Wheeler, J. History of teratomas. In: Damjanov, I, Knowles, B, Solter, D, eds. The Human Teratomas, vol. 3. Heidelberg/New York: Humana Press, Heidelberg/New York; 1983, 1–22.
Andrews, PW, Matin, MM, Bahrami, AR, Damjanov, I, Gokhale, P, Draper, JS. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 2005, 33:1526–1530.
Solter, D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 2006, 7:319–327.
Damjanov, I, Andrews, PW. The terminology of teratocarcinomas and teratomas. Nat Biotechnol 2007, 25:1212; discussion 1212.
Bulic‐Jakus, F, Ulamec, M, Vlahovic, M, Sincic, N, Katusic, A, Juric‐Lekc, G, Serman, L, Kruslin, B, Belicza, M. Of mice and men: teratomas and teratocarcinomas. Coll Antropol 2006, 30:921–924.
Amariglio, N, Hirshberg, A, Scheithauer, BW, Cohen, Y, Loewenthal, R, Trakhtenbrot, L, Paz, N, Koren‐Michowitz, M, Waldman, D, Leider‐Trejo, L, et al. Donor‐derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 2009, 6:e1000029.
Stevens, LC, Little, CC. Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci USA 1954, 40:1080–1087.
Alison, RH, Morgan, KT. Ovarian neoplasms in F344 rats and B6C3F1 mice. Environ Health Perspect 1987, 73:91–106.
Stevens, LC, Varnum, DS. The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol 1974, 37:369–380.
Stevens, LC. A new inbred subline of mice (129‐terSv) with a high incidence of spontaneous congenital testicular teratomas. J Natl Cancer Inst 1973, 50:235–242.
Youngren, KK, Coveney, D, Peng, X, Bhattacharya, C, Schmidt, LS, Nickerson, ML, Lamb, BT, Deng, JM, Behringer, RR, Capel, B, et al. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 2005, 435:360–364.
Heaney, JD, Anderson, EL, Michelson, MV, Zechel, JL, Conrad, PA, Page, DC, Nadeau, JH. Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development 2012, 139:1577–1586.
Cunningham, JJ, Ulbright, TM, Pera, MF, Looijenga, LH. Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol 2012, 30:849–857.
Looijenga, LH. Testicular germ cell tumors. Pediatr Endocrinol Rev 2014, 11(suppl 2):251–262.
Eble, JN. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. Lyon/Oxford: IARC Press/Oxford University Press; 2004.
Gucciardo, L, Uyttebroek, A, De Wever, I, Renard, M, Claus, F, Devlieger, R, Lewi, L, De Catte, L, Deprest, J. Prenatal assessment and management of sacrococcygeal teratoma. Prenat Diagn 2011, 31:678–688.
Tapper, D, Lack, EE. Teratomas in infancy and childhood: a 54‐year experience at the Children`s Hospital Medical Center. Ann Surg 1983, 198:398–410.
Zeh, N, Wild, PJ, Bode, PK, Kristiansen, G, Moch, H, Sulser, T, Hermanns, T. Retroperitoneal teratoma with somatic malignant transformation: a papillary renal cell carcinoma in a testicular germ cell tumour metastasis following platinum‐based chemotherapy. BMC Urol 2013, 13:9.
Murray, MJ, Nicholson, JC, Coleman, N. Biology of childhood germ cell tumours, focussing on the significance of microRNAs. Andrology 2015, 3:129–139.
Zeuthen, J, Norgaard, JO, Avner, P, Fellous, M, Wartiovaara, J, Vaheri, A, Rosen, A, Giovanella, BC. Characterization of a human ovarian teratocarcinoma‐derived cell line. Int J Cancer 1980, 25:19–32.
Andrews, PW. Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 1984, 103:285–293.
Banerjee, S, Williamson, D, Habib, N, Gordon, M, Chataway, J. Human stem cell therapy in ischaemic stroke: a review. Age Ageing 2011, 40:7–13.
Levak‐Švajger, B, Knezevic, V, Svajger, A. Development of separated germ layers of rodent embryos on ectopic sites: a reappraisal. Int J Dev Biol 1991, 35:177–189.
Marinovic‐Kulisic, S, Juric‐Lekic, G, Vikic‐Topic, M, Lokosek, V, Radujkovic, V, Bulic‐Jakus, F, Katusic, A, Vlahovic, M, Serman, L, Sincic, N. 5‐Azacytidine enhances proliferation in transplanted rat fetal epiglottis. Front Biosci (Elite Ed) 2011, 3:581–590.
