Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77:71–94.
Brenner, S. Foreword. In: Wood, WB, ed. The Nematode Caenorhabditis elegans. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1988.
Hall, DH, Altun, Z. C. Elegans Atlas. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2007.
Varshney, LR, Chen, BL, Paniagua, E, Hall, DH, Chklovskii, DB. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 2011, 7:e1001066.
Margeta, MA, Wang, GJ, Shen, K. Clathrin adaptor AP‐1 complex excludes multiple postsynaptic receptors from axons in C. elegans. Proc Natl Acad Sci USA 2009, 106:1632–1637.
White, JG, Southgate, E, Thomson, JN, Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986, 314:1–340.
Wenick, AS, Hobert, O. Genomic cis‐regulatory architecture and trans‐acting regulators of a single interneuron‐specific gene battery in C. elegans. Dev Cell 2004, 6:757–770.
Pereira, L, Kratsios, P, Serrano‐Saiz, E, Sheftel, H, Mayo, AE, Hall, DH, White, JG, LeBoeuf, B, Garcia, LR, Alon, U, et al. A cellular and regulatory map of the cholinergic nervous system of C. elegans. Elife 2015, 4. pii: e12432. doi: 10.7554/eLife.12432.
Jarrell, TA, Wang, Y, Bloniarz, AE, Brittin, CA, Xu, M, Thomson, JN, Albertson, DG, Hall, DH, Emmons, SW. The connectome of a decision‐making neural network. Science 2012, 337:437–444.
Sulston, JE, Horvitz, HR. Post‐embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977, 56:110–156.
Sulston, JE, Schierenberg, E, White, JG, Thomson, JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64–119.
Hedgecock, EM, Culotti, JG, Hall, DH. The unc‐5, unc‐6, and unc‐40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 1990, 4:61–85.
Wadsworth, WG, Bhatt, H, Hedgecock, EM. Neuroglia and pioneer neurons express UNC‐6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 1996, 16:35–46.
Lee, RC, Feinbaum, RL, Ambros, V. The C. elegans heterochronic gene lin‐4 encodes small RNAs with antisense complementarity to lin‐14. Cell 1993, 75:843–854.
Reinhart, BJ, Slack, FJ, Basson, M, Pasquinelli, AE, Bettinger, JC, Rougvie, AE, Horvitz, HR, Ruvkun, G. The 21‐nucleotide let‐7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000, 403:901–906.
Miller, DM, Shen, MM, Shamu, CE, Bürglin, TR, Ruvkun, G, Dubois, ML, Ghee, M, Wilson, L. C. elegans unc‐4 gene encodes a homeodomain protein that determines the pattern of synaptic input to specific motor neurons. Nature 1992, 355:841–845.
Sawin, ER, Ranganathan, R, Horvitz, HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000, 26:619–631.
Hills, T, Brockie, PJ, Maricq, AV. Dopamine and glutamate control area‐restricted search behavior in Caenorhabditis elegans. J Neurosci 2004, 24:1217–1225.
Bargmann, CI, Horvitz, HR. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 1991, 251:1243–1246.
Chalasani, SH, Chronis, N, Tsunozaki, M, Gray, JM, Ramot, D, Goodman, MB, Bargmann, CI. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 2007, 450:63–70.
McIntire, SL, Jorgensen, E, Kaplan, J, Horvitz, HR. The GABAergic nervous system of Caenorhabditis elegans. Nature 1993, 364:337–341.
Troemel, ER, Chou, JH, Dwyer, ND, Colbert, HA, Bargmann, CI. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 1995, 83:207–218.
Gray, JM, Hill, JJ, Bargmann, CI. A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci USA 2005, 102:3184–3191.
Bendena, WG, Boudreau, JR, Papanicolaou, T, Maltby, M, Tobe, SS, Chin‐Sang, ID. A Caenorhabditis elegans allatostatin/galanin‐like receptor NPR‐9 inhibits local search behavior in response to feeding cues. Proc Natl Acad Sci USA 2008, 105:1339–1342.
