Evans, MJ, Kaufman, MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 292:154–156.
Martin, GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981, 78:7634–7638.
Ying, QL, Wray, J, Nichols, J, Batlle‐Morera, L, Doble, B, Woodgett, J, Cohen, P, Smith, A. The ground state of embryonic stem cell self‐renewal. Nature 2008, 453:519–523.
Brons, IG, Smithers, LE, Trotter, MW, Rugg‐Gunn, P, Sun, B, Chuva de Sousa Lopes, SM, Howlett, SK, Clarkson, A, Ahrlund‐Richter, L, Pedersen, RA, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007, 448:191–195.
Tesar, PJ, Chenoweth, JG, Brook, FA, Davies, TJ, Evans, EP, Mack, DL, Gardner, RL, McKay, RD. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007, 448:196–199.
Pierce, GB, Dixon, FJ Jr. Testicular teratomas. II. Teratocarcinoma as an ascitic tumor. Cancer 1959, 12:584–589.
Stevens, LC. Embryology of testicular teratomas in strain 129 mice. J Natl Cancer Inst 1959, 23:1249–1295.
Pierce, GB Jr, Dixon, FJ Jr, Verney, EL. Teratocarcinogenic and tissue‐forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest 1960, 9:583–602.
Kleinsmith, LJ, Pierce, GB Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res 1964, 24:1544–1551.
Martin, GR, Evans, MJ. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci USA 1975, 72:1441–1445.
Bradley, A, Evans, M, Kaufman, MH, Robertson, E. Formation of germ‐line chimaeras from embryo‐derived teratocarcinoma cell lines. Nature 1984, 309:255–256.
Doetschman, TC, Eistetter, H, Katz, M, Schmidt, W, Kemler, R. The in vitro development of blastocyst‐derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985, 87:27–45.
Thomson, JA, Itskovitz‐Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ, Marshall, VS, Jones, JM. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282:1145–1147.
Ying, QL, Stavridis, M, Griffiths, D, Li, M, Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003, 21:183–186.
D`Amour, KA, Agulnick, AD, Eliazer, S, Kelly, OG, Kroon, E, Baetge, EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005, 23:1534–1541.
Livigni, A, Villegas, SN, Oikonomopoulou, I, Rahman, A, Morrison, GM, Brickman, JM. Differentiation of embryonic stem cells into anterior definitive endoderm. Curr Protoc Stem Cell Biol 2016, 36:1G.3.1–1G.3.12. doi:10.1002/9780470151808.sc01g03s36.
Hwang, YS, Chung, BG, Ortmann, D, Hattori, N, Moeller, HC, Khademhosseini, A. Microwell‐mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc Natl Acad Sci USA 2009, 106:16978–16983.
Spelke, DP, Ortmann, D, Khademhosseini, A, Ferreira, L, Karp, JM. Methods for embryoid body formation: the microwell approach. Methods Mol Biol 2011, 690:151–162.
Robertson, EJ. Embryo‐derived stem cell lines. In: Robertson, EJ, ed. Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. Oxford: IRL Press; 1987, 71–112.
Bain, G, Kitchens, D, Yao, M, Huettner, JE, Gottlieb, DI. Embryonic stem cells express neuronal properties in vitro. Dev Biol 1995, 168:342–357.
Gajovic, S, St‐Onge, L, Yokota, Y, Gruss, P. Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells. Differentiation 1997, 62:187–192.
Guan, K, Chang, H, Rolletschek, A, Wobus, AM. Embryonic stem cell‐derived neurogenesis: retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res 2001, 305:171–176.
Li, M, Pevny, L, Lovell‐Badge, R, Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 1998, 8:971–974.
Wichterle, H, Lieberam, I, Porter, JA, Jessell, TM. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002, 110:385–397.
Sasai, Y. Generation of dopaminergic neurons from embryonic stem cells. J Neurol 2002, 249(suppl 2):II41–II44.
Gingold, H, Tehler, D, Christoffersen, NR, Nielsen, MM, Asmar, F, Kooistra, SM, Christophersen, NS, Christensen, LL, Borre, M, Sorensen, KD, et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 2014, 158:1281–1292.
Kubo, A, Shinozaki, K, Shannon, JM, Kouskoff, V, Kennedy, M, Woo, S, Fehling, HJ, Keller, G. Development of definitive endoderm from embryonic stem cells in culture. Development 2004, 131:1651–1662.
