. doi:10.1523/JNEUROSCI.0661-06.2006.
McGarry, LM, Packer, AM, Fino, E, Nikolenko, V, Sippy, T, Yuste, R. Quantitative classification of somatostatin‐positive neocortical interneurons identifies three interneuron subtypes. Front Neural Circuits 2010, 4:12. doi:10.3389/fncir.2010.00012.
Kelsom, C, Lu, W. Development and specification of GABAergic cortical interneurons. Cell Biosci 2013, 3:19. doi:10.1186/2045-3701-3-19.
Tamamaki, N, Tomioka, R. Long‐range GABAergic connections distributed throughout the neocortex and their possible function. Front Neurosci 2010, 4:202. doi:10.3389/fnins.2010.00202.
Albus, K, Wahle, P. The topography of tangential inhibitory connections in the postnatally developing and mature striate cortex of the cat. Eur J Neurosci 1994, 6:779–792.
Fabri, M, Manzoni, T. Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex. Neuroscience 1996, 72:435–448.
McDonald, CT, Burkhalter, A. Organization of long‐range inhibitory connections with rat visual cortex. J Neurosci 1993, 13:768–781.
Higo, S, Akashi, K, Sakimura, K, Tamamaki, N. Subtypes of GABAergic neurons project axons in the neocortex. Front Neuroanat 2009, 3:25. doi:10.3389/neuro.05.025.2009.
Tomioka, R, Rockland, KS. Long‐distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J Comp Neurol 2007, 505:526–538. doi:10.1002/cne.21504.
Gonchar, YA, Johnson, PB, Weinberg, RJ. GABA‐immunopositive neurons in rat neocortex with contralateral projections to S‐I. Brain Res 1995, 697:27–34.
Fabri, M, Manzoni, T. Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas. Neuroscience 2004, 123:557–566.
Tomioka, R, Okamoto, K, Furuta, T, Fujiyama, F, Iwasato, T, Yanagawa, Y, Obata, K, Kaneko, T, Tamamaki, N. Demonstration of long‐range GABAergic connections distributed throughout the mouse neocortex. Eur J Neurosci 2005, 21:1587–1600. doi:10.1111/j.1460-9568.2005.03989.x.
Peters, A, Payne, BR, Josephson, K. Transcallosal non‐pyramidal cell projections from visual cortex in the cat. J Comp Neurol 1990, 302:124–142. doi:10.1002/cne.903020110.
Lee, AT, Vogt, D, Rubenstein, JL, Sohal, VS. A class of GABAergic neurons in the prefrontal cortex sends long‐range projections to the nucleus accumbens and elicits acute avoidance behavior. J Neurosci 2014, 34:11519–11525. doi:10.1523/JNEUROSCI.1157-14.2014.
Jinno, S, Kosaka, T. Parvalbumin is expressed in glutamatergic and GABAergic corticostriatal pathway in mice. J Comp Neurol 2004, 477:188–201. doi:10.1002/cne.20246.
Uhlhaas, PJ, Singer, W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large‐scale networks. Neuron 2012, 75:963–980. doi:10.1016/j.neuron.2012.09.004.
Gonchar, Y, Wang, Q, Burkhalter, A. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat 2007, 1:3. doi:10.3389/neuro.05.003.2007.
Pi, HJ, Hangya, B, Kvitsiani, D, Sanders, JI, Huang, ZJ, Kepecs, A. Cortical interneurons that specialize in disinhibitory control. Nature 2013, 503:521–524. doi:10.1038/nature12676.
Xu, X, Roby, KD, Callaway, EM. Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol 2006, 499:144–160. doi:10.1002/cne.21101.
Marin, O, Muller, U. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Curr Opin Neurobiol 2014, 26:132–141. doi:10.1016/j.conb.2014.01.015.
Wonders, CP, Anderson, SA. The origin and specification of cortical interneurons. Nat Rev Neurosci 2006, 7:687–696. doi:10.1038/nrn1954.
