Willis, WD, Coggeshall, RE. Sensory Mechanisms of the Spinal Cord: Volume 1 Primary Afferent Neurons and the Spinal Dorsal Horn. New York: Springer Science %26 Business Media; 2004.
Serbedzija, GN, Fraser, SE, Bronner‐Fraser, M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 1990, 108:605–612.
Ma, Q, Fode, C, Guillemot, F, Anderson, DJ. Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev 1999, 13:1717–1728.
Lawson, SN, Biscoe, TJ. Development of mouse dorsal root ganglia: an autoradiographic and quantitative study. J Neurocytol 1979, 8:265–274.
Kramer, I, Sigrist, M, de Nooij, JC, Taniuchi, I, Jessell, TM, Arber, S. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 2006, 49:379–393.
Chao, MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003, 4:299–309.
Fode, C, Gradwohl, G, Morin, X, Dierich, A, LeMeur, M, Goridis, C, Guillemot, F. The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode‐derived sensory neurons. Neuron 1998, 20:483–494.
Fedtsova, NG, Turner, EE. Brn‐3.0 expression identifies early post‐mitotic CNS neurons and sensory neural precursors. Mech Dev 1995, 53:291–304.
Montelius, A, Marmigere, F, Baudet, C, Aquino, JB, Enerback, S, Ernfors, P. Emergence of the sensory nervous system as defined by Foxs1 expression. Differentiation 2007, 75:404–417.
Eng, SR, Lanier, J, Fedtsova, N, Turner, EE. Coordinated regulation of gene expression by Brn3a in developing sensory ganglia. Development 2004, 131:3859–3870.
Sun, Y, Dykes, IM, Liang, X, Eng, SR, Evans, SM, Turner, EE. A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat Neurosci 2008, 11:1283–1293.
Lanier, J, Dykes, IM, Nissen, S, Eng, SR, Turner, EE. Brn3a regulates the transition from neurogenesis to terminal differentiation and represses non‐neural gene expression in the trigeminal ganglion. Dev Dyn 2009, 238:3065–3079.
Dykes, IM, Lanier, J, Eng, SR, Turner, EE. Brn3a regulates neuronal subtype specification in the trigeminal ganglion by promoting Runx expression during sensory differentiation. Neural Dev 2010, 5:3.
Dykes, IM, Tempest, L, Lee, SI, Turner, EE. Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation. J Neurosci 2011, 31:9789–9799.
Eng, SR, Gratwick, K, Rhee, JM, Fedtsova, N, Gan, L, Turner, EE. Defects in sensory axon growth precede neuronal death in Brn3a‐deficient mice. J Neurosci 2001, 21:541–549.
Blanchard, JW, Eade, KT, Szucs, A, Lo Sardo, V, Tsunemoto, RK, Williams, D, Sanna, PP, Baldwin, KK. Selective conversion of fibroblasts into peripheral sensory neurons. Nat Neurosci 2015, 18:25–35.
Wainger, BJ, Buttermore, ED, Oliveira, JT, Mellin, C, Lee, S, Saber, WA, Wang, AJ, Ichida, JK, Chiu, IM, Barrett, L, et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 2015, 18:17–24.
Li, L, Rutlin, M, Abraira, VE, Cassidy, C, Kus, L, Gong, S, Jankowski, MP, Luo, W, Heintz, N, Koerber, HR, et al. The functional organization of cutaneous low‐threshold mechanosensory neurons. Cell 2011, 147:1615–1627.
Lawson, SN, Waddell, PJ. Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 1991, 435:41–63.
Luo, W, Enomoto, H, Rice, FL, Milbrandt, J, Ginty, DD. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron 2009, 64:841–856.
Iggo, A, Ogawa, H. Correlative physiological and morphological studies of rapidly adapting mechanoreceptors in cat`s glabrous skin. J Physiol 1977, 266:275–296.