Skreb, N, Solter, D, Damjanov, I. Developmental biology of the murine egg cylinder. Int J Dev Biol 1991, 35:161–176.
Švajger, A, Levak‐Švajger, B. Technique of separation of germ layers in rat embryonic shields. Wilhelm Roux Arch Dev Biol 1975, 178:303–308.
Svajger, A, Levak‐Švajger, B. Differentiation in renal homografts of isolated parts of rat embryonic ectoderm. Experientia 1976, 32:378–380.
Skreb, N, Svajger, A, Levak‐Švajger, B. Developmental potentialities of the germ layers in mammals. In: Embryogenesis in Mammals, Ciba Foundation Symposium 40. Amsterdam: Elsevier; 1976, 27–45.
Gardner, RL, Rossant, J. Investigation of the fate of 4–5 day post‐coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 1979, 52:141–152.
De Miguel, MP, Arnalich Montiel, F, Lopez Iglesias, P, Blazquez Martinez, A, Nistal, M. Epiblast‐derived stem cells in embryonic and adult tissues. Int J Dev Biol 2009, 53:1529–1540.
Watson, CL, Mahe, MM, Munera, J, Howell, JC, Sundaram, N, Poling, HM, Schweitzer, JI, Vallance, JE, Mayhew, CN, Sun, Y, et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med 2014, 20:1310–1314.
Belovari, T, Bulic‐Jakus, F, Juric‐Lekic, G, Maric, S, Jezek, D, Vlahovic, M. Differentiation of rat neural tissue in a serum‐free embryo culture model followed by in vivo transplantation. Croat Med J 2001, 42:611–617.
Škreb, N, Crnek, V. Development of embryo‐derived teratomas in vitro. In: McKinnell, R, DiBerardino, M, Blumenfeld, M, Bergad, R, eds. Differentiation and Neoplasia, vol. 11. Berlin/Heidelberg: Springer‐Verlag GmbH; 1980, 283–289.
Strahinic, TJ‐LG, Bulic‐Jakus, F. Transferrin supports differentiation of neural tissue in grafts of early rat embryos pre‐cultivated in serum‐free medium. Period Biol 1996, 98:237–242.
Skreb, N, Bulic, F. Partial differentiation of rat egg cylinders in serum‐free and protein‐free medium. Dev Biol 1987, 120:584–586.
Skreb, N, Crnek, V, Durst‐Zivkovic, B. Effect of various sera on cultured rodent embryonic shields. Cell Differ 1983, 12:27–32.
Bulic‐Jakus, F, Skreb, N, Juric‐Lekic, G, Svajger, A. Transferrin enhances lentoid differentiation in rat egg cylinders cultivated in a chemically defined medium. Int J Dev Biol 1990, 34:275–279.
Bulic‐Jakus, F, Vlahovic, M, Juric‐Lekic, G, Crnek‐Kunstelj, V, Serman, D. Gastrulating rat embryo in a serum‐free culture model: changes of development caused by teratogen 5‐azacytidine. Altern Lab Anim 1999, 27:925–933.
Bulic‐Jakus, F, Strahinic‐Belovari, T, Maric, S, Jezek, D, Juric‐Lekic, G, Vlahovic, M, Serman, D. Chemically defined protein‐free in vitro culture of mammalian embryo does not restrict its developmental potential for differentiation of skin appendages. Cells Tissues Organs 2001, 169:134–143.
Stevens, LC. The biology of teratomas. Adv Morphog 1967, 6:1–31.
Stevens, LC. The development of teratomas from intratesticular grafts of tubal mouse eggs. J Embryol Exp Morphol 1968, 20:329–341.
Stevens, LC. The development of transplantable teratocarcinomas from intratesticular grafts of pre‐ and postimplantation mouse embryos. Dev Biol 1970, 21:364–382.
Diwan, SB, Stevens, LC. Development of teratomas from the ectoderm of mouse egg cylinders. J Natl Cancer Inst 1976, 57:937–942.
Silvan, U, Arlucea, J, Andrade, R, Diez‐Torre, A, Silio, M, Konerding, MA, Arechaga, J. Angiogenesis and vascular network of teratocarcinoma from embryonic stem cell transplant into seminiferous tubules. Br J Cancer 2009, 101:64–70.