Tada, S, Era, T, Furusawa, C, Sakurai, H, Nishikawa, S, Kinoshita, M, Nakao, K, Chiba, T, Nishikawa, S. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 2005, 132:4363–4374.
Morrison, GM, Oikonomopoulou, I, Migueles, RP, Soneji, S, Livigni, A, Enver, T, Brickman, JM. Anterior definitive endoderm from ESCs reveals a role for FGF signaling. Cell Stem Cell 2008, 3:402–415.
Boheler, KR, Czyz, J, Tweedie, D, Yang, HT, Anisimov, SV, Wobus, AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 2002, 91:189–201.
Wobus, AM, Guan, K, Yang, HT, Boheler, KR. Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol 2002, 185:127–156.
Hirata, H, Kawamata, S, Murakami, Y, Inoue, K, Nagahashi, A, Tosaka, M, Yoshimura, N, Miyamoto, Y, Iwasaki, H, Asahara, T, et al. Coexpression of platelet‐derived growth factor receptor alpha and fetal liver kinase 1 enhances cardiogenic potential in embryonic stem cell differentiation in vitro. J Biosci Bioeng 2007, 103:412–419.
Kataoka, H, Takakura, N, Nishikawa, S, Tsuchida, K, Kodama, H, Kunisada, T, Risau, W, Kita, T, Nishikawa, SI. Expressions of PDGF receptor alpha, c‐Kit and Flk1 genes clustering in mouse chromosome 5 define distinct subsets of nascent mesodermal cells. Dev Growth Differ 1997, 39:729–740.
Abu‐Issa, R, Kirby, ML. Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol 2007, 23:45–68.
Kattman, SJ, Witty, AD, Gagliardi, M, Dubois, NC, Niapour, M, Hotta, A, Ellis, J, Keller, G. Stage‐specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 2011, 8:228–240.
Chen, Y, Schier, AF. The zebrafish Nodal signal Squint functions as a morphogen. Nature 2001, 411:607–610.
Dosch, R, Gawantka, V, Delius, H, Blumenstock, C, Niehrs, C. Bmp‐4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 1997, 124:2325–2334.
Dougan, ST, Warga, RM, Kane, DA, Schier, AF, Talbot, WS. The role of the zebrafish nodal‐related genes squint and cyclops in patterning of mesendoderm. Development 2003, 130:1837–1851.
Naylor, RW, Skvarca, LB, Thisse, C, Thisse, B, Hukriede, NA, Davidson, AJ. BMP and retinoic acid regulate anterior‐posterior patterning of the non‐axial mesoderm across the dorsal‐ventral axis. Nat Commun 2016, 7:12197.
Martin, GR. Teratocarcinomas and mammalian embryogenesis. Science 1980, 209:768–776.
Martin, GR, Wiley, LM, Damjanov, I. The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Dev Biol 1977, 61:230–244.
Murray, P, Edgar, D. The regulation of embryonic stem cell differentiation by leukaemia inhibitory factor (LIF). Differentiation 2001, 68:227–234.
Shen, MM, Leder, P. Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci USA 1992, 89:8240–8244.
Canham, MA, Sharov, AA, Ko, MS, Brickman, JM. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol 2010, 8:e1000379.
Ying, QL, Nichols, J, Chambers, I, Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self‐renewal in collaboration with STAT3. Cell 2003, 115:281–292.
Hamazaki, T, Oka, M, Yamanaka, S, Terada, N. Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J Cell Sci 2004, 117:5681–5686.
Morgani, SM, Brickman, JM. LIF supports primitive endoderm expansion during pre‐implantation development. Development 2015, 142:3488–3499.
Morgani, SM, Canham, MA, Nichols, J, Sharov, AA, Migueles, RP, Ko, MS, Brickman, JM. Totipotent embryonic stem cells arise in ground‐state culture conditions. Cell Rep 2013, 3:1945–1957.
Lanner, F, Rossant, J. The role of FGF/Erk signaling in pluripotent cells. Development 2010, 137:3351–3360.
Villegas, SN, Canham, M, Brickman, JM. FGF signalling as a mediator of lineage transitions—evidence from embryonic stem cell differentiation. J Cell Biochem 2010, 110:10–20.
Cheng, AM, Saxton, TM, Sakai, R, Kulkarni, S, Mbamalu, G, Vogel, W, Tortorice, CG, Cardiff, RD, Cross, JC, Muller, WJ, et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 1998, 95:793–803.
Li, X, Chen, Y, Scheele, S, Arman, E, Haffner‐Krausz, R, Ekblom, P, Lonai, P. Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. J Cell Biol 2001, 153:811–822.