Chalfie, M, Sulston, JE, White, JG, Southgate, E, Thomson, JN, Brenner, S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 1985, 5:956–964.
Mori, I, Ohshima, Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 1995, 376:344–348.
Van Buskirk, C, Sternberg, PW. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat Neurosci 2007, 10:1300–1307.
Sanders, J, Nagy, S, Fetterman, G, Wright, C, Treinin, M, Biron, D. The Caenorhabditis elegans interneuron ALA is (also) a high‐threshold mechanosensor. BMC Neurosci 2013, 14:156.
Chalfie, M, Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 1981, 82:358–370.
Tsalik, EL, Hobert, O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol 2003, 56:178–197.
Coates, JC, de Bono, M. Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature 2002, 419:925–929.
Gray, JM, Karow, DS, Lu, H, Chang, AJ, Chang, JS, Ellis, RE, Marletta, MA, Bargmann, CI. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 2004, 430:317–322.
Bargmann, CI, Hartwieg, E, Horvitz, HR. Odorant‐selective genes and neurons mediate olfaction in C. elegans. Cell 1993, 74:515–527.
Piggott, BJ, Liu, J, Feng, Z, Wescott, SA, Xu, XZ. The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell 2011, 147:922–933.
Greer, ER, Perez, CL, Van Gilst, MR, Lee, BH, Ashrafi, K. Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab 2008, 8:118–131.
Kaplan, JM, Horvitz, HR. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci USA 1993, 90:2227–2231.
Hart, AC, Sims, S, Kaplan, JM. Synaptic code for sensory modalities revealed by C. elegans GLR‐1 glutamate receptor. Nature 1995, 378:82–85.
Beverly, M, Anbil, S, Sengupta, P. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans. J Neurosci 2011, 31:11718–11727.
Hardaker, LA, Singer, E, Kerr, R, Zhou, G, Schafer, WR. Serotonin modulates locomotory behavior and coordinates egg‐laying and movement in Caenorhabditis elegans. J Neurobiol 2001, 49:303–313.
Hutter, H. Extracellular cues and pioneers act together to guide axons in the ventral cord of C. elegans. Development 2003, 130:5307–5318.
Macosko, EZ, Pokala, N, Feinberg, EH, Chalasani, SH, Butcher, RA, Clardy, J, Bargmann, CI. A hub‐and‐spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 2009, 458:1171–1175.
Kratsios, P, Pinan‐Lucarré, B, Kerk, SY, Weinreb, A, Bessereau, JL, Hobert, O. Transcriptional coordination of synaptogenesis and neurotransmitter signaling. Curr Biol 2015, 25:1282–1295.
Kennerdell, JR, Fetter, RD, Bargmann, CI. Wnt‐Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans. Development 2009, 136:3801–3810.
Biron, D, Wasserman, S, Thomas, JH, Samuel, AD, Sengupta, P. An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proc Natl Acad Sci USA 2008, 105:11002–11007.
Li, W, Kang, L, Piggott, BJ, Feng, Z, Xu, XZ. The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans. Nat Commun 2011, 2:315.
Hallem, EA, Sternberg, PW. Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci USA 2008, 105:8038–8043.
Li, W, Feng, Z, Sternberg, PW, Xu, XZ. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 2006, 440:684–687.
Lee, H, Choi, MK, Lee, D, Kim, HS, Hwang, H, Kim, H, Park, S, Paik, YK, Lee, J. Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci 2012, 15:107–112.
Waggoner, LE, Zhou, GT, Schafer, RW, Schafer, WR. Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron 1998, 21:203–214.
Chang, HC, Paek, J, Kim, DH. Natural polymorphisms in C. elegans HECW‐1 E3 ligase affect pathogen avoidance behaviour. Nature 2011, 480:525–529.
Hilliard, MA, Bargmann, CI, Bazzicalupo, P. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol 2002, 12:730–734.
Aurelio, O, Hall, DH, Hobert, O. Immunoglobulin‐domain proteins required for maintenance of ventral nerve cord organization. Science 2002, 295:686–690.