Solter, D, Skreb, N, Damjanov, I. Extrauterine growth of mouse egg‐cylinders results in malignant teratoma. Nature 1970, 227:503–504.
Damjanov, I, Damjanov, A, Solter, D. Production of teratocarcinomas from embryos transplanted to extra‐uterine sites. In: Robertson, EJ, ed. Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. Oxford: IRL Press; 1987, 1–18.
Damjanov, I, Solter, D, Škreb, N. Teratocarcinogenesis as related to the age of embryos grafted under the kidney capsule. Wilhelm Roux Arch Entwickl Mech Org 1971, 167:288–290.
Damjanov, I, Solter, D. Embryo‐derived teratocarcinomas elicit splenomegaly in syngeneic host. Nature 1974, 249:569–571.
Lim, CY, Solter, D, Knowles, BB, Damjanov, I. Development of teratocarcinomas and teratomas in severely immunodeficient NOD.Cg‐Prkdc(scid) Il2rg(tm1Wjl)/Szj (NSG) mice. Stem Cells Dev 2015, 24:1515–1520.
Solter, D, Damjanov, I. Teratocarcinomas rarely develop from embryos transplanted into athymic mice. Nature 1979, 278:554–555.
Sincic, N, Herceg, Z. DNA methylation and cancer: ghosts and angels above the genes. Curr Opin Oncol 2011, 23:69–76.
Sandoval, J, Esteller, M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 2012, 22:50–55.
Kleinsmith, LJ, Pierce, GB Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res 1964, 24:1544–1551.
Brinster, RL. The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 1974, 140:1049–1056.
Stewart, TA, Mintz, B. Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells. Proc Natl Acad Sci USA 1981, 78:6314–6318.
Rossant, J, McBurney, MW. The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. J Embryol Exp Morphol 1982, 70:99–112.
Zhang, W, de Almeida, PE, Wu, JC. Teratoma formation: a tool for monitoring pluripotency in stem cell research. In: Lisa, G, ed. StemBook (Internet). Cambridge, MA: Harvard Stem Cell Institute; 2012, 1–14.
The International Stem Cell Banking Initiative. Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev 2009, 5:301–314.
Hyun, I. From naive pluripotency to chimeras: a new ethical challenge? Development 2015, 142:6–8.
Gafni, O, Weinberger, L, Mansour, AA, Manor, YS, Chomsky, E, Ben‐Yosef, D, Kalma, Y, Viukov, S, Maza, I, Zviran, A, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 2013, 504:282–286.
Theunissen, TW, Powell, BE, Wang, H, Mitalipova, M, Faddah, DA, Reddy, J, Fan, ZP, Maetzel, D, Ganz, K, Shi, L, et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 2014, 15:471–487.
Masaki, H, Kato‐Itoh, M, Umino, A, Sato, H, Hamanaka, S, Kobayashi, T, Yamaguchi, T, Nishimura, K, Ohtaka, M, Nakanishi, M, et al. Interspecific in vitro assay for the chimera‐forming ability of human pluripotent stem cells. Development 2015, 142:3222–3230.
Knoepfler, PS. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 2009, 27:1050–1056.
Ben‐David, U, Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011, 11:268–277.
Buta, C, David, R, Dressel, R, Emgard, M, Fuchs, C, Gross, U, Healy, L, Hescheler, J, Kolar, R, Martin, U, et al. Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res 2013, 11:552–562.
Wesselschmidt, RL. The teratoma assay: an in vivo assessment of pluripotency. Methods Mol Biol 2011, 767:231–241.
Tanabe, K, Takahashi, K, Yamanaka, S. Induction of pluripotency by defined factors. Proc Jpn Acad Ser B Phys Biol Sci 2014, 90:83–96.
Evans, MJ, Kaufman, MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 292:154–156.
Martin, GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981, 78:7634–7638.
Solter, D, Knowles, BB. Immunosurgery of mouse blastocyst. Proc Natl Acad Sci USA 1975, 72:5099–5102.
Bradley, A, Evans, M, Kaufman, MH, Robertson, E. Formation of germ‐line chimaeras from embryo‐derived teratocarcinoma cell lines. Nature 1984, 309:255–256.
Evans, MJ, Bradley, A, Kuehn, MR, Robertson, EJ. The ability of EK cells to form chimeras after selection of clones in G418 and some observations on the integration of retroviral vector proviral DNA into EK cells. Cold Spring Harb Symp Quant Biol 1985, 50:685–689.