Li, L, Arman, E, Ekblom, P, Edgar, D, Murray, P, Lonai, P. Distinct GATA6‐ and laminin‐dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development 2004, 131:5277–5286.
Chen, Y, Li, X, Eswarakumar, VP, Seger, R, Lonai, P. Fibroblast growth factor (FGF) signaling through PI 3‐kinase and Akt/PKB is required for embryoid body differentiation. Oncogene 2000, 19:3750–3756.
Yoshida‐Koide, U, Matsuda, T, Saikawa, K, Nakanuma, Y, Yokota, T, Asashima, M, Koide, H. Involvement of Ras in extraembryonic endoderm differentiation of embryonic stem cells. Biochem Biophys Res Commun 2004, 313:475–481.
Ohnishi, Y, Huber, W, Tsumura, A, Kang, M, Xenopoulos, P, Kurimoto, K, Oles, AK, Arauzo‐Bravo, MJ, Saitou, M, Hadjantonakis, AK, et al. Cell‐to‐cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat Cell Biol 2014, 16:27–37.
Chazaud, C, Yamanaka, Y, Pawson, T, Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2‐MAPK pathway. Dev Cell 2006, 10:615–624.
Yamanaka, Y, Lanner, F, Rossant, J. FGF signal‐dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 2010, 137:715–724.
Nichols, J, Silva, J, Roode, M, Smith, A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 2009, 136:3215–3222.
Hamilton, WB, Brickman, JM. Erk signaling suppresses embryonic stem cell self‐renewal to specify endoderm. Cell Rep 2014, 9:2056–2070.
Wang, Y, Smedberg, JL, Cai, KQ, Capo‐Chichi, DC, Xu, XX. Ectopic expression of GATA6 bypasses requirement for Grb2 in primitive endoderm formation. Dev Dyn 2011, 240:566–576.
Kang, M, Piliszek, A, Artus, J, Hadjantonakis, AK. FGF4 is required for lineage restriction and salt‐and‐pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 2013, 140:267–279.
Krawchuk, D, Honma‐Yamanaka, N, Anani, S, Yamanaka, Y. FGF4 is a limiting factor controlling the proportions of primitive endoderm and epiblast in the ICM of the mouse blastocyst. Dev Biol 2013, 384:65–71.
Peterslund, JM, Serup, P. Activation of FGFR(IIIc) isoforms promotes activin‐induced mesendoderm development in mouse embryonic stem cells and reduces Sox17 coexpression in EpCAM+ cells. Stem Cell Res 2011, 6:262–275.
Nadijcka, M, Hillman, N. Ultrastructural studies of the mouse blastocyst substages. J Embryol Exp Morphol 1974, 32:675–695.
Enders, AC, Given, RL, Schlafke, S. Differentiation and migration of endoderm in rat and mouse at implantation. Anat Rec 1978, 190:65–77.
Gardner, RL. Origin and differentiation of extraembryonic tissues in the mouse. Int Rev Exp Pathol 1983, 24:63–133.
Salamat, M, Miosge, N, Herken, R. Development of Reichert`s membrane in the early mouse embryo. Anat Embryol (Berl) 1995, 192:275–281.
Mishina, Y, Suzuki, A, Ueno, N, Behringer, RR. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 1995, 9:3027–3037.
Sirard, C, de la Pompa, JL, Elia, A, Itie, A, Mirtsos, C, Cheung, A, Hahn, S, Wakeham, A, Schwartz, L, Kern, SE, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 1998, 12:107–119.
Coucouvanis, E, Martin, GR. BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development 1999, 126:535–546.
Paca, A, Seguin, CA, Clements, M, Ryczko, M, Rossant, J, Rodriguez, TA, Kunath, T. BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Dev Biol 2012, 361:90–102.
ten Berge, D, Koole, W, Fuerer, C, Fish, M, Eroglu, E, Nusse, R. Wnt signaling mediates self‐organization and axis formation in embryoid bodies. Cell Stem Cell 2008, 3:508–518.
Ben‐Haim, N, Lu, C, Guzman‐Ayala, M, Pescatore, L, Mesnard, D, Bischofberger, M, Naef, F, Robertson, EJ, Constam, DB. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev Cell 2006, 11:313–323.
van den Brink, SC, Baillie‐Johnson, P, Balayo, T, Hadjantonakis, AK, Nowotschin, S, Turner, DA, Martinez, AA. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2014, 141:4231–4242.