Liu, S, Schulze, E, Baumeister, R. Temperature‐ and touch‐sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans. PLoS One 2012, 7:e32360.
Nelson, MD, Trojanowski, NF, George‐Raizen, JB, Smith, CJ, Yu, CC, Fang‐Yen, C, Raizen, DM. The neuropeptide NLP‐22 regulates a sleep‐like state in Caenorhabditis elegans. Nat Commun 2013, 4:2846.
Chatzigeorgiou, M, Yoo, S, Watson, JD, Lee, WH, Spencer, WC, Kindt, KS, Hwang, SW, Miller, DM 3rd, Treinin, M, Driscoll, M, et al. Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat Neurosci 2010, 13:861–868.
Flavell, SW, Pokala, N, Macosko, EZ, Albrecht, DR, Larsch, J, Bargmann, CI. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 2013, 154:1023–1035.
Chatzigeorgiou, M, Schafer, WR. Lateral facilitation between primary mechanosensory neurons controls nose touch perception in C. elegans. Neuron 2011, 70:299–309.
Turek, M, Lewandrowski, I, Bringmann, H. An AP2 transcription factor is required for a sleep‐active neuron to induce sleep‐like quiescence in C. elegans. Curr Biol 2013, 23:2215–2223.
Bargmann, CI. Chemosensation in C. elegans. WormBook 2006:1–29. PMID: 18050433.
Von Stetina, SE, Treinin, M, Miller, DM. The motor circuit. Int Rev Neurobiol 2006, 69:125–167.
Huang, M, Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 1994, 367:467–470.
Sengupta, P, Chou, JH, Bargmann, CI. odr‐10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 1996, 84:899–909.
Way, JC, Chalfie, M. mec‐3, a homeobox‐containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 1988, 54:5–16.
Uchida, O, Nakano, H, Koga, M, Ohshima, Y. The C. elegans che‐1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons. Development 2003, 130:1215–1224.
Hobert, O, Mori, I, Yamashita, Y, Honda, H, Ohshima, Y, Liu, Y, Ruvkun, G. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx‐3 LIM homeobox gene. Neuron 1997, 19:345–357.
Satterlee, JS, Sasakura, H, Kuhara, A, Berkeley, M, Mori, I, Sengupta, P. Specification of thermosensory neuron fate in C. elegans requires ttx‐1, a homolog of otd/Otx. Neuron 2001, 31:943–956.
Ortiz, CO, Etchberger, JF, Posy, SL, Frøkjaer‐Jensen, C, Lockery, S, Honig, B, Hobert, O. Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor‐type guanylyl cyclases. Genetics 2006, 173:131–149.
Nathoo, AN, Moeller, RA, Westlund, BA, Hart, AC. Identification of neuropeptide‐like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 2001, 98:14000–14005.
Li, C, Kim, K, Nelson, LS. FMRFamide‐related neuropeptide gene family in Caenorhabditis elegans. Brain Res 1999, 848:26–34.
Salkoff, L, Butler, A, Fawcett, G, Kunkel, M, McArdle, C, Paz‐y‐Mino, G, Nonet, M, Walton, N, Wang, ZW, Yuan, A, et al. Evolution tunes the excitability of individual neurons. Neuroscience 2001, 103:853–859.
Tsalik, EL, Niacaris, T, Wenick, AS, Pau, K, Avery, L, Hobert, O. LIM homeobox gene‐dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol 2003, 263:81–102.
Hunt‐Newbury, R, Viveiros, R, Johnsen, R, Mah, A, Anastas, D, Fang, L, Halfnight, E, Lee, D, Lin, J, Lorch, A, et al. High‐throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 2007, 5:e237.
Sunkin, SM, Ng, L, Lau, C, Dolbeare, T, Gilbert, TL, Thompson, CL, Hawrylycz, M, Dang, C. Allen Brain Atlas: an integrated spatio‐temporal portal for exploring the central nervous system. Nucleic Acids Res 2013, 41:D996–D1008.