Pare, M, Smith, AM, Rice, FL. Distribution and terminal arborizations of cutaneous mechanoreceptors in the glabrous finger pads of the monkey. J Comp Neurol 2002, 445:347–359.
Talbot, WH, Darian‐Smith, I, Kornhuber, HH, Mountcastle, VB. The sense of flutter‐vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 1968, 31:301–334.
Bell, J, Bolanowski, S, Holmes, MH. The structure and function of Pacinian corpuscles: a review. Prog Neurobiol 1994, 42:79–128.
Zelena, J. Nerves and Mechanoreceptors. London: Chapman %26 Hall; 1994.
Suzuki, M, Ebara, S, Koike, T, Tonomura, S, Kumamoto, K. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1‐YFP transgenic mouse. Proc Jpn Acad Ser B Phys Biol Sci 2012, 88:583–595.
Brown, A. Organization in the Spinal Cord: The Anatomy and Physiology of Identified Neurones. Springer‐Verlag: Berlin and New York; 1981.
Niu, J, Ding, L, Li, JJ, Kim, H, Liu, J, Li, H, Moberly, A, Badea, TC, Duncan, ID, Son, YJ, et al. Modality‐based organization of ascending somatosensory axons in the direct dorsal column pathway. J Neurosci 2013, 33:17691–17709.
Semba, K, Masarachia, P, Malamed, S, Jacquin, M, Harris, S, Yang, G, Egger, MD. An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord. J Comp Neurol 1985, 232:229–240.
Shortland, P, Woolf, CJ. Morphology and somatotopy of the central arborizations of rapidly adapting glabrous skin afferents in the rat lumbar spinal cord. J Comp Neurol 1993, 329:491–511.
Brown, AG, Fyffe, RE, Noble, R. Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat`s spinal cord. J Physiol 1980, 307:385–400.
Semba, K, Masarachia, P, Malamed, S, Jacquin, M, Harris, S, Egger, MD. Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord. Brain Res 1984, 302:135–150.
Woodbury, CJ, Ritter, AM, Koerber, HR. Central anatomy of individual rapidly adapting low‐threshold mechanoreceptors innervating the “hairy” skin of newborn mice: early maturation of hair follicle afferents. J Comp Neurol 2001, 436:304–323.
Bourane, S, Garces, A, Venteo, S, Pattyn, A, Hubert, T, Fichard, A, Puech, S, Boukhaddaoui, H, Baudet, C, Takahashi, S, et al. Low‐threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron 2009, 64:857–870.
Wende, H, Lechner, SG, Cheret, C, Bourane, S, Kolanczyk, ME, Pattyn, A, Reuter, K, Munier, FL, Carroll, P, Lewin, GR, et al. The transcription factor c‐Maf controls touch receptor development and function. Science 2012, 335:1373–1376.
Usoskin, D, Furlan, A, Islam, S, Abdo, H, Lonnerberg, P, Lou, D, Hjerling‐Leffler, J, Haeggstrom, J, Kharchenko, O, Kharchenko, PV, et al. Unbiased classification of sensory neuron types by large‐scale single‐cell RNA sequencing. Nat Neurosci 2015, 18:145–153.
Hu, J, Huang, T, Li, T, Guo, Z, Cheng, L. c‐Maf is required for the development of dorsal horn laminae III/IV neurons and mechanoreceptive DRG axon projections. J Neurosci 2012, 32:5362–5373.
Luo, W, Wickramasinghe, SR, Savitt, JM, Griffin, JW, Dawson, TM, Ginty, DD. A hierarchical NGF signaling cascade controls Ret‐dependent and Ret‐independent events during development of nonpeptidergic DRG neurons. Neuron 2007, 54:739–754.
Abdo, H, Li, L, Lallemend, F, Bachy, I, Xu, XJ, Rice, FL, Ernfors, P. Dependence on the transcription factor Shox2 for specification of sensory neurons conveying discriminative touch. Eur J Neurosci 2011, 34:1529–1541.