Bradley, A, Robertson, E. Embryo‐derived stem cells: a tool for elucidating the developmental genetics of the mouse. Curr Top Dev Biol 1986, 20:357–371.
Nagy, A, Rossant, J, Nagy, R, Abramow‐Newerly, W, Roder, JC. Derivation of completely cell culture‐derived mice from early‐passage embryonic stem cells. Proc Natl Acad Sci USA 1993, 90:8424–8428.
Williams, RL, Hilton, DJ, Pease, S, Willson, TA, Stewart, CL, Gearing, DP, Wagner, EF, Metcalf, D, Nicola, NA, Gough, NM. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 1988, 336:684–687.
Jacob, HJ, Lazar, J, Dwinell, MR, Moreno, C, Geurts, AM. Gene targeting in the rat: advances and opportunities. Trends Genet 2010, 26:510–518.
Do, DV, Ueda, J, Messerschmidt, DM, Lorthongpanich, C, Zhou, Y, Feng, B, Guo, G, Lin, PJ, Hossain, MZ, Zhang, W, et al. A genetic and developmental pathway from STAT3 to the OCT4‐NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes Dev 2013, 27:1378–1390.
Kalkan, T, Smith, A. Mapping the route from naive pluripotency to lineage specification. Philos Trans R Soc Lond B Biol Sci 2014, 369:1–10.
Leitch, HG, McEwen, KR, Turp, A, Encheva, V, Carroll, T, Grabole, N, Mansfield, W, Nashun, B, Knezovich, JG, Smith, A, et al. Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 2013, 20:311–316.
Ficz, G, Hore, TA, Santos, F, Lee, HJ, Dean, W, Arand, J, Krueger, F, Oxley, D, Paul, YL, Walter, J, et al. FGF signaling inhibition in ESCs drives rapid genome‐wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 2013, 13:351–359.
Ying, QL, Wray, J, Nichols, J, Batlle‐Morera, L, Doble, B, Woodgett, J, Cohen, P, Smith, A. The ground state of embryonic stem cell self‐renewal. Nature 2008, 453:519–523.
Buehr, M, Meek, S, Blair, K, Yang, J, Ure, J, Silva, J, McLay, R, Hall, J, Ying, QL, Smith, A. Capture of authentic embryonic stem cells from rat blastocysts. Cell 2008, 135:1287–1298.
Tong, C, Li, P, Wu, NL, Yan, Y, Ying, QL. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 2010, 467:211–213.
Hackett, JA, Surani, MA. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 2014, 15:416–430.
Hayashi, K, Ohta, H, Kurimoto, K, Aramaki, S, Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011, 146:519–532.
Hayashi, K, Ogushi, S, Kurimoto, K, Shimamoto, S, Ohta, H, Saitou, M. Offspring from oocytes derived from in vitro primordial germ cell‐like cells in mice. Science 2012, 338:971–975.
Magnusdottir, E, Surani, MA. How to make a primordial germ cell. Development 2014, 141:245–252.
Elling, U, Taubenschmid, J, Wirnsberger, G, O`Malley, R, Demers, SP, Vanhaelen, Q, Shukalyuk, AI, Schmauss, G, Schramek, D, Schnuetgen, F, et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 2011, 9:563–574.
Li, W, Shuai, L, Wan, H, Dong, M, Wang, M, Sang, L, Feng, C, Luo, GZ, Li, T, Li, X, et al. Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 2012, 490:407–411.
Li, W, Li, X, Li, T, Jiang, MG, Wan, H, Luo, GZ, Feng, C, Cui, X, Teng, F, Yuan, Y, et al. Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 2014, 14:404–414.
Yang, H, Liu, Z, Ma, Y, Zhong, C, Yin, Q, Zhou, C, Shi, L, Cai, Y, Zhao, H, Wang, H, et al. Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res 2013, 23:1187–1200.
Takahashi, K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663–676.
Okita, K, Ichisaka, T, Yamanaka, S. Generation of germline‐competent induced pluripotent stem cells. Nature 2007, 448:313–317.
Chang, MY, Kim, D, Kim, CH, Kang, HC, Yang, E, Moon, JI, Ko, S, Park, J, Park, KS, Lee, KA, et al. Direct reprogramming of rat neural precursor cells and fibroblasts into pluripotent stem cells. PLoS ONE 2010, 5:e9838.