Jenett, A, Rubin, GM, Ngo, TT, Shepherd, D, Murphy, C, Dionne, H, Pfeiffer, BD, Cavallaro, A, Hall, D, Jeter, J, et al. A GAL4‐driver line resource for Drosophila neurobiology. Cell Rep 2012, 2:991–1001.
Hobert, O. The neuronal genome of Caenorhabditis elegans. WormBook 2013:1–106. PMID: 18050433.
McIntire, SL, Jorgensen, E, Horvitz, HR. Genes required for GABA function in Caenorhabditis elegans. Nature 1993, 364:334–337.
Chase, DL, Koelle, MR. Biogenic amine neurotransmitters in C. elegans. WormBook 2007:1–15. PMID: 18050433.
Serrano‐Saiz, E, Poole, RJ, Felton, T, Zhang, F, De La Cruz, ED, Hobert, O. Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 2013, 155:659–673.
Duggan, A, Chalfie, M. Control of neuronal development in Caenorhabditis elegans. Curr Opin Neurobiol 1995, 5:6–9.
Hobert, O. Development of left/right asymmetry in the Caenorhabditis elegans nervous system: from zygote to postmitotic neuron. Genesis 2014, 52:528–543.
Hsieh, YW, Alqadah, A, Chuang, CF. Asymmetric neural development in the Caenorhabditis elegans olfactory system. Genesis 2014, 52:544–554.
Doitsidou, M, Flames, N, Topalidou, I, Abe, N, Felton, T, Remesal, L, Popovitchenko, T, Mann, R, Chalfie, M, Hobert, O. A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans. Genes Dev 2013, 27:1391–1405.
Flames, N, Hobert, O. Gene regulatory logic of dopamine neuron differentiation. Nature 2009, 458:885–889.
Kagoshima, H, Kohara, Y. Co‐expression of the transcription factors CEH‐14 and TTX‐1 regulates AFD neuron‐specific genes gcy‐8 and gcy‐18 in C. elegans. Dev Biol 2015, 399:325–336.
Van Buskirk, C, Sternberg, PW. Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron. Development 2010, 137:2065–2074.
Gendrel, M, Hobert, O. Transcription factor combinations specifying the GABAergic nervous system of C. elegans. In preparation.
Zhang, Y, Ma, C, Delohery, T, Nasipak, B, Foat, BC, Bounoutas, A, Bussemaker, HJ, Kim, SK, Chalfie, M. Identification of genes expressed in C. elegans touch receptor neurons. Nature 2002, 418:331–335.
Gramstrup Petersen, J, Rojo Romanos, T, Juozaityte, V, Redo Riveiro, A, Hums, I, Traunmüller, L, Zimmer, M, Pocock, R. EGL‐13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans. PLoS Genet 2013, 9:e1003511.
Qin, H, Powell‐Coffman, JA. The Caenorhabditis elegans aryl hydrocarbon receptor, AHR‐1, regulates neuronal development. Dev Biol 2004, 270:64–75.
Feng, G, Yi, P, Yang, Y, Chai, Y, Tian, D, Zhu, Z, Liu, J, Zhou, F, Cheng, Z, Wang, X, et al. Developmental stage‐dependent transcriptional regulatory pathways control neuroblast lineage progression. Development 2013, 140:3838–3847.
Etchberger, JF, Lorch, A, Sleumer, MC, Zapf, R, Jones, SJ, Marra, MA, Holt, RA, Moerman, DG, Hobert, O. The molecular signature and cis‐regulatory architecture of a C. elegans gustatory neuron. Genes Dev 2007, 21:1653–1674.
Sarafi‐Reinach, TR, Melkman, T, Hobert, O, Sengupta, P. The lin‐11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans. Development 2001, 128:3269–3281.
Baran, R, Aronoff, R, Garriga, G. The C. elegans homeodomain gene unc‐42 regulates chemosensory and glutamate receptor expression. Development 1999, 126:2241–2251.
Kim, K, Colosimo, ME, Yeung, H, Sengupta, P. The UNC‐3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev Biol 2005, 286:136–148.