Scott, A, Hasegawa, H, Sakurai, K, Yaron, A, Cobb, J, Wang, F. Transcription factor short stature homeobox 2 is required for proper development of tropomyosin‐related kinase B‐expressing mechanosensory neurons. J Neurosci 2011, 31:6741–6749.
Honma, Y, Kawano, M, Kohsaka, S, Ogawa, M. Axonal projections of mechanoreceptive dorsal root ganglion neurons depend on Ret. Development 2010, 137:2319–2328.
Airaksinen, MS, Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002, 3:383–394.
Paratcha, G, Ledda, F, Baars, L, Coulpier, M, Besset, V, Anders, J, Scott, R, Ibanez, CF. Released GFR∝1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c‐Ret to lipid rafts. Neuron 2001, 29:171–184.
Ledda, F, Paratcha, G, Ibanez, CF. Target‐derived GFR∝1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron 2002, 36:387–401.
Trupp, M, Belluardo, N, Funakoshi, H, Ibanez, CF. Complementary and overlapping expression of glial cell line‐derived neurotrophic factor (GDNF), c‐ret proto‐oncogene, and GDNF receptor‐∝ indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 1997, 17:3554–3567.
Yu, T, Scully, S, Yu, Y, Fox, GM, Jing, S, Zhou, R. Expression of GDNF family receptor components during development: implications in the mechanisms of interaction. J Neurosci 1998, 18:4684–4696.
Fleming, MS, Vysochan, A, Paixao, S, Niu, J, Klein, R, Savitt, JM, Luo, W. Cis‐ and trans‐RET signaling control the survival and central projection growth of rapidly adapting mechanoreceptors. Elife 2015, 4:e06828.
Gonzalez‐Martinez, T, Germana, GP, Monjil, DF, Silos‐Santiago, I, de Carlos, F, Germana, G, Cobo, J, Vega, JA. Absence of Meissner corpuscles in the digital pads of mice lacking functional TrkB. Brain Res 2004, 1002:120–128.
Zelena, J, Jirmanova, I, Nitatori, T, Ide, C. Effacement and regeneration of tactile lamellar corpuscles of rat after postnatal nerve crush. Neuroscience 1990, 39:513–522.
Gonzalez‐Martinez, T, Farinas, I, Del Valle, ME, Feito, J, Germana, G, Cobo, J, Vega, JA. BDNF, but not NT‐4, is necessary for normal development of Meissner corpuscles. Neurosci Lett 2005, 377:12–15.
Perez‐Pinera, P, Garcia‐Suarez, O, Germana, A, Diaz‐Esnal, B, de Carlos, F, Silos‐Santiago, I, del Valle, ME, Cobo, J, Vega, JA. Characterization of sensory deficits in TrkB knockout mice. Neurosci Lett 2008, 433:43–47.
Ernfors, P, Lee, KF, Jaenisch, R. Mice lacking brain‐derived neurotrophic factor develop with sensory deficits. Nature 1994, 368:147–150.
Calavia, MG, Feito, J, Lopez‐Iglesias, L, de Carlos, F, Garcia‐Suarez, O, Perez‐Pinera, P, Cobo, J, Vega, JA. The lamellar cells in human Meissner corpuscles express TrkB. Neurosci Lett 2010, 468:106–109.
LeMaster, AM, Krimm, RF, Davis, BM, Noel, T, Forbes, ME, Johnson, JE, Albers, KM. Overexpression of brain‐derived neurotrophic factor enhances sensory innervation and selectively increases neuron number. J Neurosci 1999, 19:5919–5931.
Krimm, RF, Davis, BM, Noel, T, Albers, KM. Overexpression of neurotrophin 4 in skin enhances myelinated sensory endings but does not influence sensory neuron number. J Comp Neurol 2006, 498:455–465.