Makanga, JO, Kobayashi, M, Ikeda, H, Christianto, A, Toyoda, H, Yamada, M, Kawasaki, T, Inazu, T. Generation of rat induced pluripotent stem cells using a plasmid vector and possible application of a keratan sulfate glycan recognizing antibody in discriminating teratoma formation phenotypes. Biol Pharm Bull 2015, 38:127–133.
Aksoy, I, Giudice, V, Delahaye, E, Wianny, F, Aubry, M, Mure, M, Chen, J, Jauch, R, Bogu, GK, Nolden, T, et al. Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nat Commun 2014, 5:3719.
Yang, CS, Chang, KY, Rana, TM. Genome‐wide functional analysis reveals factors needed at the transition steps of induced reprogramming. Cell Rep 2014, 8:327–337.
Rais, Y, Zviran, A, Geula, S, Gafni, O, Chomsky, E, Viukov, S, Mansour, AA, Caspi, I, Krupalnik, V, Zerbib, M, et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 2013, 502:65–70.
Young, MA, Larson, DE, Sun, CW, George, DR, Ding, L, Miller, CA, Lin, L, Pawlik, KM, Chen, K, Fan, X, et al. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 2012, 10:570–582.
Lister, R, Pelizzola, M, Kida, YS, Hawkins, RD, Nery, JR, Hon, G, Antosiewicz‐Bourget, J, O`Malley, R, Castanon, R, Klugman, S, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011, 471:68–73.
Abad, M, Mosteiro, L, Pantoja, C, Canamero, M, Rayon, T, Ors, I, Grana, O, Megias, D, Dominguez, O, Martinez, D, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 2013, 502:340–345.
Berger, SL, Kouzarides, T, Shiekhattar, R, Shilatifard, A. An operational definition of epigenetics. Genes Dev 2009, 23:781–783.
Nozaki, T, Masutani, M, Watanabe, M, Ochiya, T, Hasegawa, F, Nakagama, H, Suzuki, H, Sugimura, T. Syncytiotrophoblastic giant cells in teratocarcinoma‐like tumors derived from Parp‐disrupted mouse embryonic stem cells. Proc Natl Acad Sci USA 1999, 96:13345–13350.
Cohen‐Armon, M. PARP‐1 activation in the ERK signaling pathway. Trends Pharmacol Sci 2007, 28:556–560.
Cambuli, F, Murray, A, Dean, W, Dudzinska, D, Krueger, F, Andrews, S, Senner, CE, Cook, SJ, Hemberger, M. Epigenetic memory of the first cell fate decision prevents complete ES cell reprogramming into trophoblast. Nat Commun 2014, 5:5538.
Howe, SJ, Mansour, MR, Schwarzwaelder, K, Bartholomae, C, Hubank, M, Kempski, H, Brugman, MH, Pike‐Overzet, K, Chatters, SJ, de Ridder, D, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID‐X1 patients. J Clin Invest 2008, 118:3143–3150.
Li, X, Zhang, P, Wei, C, Zhang, Y. Generation of pluripotent stem cells via protein transduction. Int J Dev Biol 2014, 58:21–27.
Zhou, H, Wu, S, Joo, JY, Zhu, S, Han, DW, Lin, T, Trauger, S, Bien, G, Yao, S, Zhu, Y, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009, 4:381–384.
Hou, P, Li, Y, Zhang, X, Liu, C, Guan, J, Li, H, Zhao, T, Ye, J, Yang, W, Liu, K, et al. Pluripotent stem cells induced from mouse somatic cells by small‐molecule compounds. Science 2013, 341:651–654.
Tonge, PD, Corso, AJ, Monetti, C, Hussein, SM, Puri, MC, Michael, IP, Li, M, Lee, DS, Mar, JC, Cloonan, N, et al. Divergent reprogramming routes lead to alternative stem‐cell states. Nature 2014, 516:192–197.
Thomson, JA, Itskovitz‐Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ, Marshall, VS, Jones, JM. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282:1145–1147.
Shamblott, MJ, Axelman, J, Wang, S, Bugg, EM, Littlefield, JW, Donovan, PJ, Blumenthal, PD, Huggins, GR, Gearhart, JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998, 95:13726–13731.
Shamblott, MJ, Axelman, J, Littlefield, JW, Blumenthal, PD, Huggins, GR, Cui, Y, Cheng, L, Gearhart, JD. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci USA 2001, 98:113–118.