Gelman, DM, Marin, O. Generation of interneuron diversity in the mouse cerebral cortex. Eur J Neurosci 2010, 31:2136–2141. doi:10.1111/j.1460-9568.2010.07267.x.
Corbin, JG, Butt, SJ. Developmental mechanisms for the generation of telencephalic interneurons. Dev Neurobiol 2011, 71:710–732. doi:10.1002/dneu.20890.
Xu, Q, Cobos, I, De La Cruz, E, Rubenstein, JL, Anderson, SA. Origins of cortical interneuron subtypes. J Neurosci 2004, 24:2612–2622. doi:10.1523/JNEUROSCI.5667-03.2004.
Butt, SJ, Fuccillo, M, Nery, S, Noctor, S, Kriegstein, A, Corbin, JG, Fishell, G. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 2005, 48:591–604. doi:10.1016/j.neuron.2005.09.034.
Fogarty, M, Grist, M, Gelman, D, Marin, O, Pachnis, V, Kessaris, N. Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 2007, 27:10935–10946. doi:10.1523/JNEUROSCI.1629-07.2007.
Anderson, SA, Eisenstat, DD, Shi, L, Rubenstein, JL. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 1997, 278:474–476.
Miller, MW. Cogeneration of retrogradely labeled corticocortical projection and GABA‐immunoreactive local circuit neurons in cerebral cortex. Brain Res 1985, 355:187–192.
Lopez‐Bendito, G, Sturgess, K, Erdelyi, F, Szabo, G, Molnar, Z, Paulsen, O. Preferential origin and layer destination of GAD65‐GFP cortical interneurons. Cereb Cortex 2004, 14:1122–1133. doi:10.1093/cercor/bhh072.
Fairen, A, Cobas, A, Fonseca, M. Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex. J Comp Neurol 1986, 251:67–83. doi:10.1002/cne.902510105.
Valcanis, H, Tan, SS. Layer specification of transplanted interneurons in developing mouse neocortex. J Neurosci 2003, 23:5113–5122.
Sherwood, CC, Stimpson, CD, Raghanti, MA, Wildman, DE, Uddin, M, Grossman, LI, Goodman, M, Redmond, JC, Bonar, CJ, Erwin, JM, et al. Evolution of increased glia‐neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA 2006, 103:13606–13611. doi:10.1073/pnas.0605843103.
Rowitch, DH, Kriegstein, AR. Developmental genetics of vertebrate glial‐cell specification. Nature 2010, 468:214–222. doi:10.1038/nature09611.
Clarke, LE, Barres, BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 2013, 14:311–321. doi:10.1038/nrn3484.
Miller, RH, Raff, MC. Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 1984, 4:585–592.
Molofsky, AV, Krencik, R, Ullian, EM, Tsai, HH, Deneen, B, Richardson, WD, Barres, BA, Rowitch, DH. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 2012, 26:891–907. doi:10.1101/gad.188326.112.
Baumann, N, Pham‐Dinh, D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001, 81:871–927.
Tomassy, GS, Fossati, V. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses. Front Cell Neurosci 2014, 8:201. doi:10.3389/fncel.2014.00201.
Tomassy, GS, Berger, DR, Chen, HH, Kasthuri, N, Hayworth, KJ, Vercelli, A, Seung, HS, Lichtman, JW, Arlotta, P. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 2014, 344:319–324. doi:10.1126/science.1249766.
Takasaki, C, Yamasaki, M, Uchigashima, M, Konno, K, Yanagawa, Y, Watanabe, M. Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex. Eur J Neurosci 2010, 32:1326–1336. doi:10.1111/j.1460-9568.2010.07377.x.
van Landeghem, FK, Weiss, T, von Deimling, A. Expression of PACAP and glutamate transporter proteins in satellite oligodendrocytes of the human CNS. Regul Pept 2007, 142:52–59. doi:10.1016/j.regpep.2007.01.008.