Prasad, BC, Ye, B, Zackhary, R, Schrader, K, Seydoux, G, Reed, RR. unc‐3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. Development 1998, 125:1561–1568.
Gonzalez‐Barrios, M, Fierro‐González, JC, Krpelanova, E, Mora‐Lorca, JA, Pedrajas, JR, Peñate, X, Chavez, S, Swoboda, P, Gert, Jansen, Miranda‐Vizuete, A. Cis‐ and trans‐regulatory mechanisms of gene expression in the ASJ sensory neuron of Caenorhabditis elegans. Genetics 2015, 200:123–134.
Alqadah, A, Hsieh, YW, Vidal, B, Chang, C, Hobert, O, Chuang, CF. Postmitotic diversification of olfactory neuron types is mediated by differential activities of the HMG‐box transcription factor SOX‐2. EMBO J 2015, 34:2574–2589.
Sagasti, A, Hisamoto, N, Hyodo, J, Tanaka‐Hino, M, Matsumoto, K, Bargmann, CI. The CaMKII UNC‐43 activates the MAPKKK NSY‐1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 2001, 105:221–232.
Nokes, EB, Van Der Linden, AM, Winslow, C, Mukhopadhyay, S, Ma, K, Sengupta, P. Cis‐regulatory mechanisms of gene expression in an olfactory neuron type in Caenorhabditis elegans. Dev Dyn 2009, 238:3080–3092.
Lanjuin, A, VanHoven, MK, Bargmann, CI, Thompson, JK, Sengupta, P. Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. Dev Cell 2003, 5:621–633.
Koga, M, Ohshima, Y. The C. elegans ceh‐36 gene encodes a putative homemodomain transcription factor involved in chemosensory functions of ASE and AWC neurons. J Mol Biol 2004, 336:579–587.
Rojo Romanos, T, Petersen, JG, Riveiro, AR, Pocock, R. A novel role for the zinc‐finger transcription factor EGL‐46 in the differentiation of gas‐sensing neurons in Caenorhabditis elegans. Genetics 2015, 199:157–163.
Brandt, JP, Aziz‐Zaman, S, Juozaityte, V, Martinez‐Velazquez, LA, Petersen, JG, Pocock, R, Ringstad, N. A single gene target of an ETS‐family transcription factor determines neuronal CO2‐chemosensitivity. PLoS One 2012, 7:e34014.
Vidal, B, Santella, A, Serrano‐Saiz, E, Bao, Z, Chuang, CF, Hobert, O. C. elegans SoxB genes are dispensable for embryonic neurogenesis but required for terminal differentiation of specific neuron types. Development 2015, 142:2464–2477.
Shaham, S, Bargmann, CI. Control of neuronal subtype identity by the C. elegans ARID protein CFI‐1. Genes Dev 2002, 16:972–983.
Zheng, C, Diaz‐Cuadros, M, Chalfie, M. Hox Genes promote neuronal subtype diversification through posterior induction in Caenorhabditis elegans. Neuron 2015, 88:514–527.
Zhang, F, Bhattacharya, A, Nelson, JC, Abe, N, Gordon, P, Lloret-Fernandez, C, Maicas, M, Flames, N, Mann, RS, Colón-Ramos, DA, et al. The LIM and POU homeobox genes ttx‐3 and unc‐86 act as terminal selectors in distinct cholinergic and serotonergic neuron types. Development 2014, 141:422–435.
Altun‐Gultekin, Z, Andachi, Y, Tsalik, EL, Pilgrim, D, Kohara, Y, Hobert, O A regulatory cascade of three homeobox genes, ceh‐10, ttx‐3 and ceh‐23, controls cell fate specification of a defined interneuron class in C. elegans. Development 2001, 128:1951–1969.
Sze, JY, Zhang, S, Li, J, Ruvkun, G. The C. elegans POU‐domain transcription factor UNC‐86 regulates the tph‐1 tryptophan hydroxylase gene and neurite outgrowth in specific serotonergic neurons. Development 2002, 129:3901–3911.