Klimanskaya, I, Chung, Y, Becker, S, Lu, SJ, Lanza, R. Human embryonic stem cell lines derived from single blastomeres. Nature 2006, 444:481–485.
Hovatta, O, Jaconi, M, Tohonen, V, Bena, F, Gimelli, S, Bosman, A, Holm, F, Wyder, S, Zdobnov, EM, Irion, O, et al. A teratocarcinoma‐like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes. PLoS ONE 2010, 5:e10263.
Feki, A, Bosman, A, Dubuisson, JB, Irion, O, Dahoun, S, Pelte, MF, Hovatta, O, Jaconi, ME. Derivation of the first Swiss human embryonic stem cell line from a single blastomere of an arrested four‐cell stage embryo. Swiss Med Wkly 2008, 138:540–550.
Tachibana, M, Amato, P, Sparman, M, Gutierrez, NM, Tippner‐Hedges, R, Ma, H, Kang, E, Fulati, A, Lee, HS, Sritanaudomchai, H, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013, 153:1228–1238.
Chung, YG, Eum, JH, Lee, JE, Shim, SH, Sepilian, V, Hong, SW, Lee, Y, Treff, NR, Choi, YH, Kimbrel, EA, et al. Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 2014, 14:777–780.
Yamada, M, Johannesson, B, Sagi, I, Burnett, LC, Kort, DH, Prosser, RW, Paull, D, Nestor, MW, Freeby, M, Greenberg, E, et al. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 2014, 510:533–536.
Tachibana, M, Amato, P, Sparman, M, Woodward, J, Sanchis, DM, Ma, H, Gutierrez, NM, Tippner‐Hedges, R, Kang, E, Lee, HS, et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature 2013, 493:627–631.
Takahashi, K, Tanabe, K, Ohnuki, M, Narita, M, Ichisaka, T, Tomoda, K, Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861–872.
Yu, J, Vodyanik, MA, Smuga‐Otto, K, Antosiewicz‐Bourget, J, Frane, JL, Tian, S, Nie, J, Jonsdottir, GA, Ruotti, V, Stewart, R, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917–1920.
Onder, TT, Daley, GQ. New lessons learned from disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 2012, 22:500–508.
Suzuki, N, Yamazaki, S, Yamaguchi, T, Okabe, M, Masaki, H, Takaki, S, Otsu, M, Nakauchi, H. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther 2013, 21:1424–1431.
Nashun, B, Hill, PW, Hajkova, P. Reprogramming of cell fate: epigenetic memory and the erasure of memories past. EMBO J 2015, 34:1296–1308.
Sakurai, K, Talukdar, I, Patil, VS, Dang, J, Li, Z, Chang, KY, Lu, CC, Delorme‐Walker, V, Dermardirossian, C, Anderson, K, et al. Kinome‐wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming. Cell Stem Cell 2014, 14:523–534.
Laurent, LC, Ulitsky, I, Slavin, I, Tran, H, Schork, A, Morey, R, Lynch, C, Harness, JV, Lee, S, Barrero, MJ, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011, 8:106–118.
Ma, H, Morey, R, O`Neil, RC, He, Y, Daughtry, B, Schultz, MD, Hariharan, M, Nery, JR, Castanon, R, Sabatini, K, et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 2014, 511:177–183.
Ben‐David, U, Arad, G, Weissbein, U, Mandefro, B, Maimon, A, Golan‐Lev, T, Narwani, K, Clark, AT, Andrews, PW, Benvenisty, N, et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun 2014, 5:4825.
Avery, S, Hirst, AJ, Baker, D, Lim, CY, Alagaratnam, S, Skotheim, RI, Lothe, RA, Pera, MF, Colman, A, Robson, P, et al. BCL‐XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Reports 2013, 1:379–386.
Dressel, R, Schindehutte, J, Kuhlmann, T, Elsner, L, Novota, P, Baier, PC, Schillert, A, Bickeboller, H, Herrmann, T, Trenkwalder, C, et al. The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients` immune response. PLoS ONE 2008, 3:e2622.
Shih, CC, Forman, SJ, Chu, P, Slovak, M. Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev 2007, 16:893–902.
Jamil, S, Cedervall, J, Hultman, I, Ali, R, Margaryan, NV, Rasmuson, A, Johnsen, JI, Sveinbjornsson, B, Dalianis, T, Kanter, L, et al. Neuroblastoma cells injected into experimental mature teratoma reveal a tropism for embryonic loose mesenchyme. Int J Oncol 2013, 43:831–838.