Richardson, WD, Kessaris, N, Pringle, N. Oligodendrocyte wars. Nat Rev Neurosci 2006, 7:11–18. doi:10.1038/nrn1826.
Kessaris, N, Fogarty, M, Iannarelli, P, Grist, M, Wegner, M, Richardson, WD. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 2006, 9:173–179. doi:10.1038/nn1620.
Suzuki, Y, Claflin, J, Wang, X, Lengi, A, Kikuchi, T. Microglia and macrophages as innate producers of interferon‐γ in the brain following infection with Toxoplasma gondii. Int J Parasitol 2005, 35:83–90. doi:10.1016/j.ijpara.2004.10.020.
Smith, C, Gentleman, SM, Leclercq, PD, Murray, LS, Griffin, WS, Graham, DI, Nicoll, JA. The neuroinflammatory response in humans after traumatic brain injury. Neuropathol Appl Neurobiol 2013, 39:654–666. doi:10.1111/nan.12008.
Morrison, HW, Filosa, JA. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 2013, 10:4. doi:10.1186/1742-2094-10-4.
Ueno, M, Fujita, Y, Tanaka, T, Nakamura, Y, Kikuta, J, Ishii, M, Yamashita, T. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013, 16:543–551. doi:10.1038/nn.3358.
Squarzoni, P, Oller, G, Hoeffel, G, Pont‐Lezica, L, Rostaing, P, Low, D, Bessis, A, Ginhoux, F, Garel, S. Microglia modulate wiring of the embryonic forebrain. Cell Rep 2014, 8:1271–1279. doi:10.1016/j.celrep.2014.07.042.
Arno, B, Grassivaro, F, Rossi, C, Bergamaschi, A, Castiglioni, V, Furlan, R, Greter, M, Favaro, R, Comi, G, Becher, B, et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat Commun 2014, 5:5611. doi:10.1038/ncomms6611.
Schafer, DP, Lehrman, EK, Kautzman, AG, Koyama, R, Mardinly, AR, Yamasaki, R, Ransohoff, RM, Greenberg, ME, Barres, BA, Stevens, B. Microglia sculpt postnatal neural circuits in an activity and complement‐dependent manner. Neuron 2012, 74:691–705. doi:10.1016/j.neuron.2012.03.026.
Paolicelli, RC, Bolasco, G, Pagani, F, Maggi, L, Scianni, M, Panzanelli, P, Giustetto, M, Ferreira, TA, Guiducci, E, Dumas, L, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011, 333:1456–1458. doi:10.1126/science.1202529.
Roumier, A, Bechade, C, Poncer, JC, Smalla, KH, Tomasello, E, Vivier, E, Gundelfinger, ED, Triller, A, Bessis, A. Impaired synaptic function in the microglial KARAP/DAP12‐deficient mouse. J Neurosci 2004, 24:11421–11428. doi:10.1523/JNEUROSCI.2251-04.2004.
Chen, SK, Tvrdik, P, Peden, E, Cho, S, Wu, S, Spangrude, G, Capecchi, MR. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010, 141:775–785. doi:10.1016/j.cell.2010.03.055.
Nayak, D, Roth, TL, McGavern, DB. Microglia development and function. Annu Rev Immunol 2014, 32:367–402. doi:10.1146/annurev-immunol-032713-120240.
Ginhoux, F, Greter, M, Leboeuf, M, Nandi, S, See, P, Gokhan, S, Mehler, MF, Conway, SJ, Ng, LG, Stanley, ER, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841–845. doi:10.1126/science.1194637.
Schulz, C, Gomez Perdiguero, E, Chorro, L, Szabo‐Rogers, H, Cagnard, N, Kierdorf, K, Prinz, M, Wu, B, Jacobsen, SE, Pollard, JW, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336:86–90. doi:10.1126/science.1219179.