Kage, E, Hayashi, Y, Takeuchi, H, Hirotsu, T, Kunitomo, H, Inoue, T, Arai, H, Iino, Y, Kubo, T. MBR‐1, a novel helix‐turn‐helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans. Curr Biol 2005, 15:1554–1559.
Wightman, B, Ebert, B, Carmean, N, Weber, K, Clever, S. The C. elegans nuclear receptor gene fax‐1 and homeobox gene unc‐42 coordinate interneuron identity by regulating the expression of glutamate receptor subunits and other neuron‐specific genes. Dev Biol 2005, 287:74–85.
Brockie, PJ, Madsen, DM, Zheng, Y, Mellem, J, Maricq, AV. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC‐42. J Neurosci 2001, 21:1510–1522.
Schmid, C, Schwarz, V, Hutter, H. AST‐1, a novel ETS‐box transcription factor, controls axon guidance and pharynx development in C. elegans. Dev Biol 2006, 293:403–413.
Wightman, B, Baran, R, Garriga, G. Genes that guide growth cones along the C. elegans ventral nerve cord. Development 1997, 124:2571–2580.
Gordon, PM, Hobert, O. A competition mechanism for a homeotic neuron identity transformation in C. elegans. Dev Cell 2015, 34:206–219.
Cameron, S, Clark, SG, McDermott, JB, Aamodt, E, Horvitz, HR. PAG‐3, a Zn‐finger transcription factor, determines neuroblast fate in C. elegans. Development 2002, 129:1763–1774.
Clark, SG, Chiu, C. C. elegans ZAG‐1, a Zn‐finger‐homeodomain protein, regulates axonal development and neuronal differentiation. Development 2003, 130:3781–3794.
Wacker, I, Schwarz, V, Hedgecock, EM, Hutter, H. zag‐1, a Zn‐finger homeodomain transcription factor controlling neuronal differentiation and axon outgrowth in C. elegans. Development 2003, 130:3795–3805.
Hobert, O, Tessmar, K, Ruvkun, G. The Caenorhabditis elegans lim‐6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development 1999, 126:1547–1562.
Aurelio, O, Boulin, T, Hobert, O. Identification of spatial and temporal cues that regulate postembryonic expression of axon maintenance factors in the C. elegans ventral nerve cord. Development 2003, 130:599–610.
Kratsios, P, Stolfi, A, Levine, M, Hobert, O. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat Neurosci 2011, 15:205–214.
Winnier, AR, Meir, JY, Ross, JM, Tavernarakis, N, Driscoll, M, Ishihara, T, Katsura, I, Miller, DM 3rd. UNC‐4/UNC‐37‐dependent repression of motor neuron‐specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev 1999, 13:2774–2786.
Lickteig, KM, Duerr, JS, Frisby, DL, Hall, DH, Rand, JB, Miller, DM 3rd. Regulation of neurotransmitter vesicles by the homeodomain protein UNC‐4 and its transcriptional corepressor UNC‐37/groucho in Caenorhabditis elegans cholinergic motor neurons. J Neurosci 2001, 21:2001–14.
Prasad, B, Karakuzu, O, Reed, RR, Cameron, S. unc‐3‐dependent repression of specific motor neuron fates in Caenorhabditis elegans. Dev Biol 2008, 323:207–215.
Esmaeili, B, Ross, JM, Neades, C, Miller, DM 3rd, Ahringer, J. The C. elegans even‐skipped homologue, vab‐7, specifies DB motoneurone identity and axon trajectory. Development 2002, 129:853–862.
Cinar, H, Keles, S, Jin, Y. Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Curr Biol 2005, 15:340–346.
Jin, Y, Hoskins, R, Horvitz, HR. Control of type‐D GABAergic neuron differentiation by C. elegans UNC‐30 homeodomain protein. Nature 1994, 372:780–783.
Eastman, C, Horvitz, HR, Jin, Y. Coordinated transcriptional regulation of the unc‐25 glutamic acid decarboxylase and the unc‐47 GABA vesicular transporter by the Caenorhabditis elegans UNC‐30 homeodomain protein. J Neurosci 1999, 19:6225–6234.