Moroson, H, Ioachim, HL. Protection by grafts of embryonal rat tissues (teratomas) against induction and transplantation of malignant tumors. Cancer Res 1995, 55:3664–3668.
Zhao, T, Zhang, ZN, Rong, Z, Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature 2011, 474:212–215.
Araki, R, Uda, M, Hoki, Y, Sunayama, M, Nakamura, M, Ando, S, Sugiura, M, Ideno, H, Shimada, A, Nifuji, A, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 2013, 494:100–104.
Kwak, HH, Park, KM, Nam, HS, Park, SM, Woo, HM. Disparate hypervariable region‐1 of mitochondrial DNA did not induce skin allograft rejection in cloned porcine models. Transplant Proc 2013, 45:1787–1791.
Kwak, HH, Park, KM, Teotia, PK, Lee, GS, Lee, ES, Hong, SH, Yang, SR, Park, SM, Ahn, C, Park, CK, et al. Acute rejection after swine leukocyte antigen‐matched kidney allo‐transplantation in cloned miniature pigs with different mitochondrial DNA‐encoded minor histocompatibility antigen. Transplant Proc 2013, 45:1754–1760.
Wang, X, Qin, J, Zhao, RC, Zenke, M. Reduced immunogenicity of induced pluripotent stem cells derived from Sertoli cells. PLoS ONE 2014, 9:e106110.
Fu, X. The immunogenicity of cells derived from induced pluripotent stem cells. Cell Mol Immunol 2014, 11:14–16.
Kudo, H, Wada, H, Sasaki, H, Tsuji, H, Otsuka, R, Baghdadi, M, Kojo, S, Chikaraishi, T, Seino, K. Induction of macrophage‐like immunosuppressive cells from mouse ES cells that contribute to prolong allogeneic graft survival. PLoS ONE 2014, 9:e111826.
Erdo, F, Buhrle, C, Blunk, J, Hoehn, M, Xia, Y, Fleischmann, B, Focking, M, Kustermann, E, Kolossov, E, Hescheler, J, et al. Host‐dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 2003, 23:780–785.
Shibata, H, Ageyama, N, Tanaka, Y, Kishi, Y, Sasaki, K, Nakamura, S, Muramatsu, S, Hayashi, S, Kitano, Y, Terao, K, et al. Improved safety of hematopoietic transplantation with monkey embryonic stem cells in the allogeneic setting. Stem Cells 2006, 24:1450–1457.
Villa‐Diaz, LG, Ross, AM, Lahann, J, Krebsbach, PH. Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 2013, 31:1–7.
Valamehr, B, Abujarour, R, Robinson, M, Le, T, Robbins, D, Shoemaker, D, Flynn, P. A novel platform to enable the high‐throughput derivation and characterization of feeder‐free human iPSCs. Sci Rep 2012, 2:213.
Na, J, Baker, D, Zhang, J, Andrews, PW, Barbaric, I. Aneuploidy in pluripotent stem cells and implications for cancerous transformation. Protein Cell 2014, 5:569–579.
Prokhorova, TA, Harkness, LM, Frandsen, U, Ditzel, N, Schroder, HD, Burns, JS, Kassem, M. Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 2009, 18:47–54.
Hughes, CS, Postovit, LM, Lajoie, GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 2010, 10:1886–1890.
Hentze, H, Soong, PL, Wang, ST, Phillips, BW, Putti, TC, Dunn, NR. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2009, 2:198–210.
Gropp, M, Shilo, V, Vainer, G, Gov, M, Gil, Y, Khaner, H, Matzrafi, L, Idelson, M, Kopolovic, J, Zak, NB, et al. Standardization of the teratoma assay for analysis of pluripotency of human ES cells and biosafety of their differentiated progeny. PLoS ONE 2012, 7:e45532.
Ozolek, JA, Castro, CA. Teratomas derived from embryonic stem cells as models for embryonic development, disease, and tumorigenesis. In: Kallos, M, ed. Embryonic Stem Cells—Basic Biology to Bioengineering. InTech Open Access Books; 2011, 231–262.
Oh, SK, Chua, P, Foon, KL, Ng, E, Chin, A, Choo, AB, Srinivasan, R. Quantitative identification of teratoma tissues formed by human embryonic stem cells with TeratomEye. Biotechnol Lett 2009, 31:653–658.