Kierdorf, K, Erny, D, Goldmann, T, Sander, V, Schulz, C, Perdiguero, EG, Wieghofer, P, Heinrich, A, Riemke, P, Holscher, C, et al. Microglia emerge from erythromyeloid precursors via Pu.1‐ and Irf8‐dependent pathways. Nat Neurosci 2013, 16:273–280. doi:10.1038/nn.3318.
Swinnen, N, Smolders, S, Avila, A, Notelaers, K, Paesen, R, Ameloot, M, Brone, B, Legendre, P, Rigo, JM. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 2013, 61:150–163. doi:10.1002/glia.22421.
Barres, BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 2008, 60:430–440. doi:10.1016/j.neuron.2008.10.013.
Tropepe, V, Hitoshi, S, Sirard, C, Mak, TW, Rossant, J, van der Kooy, D. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 2001, 30:65–78.
Hemmati‐Brivanlou, A, Melton, DA. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 1994, 77:273–281.
Grunz, H, Tacke, L. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ Dev 1989, 28:211–217.
Di‐Gregorio, A, Sancho, M, Stuckey, DW, Crompton, LA, Godwin, J, Mishina, Y, Rodriguez, TA. BMP signalling inhibits premature neural differentiation in the mouse embryo. Development 2007, 134:3359–3369. doi:10.1242/dev.005967.
Chambers, SM, Fasano, CA, Papapetrou, EP, Tomishima, M, Sadelain, M, Studer, L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009, 27:275–280. doi:10.1038/nbt.1529.
Kiecker, C, Lumsden, A. The role of organizers in patterning the nervous system. Annu Rev Neurosci 2012, 35:347–367. doi:10.1146/annurev-neuro-062111-150543.
Cayuso, J, Marti, E. Morphogens in motion: growth control of the neural tube. J Neurobiol 2005, 64:376–387. doi:10.1002/neu.20169.
Rubenstein, JLR, Rakic, P. Comprehensive Developmental Neuroscience: Patterning and Cell Type Specification in the Developing CNS and PNS. 1st ed. Amsterdam: Elsevier/Academic Press; 2013.
Maden, M. Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 2002, 3:843–853. doi:10.1038/nrn963.
O`Leary, DD, Chou, SJ, Sahara, S. Area patterning of the mammalian cortex. Neuron 2007, 56:252–269. doi:10.1016/j.neuron.2007.10.010.
Crossley, PH, Martinez, S, Ohkubo, Y, Rubenstein, JL. Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 2001, 108:183–206.
Ericson, J, Muhr, J, Placzek, M, Lints, T, Jessell, TM, Edlund, T. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 1995, 81:747–756.
Gunhaga, L, Marklund, M, Sjodal, M, Hsieh, JC, Jessell, TM, Edlund, T. Specification of dorsal telencephalic character by sequential Wnt and FGF signaling. Nat Neurosci 2003, 6:701–707. doi:10.1038/nn1068.
Hansen, DV, Rubenstein, JL, Kriegstein, AR. Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 2011, 70:645–660. doi:10.1016/j.neuron.2011.05.006.
Gaspard, N, Bouschet, T, Hourez, R, Dimidschstein, J, Naeije, G, van den Ameele, J, Espuny‐Camacho, I, Herpoel, A, Passante, L, Schiffmann, SN, et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 2008, 455:351–357. doi:10.1038/nature07287.
Shi, Y, Kirwan, P, Livesey, FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 2012, 7:1836–1846. doi:10.1038/nprot.2012.116.
Espuny‐Camacho, I, Michelsen, KA, Gall, D, Linaro, D, Hasche, A, Bonnefont, J, Bali, C, Orduz, D, Bilheu, A, Herpoel, A, et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 2013, 77:440–456. doi:10.1016/j.neuron.2012.12.011.
Eiraku, M, Watanabe, K, Matsuo‐Takasaki, M, Kawada, M, Yonemura, S, Matsumura, M, Wataya, T, Nishiyama, A, Muguruma, K, Sasai, Y. Self‐organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 2008, 3:519–532. doi:10.1016/j.stem.2008.09.002.