Sedy, J, Szeder, V, Walro, JM, Ren, ZG, Nanka, O, Tessarollo, L, Sieber‐Blum, M, Grim, M, Kucera, J. Pacinian corpuscle development involves multiple Trk signaling pathways. Dev Dyn 2004, 231:551–563.
Sedy, J, Tseng, S, Walro, JM, Grim, M, Kucera, J. ETS transcription factor ER81 is required for the Pacinian corpuscle development. Dev Dyn 2006, 235:1081–1089.
Iggo, A, Muir, AR. The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol 1969, 200:763–796.
Maricich, SM, Morrison, KM, Mathes, EL, Brewer, BM. Rodents rely on Merkel cells for texture discrimination tasks. J Neurosci 2012, 32:3296–3300.
Niu, J, Vysochan, A, Luo, W. Dual innervation of neonatal Merkel cells in mouse touch domes. PLoS One 2014, 9:e92027.
Maksimovic, S, Nakatani, M, Baba, Y, Nelson, AM, Marshall, KL, Wellnitz, SA, Firozi, P, Woo, SH, Ranade, S, Patapoutian, A, et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 2014, 509:617–621.
Woo, SH, Ranade, S, Weyer, AD, Dubin, AE, Baba, Y, Qiu, Z, Petrus, M, Miyamoto, T, Reddy, K, Lumpkin, EA, et al. Piezo2 is required for Merkel‐cell mechanotransduction. Nature 2014, 509:622–626.
Ikeda, R, Cha, M, Ling, J, Jia, Z, Coyle, D, Gu, JG. Merkel cells transduce and encode tactile stimuli to drive Aβ‐afferent impulses. Cell 2014, 157:664–675.
Ranade, SS, Woo, SH, Dubin, AE, Moshourab, RA, Wetzel, C, Petrus, M, Mathur, J, Begay, V, Coste, B, Mainquist, J, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2014, 516:121–125.
Gottschaldt, KM, Vahle‐Hinz, C. Merkel cell receptors: structure and transducer function. Science 1981, 214:183–186.
Tachibana, T, Nawa, T. Recent progress in studies on Merkel cell biology. Anat Sci Int 2002, 77:26–33.
Haeberle, H, Fujiwara, M, Chuang, J, Medina, MM, Panditrao, MV, Bechstedt, S, Howard, J, Lumpkin, EA. Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci USA 2004, 101:14503–14508.
Fagan, BM, Cahusac, PM. Evidence for glutamate receptor mediated transmission at mechanoreceptors in the skin. Neuroreport 2001, 12:341–347.
Maricich, SM, Wellnitz, SA, Nelson, AM, Lesniak, DR, Gerling, GJ, Lumpkin, EA, Zoghbi, HY. Merkel cells are essential for light‐touch responses. Science 2009, 324:1580–1582.
Johnson, KO, Yoshioka, T, Vega‐Bermudez, F. Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 2000, 17:539–558.
Johansson, RS, Vallbo, AB. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 1979, 286:283–300.
Chambers, MR, Andres, KH, von Duering, M, Iggo, A. The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Q J Exp Physiol Cogn Med Sci 1972, 57:417–445.
Rasmusson, DD, Turnbull, BG. Sensory innervation of the raccoon forepaw: 2. Response properties and classification of slowly adapting fibers. Somatosens Res 1986, 4:63–75.
Rice, FL, Rasmusson, DD. Innervation of the digit on the forepaw of the raccoon. J Comp Neurol 2000, 417:467–490.
Pare, M, Behets, C, Cornu, O. Paucity of presumptive Ruffini corpuscles in the index finger pad of humans. J Comp Neurol 2003, 456:260–266.
Wellnitz, SA, Lesniak, DR, Gerling, GJ, Lumpkin, EA. The regularity of sustained firing reveals two populations of slowly adapting touch receptors in mouse hairy skin. J Neurophysiol 2010, 103:3378–3388.