Petersen, SC, Watson, JD, Richmond, JE, Sarov, M, Walthall, WW, Miller, DM 3rd. A transcriptional program promotes remodeling of GABAergic synapses in Caenorhabditis elegans. J Neurosci 2011, 31:15362–15375.
Lloret, C, et al. Deep homology of a genetic programs controlling serotonergic neuron differentiation in nematodes and mammals. In preparation.
Richard, JP, Zuryn, S, Fischer, N, Pavet, V, Vaucamps, N, Jarriault, S. Direct in vivo cellular reprogramming involves transition through discrete, non‐pluripotent steps. Development 2011, 138:1483–1492.
Sarin, S, Antonio, C, Tursun, B, Hobert, O. The C. elegans Tailless/TLX transcription factor nhr‐67 controls neuronal identity and left/right asymmetric fate diversification. Development 2009, 136:2933–2944.
Kim, J, Yeon, J, Choi, SK, Huh, YH, Fang, Z, Park, SJ, Kim, MO, Ryoo, ZY, Kang, K, Kweon, HS, et al. The evolutionarily conserved LIM homeodomain protein LIM‐4/LHX6 specifies the terminal identity of a cholinergic and peptidergic C. elegans sensory/inter/motor neuron‐type. PLoS Genet 2015, 11:e1005480.
Von Stetina, SE, Fox, RM, Watkins, KL, Starich, TA, Shaw, JE, Miller, DM 3rd. UNC‐4 represses CEH‐12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans. Genes Dev 2007, 21:332–346.
Melkman, T, Sengupta, P. Regulation of chemosensory and GABAergic motor neuron development by the C. elegans Aristaless/Arx homolog alr‐1. Development 2005, 132:1935–1949.
Zhou, HM, Walthall, WW. UNC‐55, an orphan nuclear hormone receptor, orchestrates synaptic specificity among two classes of motor neurons in Caenorhabditis elegans. J Neurosci 1998, 18:10438–10444.
Deneris, ES, Hobert, O. Maintenance of postmitotic neuronal cell identity. Nat Neurosci 2014, 17:899–907.
Etchberger, JF, Hobert, O. Vector‐free DNA constructs improve transgene expression in C. elegans. Nat Methods 2008, 5:3.
Hobert, O. Terminal selectors of neuronal identity. Curr Top Dev Biol 2016, 116:455–475.
Xue, D, Tu, Y, Chalfie, M. Cooperative interactions between the Caenorhabditis elegans homeoproteins UNC‐86 and MEC‐3. Science 1993, 261:1324–1328.
Tursun, B, Patel, T, Kratsios, P, Hobert, O. Direct conversion of C. elegans germ cells into specific neuron types. Science 2011, 331:304–308.
Alon, U. Network motifs: theory and experimental approaches. Nat Rev Genet 2007, 8:450–461.
Hobert, O. Maintaining a memory by transcriptional autoregulation. Curr Biol 2011, 21:R146–R147.
Etchberger, JF, Flowers, EB, Poole, RJ, Bashllari, E, Hobert, O. Cis‐regulatory mechanisms of left/right asymmetric neuron‐subtype specification in C. elegans. Development 2009, 136:147–160.
Hobert, O. Neurogenesis in the nematode Caenorhabditis elegans. WormBook 2010:1–24. PMID: 20891032.
Johnston, RJ Jr, Copeland, JW, Fasnacht, M, Etchberger, JF, Liu, J, Honig, B, Hobert, O. An unusual Zn‐finger/FH2 domain protein controls a left/right asymmetric neuronal fate decision in C. elegans. Development 2006, 133:3317–3328.
Caicedo, A, Pereira, E, Margolskee, RF, Roper, SD. Role of the G‐protein subunit alpha‐gustducin in taste cell responses to bitter stimuli. J Neurosci 2003, 23:9947–9952.
Chang, S, Johnston, RJ Jr, Hobert, O. A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. Genes Dev 2003, 17:2123–2137.