Chung, J, Kee, K, Barral, JK, Dash, R, Kosuge, H, Wang, X, Weissman, I, Robbins, RC, Nishimura, D, Quertermous, T, et al. In vivo molecular MRI of cell survival and teratoma formation following embryonic stem cell transplantation into the injured murine myocardium. Magn Reson Med 2011, 66:1374–1381.
Gutierrez‐Aranda, I, Ramos‐Mejia, V, Bueno, C, Munoz‐Lopez, M, Real, PJ, Macia, A, Sanchez, L, Ligero, G, Garcia‐Parez, JL, Menendez, P. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 2010, 28:1568–1570.
Liang, G, Zhang, Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 2013, 13:149–159.
Lu, B, Malcuit, C, Wang, S, Girman, S, Francis, P, Lemieux, L, Lanza, R, Lund, R. Long‐term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 2009, 27:2126–2135.
Schwartz, SD, Hubschman, JP, Heilwell, G, Franco‐Cardenas, V, Pan, CK, Ostrick, RM, Mickunas, E, Gay, R, Klimanskaya, I, Lanza, R. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 2012, 379:713–720.
Schwartz, SD, Regillo, CD, Lam, BL, Eliott, D, Rosenfeld, PJ, Gregori, NZ, Hubschman, JP, Davis, JL, Heilwell, G, Spirn, M, et al. Human embryonic stem cell‐derived retinal pigment epithelium in patients with age‐related macular degeneration and Stargardt‘s macular dystrophy: follow‐up of two open‐label phase 1/2 studies. Lancet 2015, 385:509–516.
Song, WK, Park, KM, Kim, HJ, Lee, JH, Choi, J, Chong, SY, Shim, SH, Del Priore, LV, Lanza, R. Treatment of macular degeneration using embryonic stem cell‐derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Reports 2015, 4:860–872.
Lee, MO, Moon, SH, Jeong, HC, Yi, JY, Lee, TH, Shim, SH, Rhee, YH, Lee, SH, Oh, SJ, Lee, MY, et al. Inhibition of pluripotent stem cell‐derived teratoma formation by small molecules. Proc Natl Acad Sci USA 2013, 110:E3281–E3290.
Huskey, NE, Guo, T, Evason, KJ, Momcilovic, O, Pardo, D, Creasman, KJ, Judson, RL, Blelloch, R, Oakes, SA, Hebrok, M, et al. CDK1 inhibition targets the p53‐NOXA‐MCL1 axis, selectively kills embryonic stem cells, and prevents teratoma formation. Stem Cell Reports 2015, 4:374–389.
Acquarone, M, de Melo, TM, Meireles, F, Brito‐Moreira, J, Oliveira, G, Ferreira, ST, Castro, NG, Tovar‐Moll, F, Houzel, JC, Rehen, SK. Mitomycin‐treated undifferentiated embryonic stem cells as a safe and effective therapeutic strategy in a mouse model of Parkinson‘s disease. Front Cell Neurosci 2015, 9:97.
Tang, YC, Williams, BR, Siegel, JJ, Amon, A. Identification of aneuploidy‐selective antiproliferation compounds. Cell 2011, 144:499–512.
Tateno, H, Onuma, Y, Ito, Y, Minoshima, F, Saito, S, Shimizu, M, Aiki, Y, Asashima, M, Hirabayashi, J. Elimination of tumorigenic human pluripotent stem cells by a recombinant lectin‐toxin fusion protein. Stem Cell Reports 2015, 4:811–820.
Berger, C, Flowers, ME, Warren, EH, Riddell, SR. Analysis of transgene‐specific immune responses that limit the in vivo persistence of adoptively transferred HSV‐TK‐modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 2006, 107:2294–2302.
Di Stasi, A, Tey, SK, Dotti, G, Fujita, Y, Kennedy‐Nasser, A, Martinez, C, Straathof, K, Liu, E, Durett, AG, Grilley, B, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011, 365:1673–1683.
Wu, C, Hong, SG, Winkler, T, Spencer, DM, Jares, A, Ichwan, B, Nicolae, A, Guo, V, Larochelle, A, Dunbar, CE. Development of an inducible caspase‐9 safety switch for pluripotent stem cell‐based therapies. Mol Ther Methods Clin Dev 2014, 1:14053.