Cronk, KM, Wilkinson, GA, Grimes, R, Wheeler, EF, Jhaveri, S, Fundin, BT, Silos‐Santiago, I, Tessarollo, L, Reichardt, LF, Rice, FL. Diverse dependencies of developing Merkel innervation on the trkA and both full‐length and truncated isoforms of trkC. Development 2002, 129:3739–3750.
Marmigere, F, Ernfors, P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 2007, 8:114–127.
Senzaki, K, Ozaki, S, Yoshikawa, M, Ito, Y, Shiga, T. Runx3 is required for the specification of TrkC‐expressing mechanoreceptive trigeminal ganglion neurons. Mol Cell Neurosci 2010, 43:296–307.
Yoshikawa, M, Murakami, Y, Senzaki, K, Masuda, T, Ozaki, S, Ito, Y, Shiga, T. Coexpression of Runx1 and Runx3 in mechanoreceptive dorsal root ganglion neurons. Dev Neurobiol 2013, 73:469–479.
Grim, M, Halata, Z. Developmental origin of avian Merkel cells. Anat Embryol 2000, 202:401–410.
Szeder, V, Grim, M, Halata, Z, Sieber‐Blum, M. Neural crest origin of mammalian Merkel cells. Dev Biol 2003, 253:258–263.
Morrison, KM, Miesegaes, GR, Lumpkin, EA, Maricich, SM. Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol 2009, 336:76–83.
Montano, JA, Perez‐Pinera, P, Garcia‐Suarez, O, Cobo, J, Vega, JA. Development and neuronal dependence of cutaneous sensory nerve formations: lessons from neurotrophins. Microsc Res Tech 2010, 73:513–529.
Fundin, BT, Silos‐Santiago, I, Ernfors, P, Fagan, AM, Aldskogius, H, DeChiara, TM, Phillips, HS, Barbacid, M, Yancopoulos, GD, Rice, FL. Differential dependency of cutaneous mechanoreceptors on neurotrophins, trk receptors, and P75 LNGFR. Dev Biol 1997, 190:94–116.
Carroll, P, Lewin, GR, Koltzenburg, M, Toyka, KV, Thoenen, H. A role for BDNF in mechanosensation. Nat Neurosci 1998, 1:42–46.
Airaksinen, MS, Koltzenburg, M, Lewin, GR, Masu, Y, Helbig, C, Wolf, E, Brem, G, Toyka, KV, Thoenen, H, Meyer, M. Specific subtypes of cutaneous mechanoreceptors require neurotrophin‐3 following peripheral target innervation. Neuron 1996, 16:287–295.
Kinkelin, I, Stucky, CL, Koltzenburg, M. Postnatal loss of Merkel cells, but not of slowly adapting mechanoreceptors in mice lacking the neurotrophin receptor p75. Eur J Neurosci 1999, 11:3963–3969.
Matsuo, S, Ichikawa, H, Silos‐Santiago, I, Kiyomiya, K, Kurebe, M, Arends, JJ, Jacquin, MF. Ruffini endings are absent from the periodontal ligament of trkB knockout mice. Somatosens Mot Res 2002, 19:213–217.
Hoshino, N, Harada, F, Alkhamrah, BA, Aita, M, Kawano, Y, Hanada, K, Maeda, T. Involvement of brain‐derived neurotrophic factor (BDNF) in the development of periodontal Ruffini endings. Anat Rec A Discov Mol Cell Evol Biol 2003, 274:807–816.
Maruyama, Y, Harada, F, Jabbar, S, Saito, I, Aita, M, Kawano, Y, Suzuki, A, Nozawa‐Inoue, K, Maeda, T. Neurotrophin‐4/5‐depletion induces a delay in maturation of the periodontal Ruffini endings in mice. Arch Histol Cytol 2005, 68:267–288.
Light, AR, Perl, ER. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979, 186:133–150.