Pflugrad, A, Meir, JY, Barnes, TM, Miller, DM 3rd. The Groucho‐like transcription factor UNC‐37 functions with the neural specificity gene unc‐4 to govern motor neuron identity in C. elegans. Development 1997, 124:1699–1709.
O`Meara, MM, Bigelow, H, Flibotte, S, Etchberger, JF, Moerman, DG, Hobert, O. Cis‐regulatory mutations in the Caenorhabditis elegans homeobox gene locus cog‐1 affect neuronal development. Genetics 2009, 181:1679–1686.
Sarin, S, O`Meara, MM, Flowers, EB, Antonio, C, Poole, RJ, Didiano, D, Johnston, RJ Jr, Chang, S, Narula, S, Hobert, O. Genetic screens for Caenorhabditis elegans mutants defective in left/right asymmetric neuronal fate specification. Genetics 2007, 176:2109–2130.
Stefanakis, N, Carrera, I, Hobert, O. Regulatory logic of pan‐neuronal gene expression in C. elegans. Neuron 2015, 87:733–750.
Kaletta, T, Schnabel, H, Schnabel, R. Binary specification of the embryonic lineage in Caenorhabditis elegans. Nature 1997, 390:294–298.
Lin, R, Hill, RJ, Priess, JR. POP‐1 and anterior‐posterior fate decisions in C. elegans embryos. Cell 1998, 92:229–239.
Mizumoto, K, Sawa, H. Two betas or not two betas: regulation of asymmetric division by beta‐catenin. Trends Cell Biol 2007, 17:465–473.
Bertrand, V, Hobert, O. Linking asymmetric cell division to the terminal differentiation program of postmitotic neurons in C. elegans. Dev Cell 2009, 16:563–575.
Bertrand, V, Hobert, O. Lineage programming: navigating through transient regulatory states via binary decisions. Curr Opin Genet Dev 2010, 20:362–368.
Murgan, S, Kari, W, Rothbächer, U, Iché‐Torres, M, Mélénec, P, Hobert, O, Bertrand, V. Atypical transcriptional activation by TCF via a Zic transcription factor in C. elegans neuronal precursors. Dev Cell 2015, 33:737–745.
Hobert, O. Regulation of terminal differentiation programs in the nervous system. Annu Rev Cell Dev Biol 2011, 27:681–696.
Poole, RJ, Bashllari, E, Cochella, L, Flowers, EB, Hobert, O. A genome‐wide RNAi screen for factors involved in neuronal specification in Caenorhabditis elegans. PLoS Genet 2011, 7:e1002109.
Zhang, Y, Emmons, SW. Specification of sense‐organ identity by a Caenorhabditis elegans Pax‐6 homologue. Nature 1995, 377:55–59.
Baumeister, R, Liu, Y, Ruvkun, G. Lineage‐specific regulators couple cell lineage asymmetry to the transcription of the Caenorhabditis elegans POU gene unc‐86 during neurogenesis. Genes Dev 1996, 10:1395–1410.
Reiprich, S, Wegner, M. From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res 2015, 359:111–124.
Good, K, Ciosk, R, Nance, J, Neves, A, Hill, RJ, Priess, JR. The T‐box transcription factors TBX‐37 and TBX‐38 link GLP‐1/Notch signaling to mesoderm induction in C. elegans embryos. Development 2004, 131:1967–1978.
Walton, T, Preston, E, Nair, G, Zacharias, AL, Raj, A, Murray, JI. The Bicoid class homeodomain factors ceh‐36/OTX and unc‐30/PITX cooperate in C. elegans embryonic progenitor cells to regulate robust development. PLoS Genet 2015, 11:e1005003.
Ruvkun, G, Hobert, O. The taxonomy of developmental control in Caenorhabditis elegans. Science 1998, 282:2033–2041.
Brenner, S. The genetics of behavior. Br Med Bull 1973, 29:269–271.
Du, Z, Santella, A, He, F, Shah, PK, Kamikawa, Y, Bao, Z. The regulatory landscape of lineage differentiation in a metazoan embryo. Dev Cell 2015, 34:592–607.