Lancaster, MA, Renner, M, Martin, CA, Wenzel, D, Bicknell, LS, Hurles, ME, Homfray, T, Penninger, JM, Jackson, AP, Knoblich, JA. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501:373–379. doi:10.1038/nature12517.
Mariani, J, Simonini, MV, Palejev, D, Tomasini, L, Coppola, G, Szekely, AM, Horvath, TL, Vaccarino, FM. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci USA 2012, 109:12770–12775. doi:10.1073/pnas.1202944109.
Kadoshima, T, Sakaguchi, H, Nakano, T, Soen, M, Ando, S, Eiraku, M, Sasai, Y. Self‐organization of axial polarity, inside‐out layer pattern, and species‐specific progenitor dynamics in human ES cell‐derived neocortex. Proc Natl Acad Sci USA 2013, 110:20284–20289. doi:10.1073/pnas.1315710110.
Krencik, R, Zhang, SC. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc 2011, 6:1710–1717. doi:10.1038/nprot.2011.405.
Krencik, R, Weick, JP, Liu, Y, Zhang, ZJ, Zhang, SC. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol 2011, 29:528–534. doi:10.1038/nbt.1877.
Maroof, AM, Keros, S, Tyson, JA, Ying, SW, Ganat, YM, Merkle, FT, Liu, B, Goulburn, A, Stanley, EG, Elefanty, AG, et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 2013, 12:559–572. doi:10.1016/j.stem.2013.04.008.
Liu, Y, Liu, H, Sauvey, C, Yao, L, Zarnowska, ED, Zhang, SC. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc 2013, 8:1670–1679. doi:10.1038/nprot.2013.106.
Nicholas, CR, Chen, J, Tang, Y, Southwell, DG, Chalmers, N, Vogt, D, Arnold, CM, Chen, YJ, Stanley, EG, Elefanty, AG, et al. Functional maturation of hPSC‐derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 2013, 12:573–586. doi:10.1016/j.stem.2013.04.005.
Liu, Y, Weick, JP, Liu, H, Krencik, R, Zhang, X, Ma, L, Zhou, GM, Ayala, M, Zhang, SC. Medial ganglionic eminence‐like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 2013, 31:440–447. doi:10.1038/nbt.2565.
Cambray, S, Arber, C, Little, G, Dougalis, AG, de Paola, V, Ungless, MA, Li, M, Rodriguez, TA. Activin induces cortical interneuron identity and differentiation in embryonic stem cell‐derived telencephalic neural precursors. Nat Commun 2012, 3:841. doi:10.1038/ncomms1817.
Stacpoole, SR, Spitzer, S, Bilican, B, Compston, A, Karadottir, R, Chandran, S, Franklin, RJ. High yields of oligodendrocyte lineage cells from human embryonic stem cells at physiological oxygen tensions for evaluation of translational biology. Stem Cell Rep 2013, 1:437–450. doi:10.1016/j.stemcr.2013.09.006.
Billon, N, Jolicoeur, C, Tokumoto, Y, Vennstrom, B, Raff, M. Normal timing of oligodendrocyte development depends on thyroid hormone receptor α 1 (TRα1). EMBO J 2002, 21:6452–6460.
Brustle, O, Jones, KN, Learish, RD, Karram, K, Choudhary, K, Wiestler, OD, Duncan, ID, McKay, RD. Embryonic stem cell‐derived glial precursors: a source of myelinating transplants. Science 1999, 285:754–756.
Amamoto, R, Arlotta, P. Development‐inspired reprogramming of the mammalian central nervous system. Science 2014, 343:1239882. doi:10.1126/science.1239882.
Watanabe, K, Kamiya, D, Nishiyama, A, Katayama, T, Nozaki, S, Kawasaki, H, Watanabe, Y, Mizuseki, K, Sasai, Y. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 2005, 8:288–296. doi:10.1038/nn1402.