Zou, M, Li, S, Klein, WH, Xiang, M. Brn3a/Pou4f1 regulates dorsal root ganglion sensory neuron specification and axonal projection into the spinal cord. Dev Biol 2012, 364:114–127.
Badea, TC, Williams, J, Smallwood, P, Shi, M, Motajo, O, Nathans, J. Combinatorial expression of Brn3 transcription factors in somatosensory neurons: genetic and morphologic analysis. J Neurosci 2012, 32:995–1007.
Stucky, CL, DeChiara, T, Lindsay, RM, Yancopoulos, GD, Koltzenburg, M. Neurotrophin 4 is required for the survival of a subclass of hair follicle receptors. J Neurosci 1998, 18:7040–7046.
Rutlin, M, Ho, CY, Abraira, VE, Cassidy, C, Bai, L, Woodbury, CJ, Ginty, DD. The cellular and molecular basis of direction selectivity of Adelta‐LTMRs. Cell 2014, 159:1640–1651.
Olausson, H, Lamarre, Y, Backlund, H, Morin, C, Wallin, BG, Starck, G, Ekholm, S, Strigo, I, Worsley, K, Vallbo, AB, et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 2002, 5:900–904.
Seal, RP, Wang, X, Guan, Y, Raja, SN, Woodbury, CJ, Basbaum, AI, Edwards, RH. Injury‐induced mechanical hypersensitivity requires C‐low threshold mechanoreceptors. Nature 2009, 462:651–655.
Lou, S, Duan, B, Vong, L, Lowell, BB, Ma, Q. Runx1 controls terminal morphology and mechanosensitivity of VGLUT3‐expressing C‐mechanoreceptors. J Neurosci 2013, 33:870–882.
Lou, S, Pan, X, Huang, T, Duan, B, Yang, FC, Yang, J, Xiong, M, Liu, Y, Ma, Q. Incoherent feed‐forward regulatory loops control segregation of C‐mechanoreceptors, nociceptors, and pruriceptors. J Neurosci 2015, 35:5317–5329.
Delfini, MC, Mantilleri, A, Gaillard, S, Hao, J, Reynders, A, Malapert, P, Alonso, S, Francois, A, Barrere, C, Seal, R, et al. TAFA4, a chemokine‐like protein, modulates injury‐induced mechanical and chemical pain hypersensitivity in mice. Cell Rep 2013, 5:378–388.
Liu, Q, Vrontou, S, Rice, FL, Zylka, MJ, Dong, X, Anderson, DJ. Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat Neurosci 2007, 10:946–948.
Vrontou, S, Wong, AM, Rau, KK, Koerber, HR, Anderson, DJ. Genetic identification of C fibres that detect massage‐like stroking of hairy skin in vivo. Nature 2013, 493:669–673.
Chen, CL, Broom, DC, Liu, Y, de Nooij, JC, Li, Z, Cen, C, Samad, OA, Jessell, TM, Woolf, CJ, Ma, Q. Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 2006, 49:365–377.
Liu, Y, Yang, FC, Okuda, T, Dong, X, Zylka, MJ, Chen, CL, Anderson, DJ, Kuner, R, Ma, Q. Mechanisms of compartmentalized expression of Mrg class G‐protein‐coupled sensory receptors. J Neurosci 2008, 28:125–132.
Reynders, A, Mantilleri, A, Malapert, P, Rialle, S, Nidelet, S, Laffray, S, Beurrier, C, Bourinet, E, Moqrich, A. Transcriptional profiling of cutaneous MRGPRD free nerve endings and C‐LTMRs. Cell Rep 2015, 10:1007–1019.
Crowley, C, Spencer, SD, Nishimura, MC, Chen, KS, Pitts‐Meek, S, Armanini, MP, Ling, LH, McMahon, SB, Shelton, DL, Levinson, AD, et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 1994, 76:1001–1011.
Patel, TD, Jackman, A, Rice, FL, Kucera, J, Snider, WD. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 2000, 25:345–357.