Byrum, CA, Martindale, MQ. Gastrulation in the Cnidaria and Ctenophora. In: Stern, CD, ed. Gastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004, 33–50.
Swalla, BJ. Protochordate gastrulation: lancelets and ascidians. In: Stern, CD, ed. Gastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004, 139–149.
Kane, DA, Warga, RM. Teleost Gastrulation. In: Stern, CD, ed. Gastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004, 157–169.
Keller, R, Shook, D. Gastrulation in amphibians. In: Stern, CD, ed. Gaastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004, 171–203.
Gilland, EH, Burke, AC. Gastrulation in reptiles. In: Stern, CC, ed. Gastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004, 205–218.
Stern, CD. Gastrulation in the chick. In: Stern, CD, ed. Gastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004, 219–232.
Tam, PPL, Gad, JM. Gastrulation in the mouse Embryo. In: Stern, CD, ed. Gastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004, 233–262.
Viebahn, C. Gastrulation in the rabbit. In: Stern, CD, ed. Gastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004, 263–274.
Eakin, GS, Behringer, RR. Gastrulation in other mammals and humans. In: Stern, CD, ed. Gastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004, 275–287.
Bertocchini, F, Alev, C, Nakaya, Y, Sheng, G. A little winning streak: the reptilian‐eye view of gastrulation in birds. Dev Growth Differ 2013, 55:52–59.
Sheng, G. Day‐1 chick development. Dev Dyn 2014, 243:357–367.
Bertocchini, F, Stern, CD. The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev Cell 2002, 3:735–744.
Bertocchini, F, Skromne, I, Wolpert, L, Stern, CD. Determination of embryonic polarity in a regulative system: evidence for endogenous inhibitors acting sequentially during primitive streak formation in the chick embryo. Development 2004, 131:3381–3390.
Alev, C, Wu, Y, Nakaya, Y, Sheng, G. Decoupling of amniote gastrulation and streak formation reveals a morphogenetic unity in vertebrate mesoderm induction. Development 2013, 140:2691–2696.
Skromne, I, Stern, CD. Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development 2001, 128:2915–2927.
Graper, L. Die Primitiventwicklung des Hünchens nach stereokinematographischen Untersuchungen, kontrolliert durch vitale Farbmarkierung und verglichen mit der Entwicklung anderer Wirbeltiere. Wilhelm Roux` Arch Entwicklungsmechan Org 1929, 116:382–429.
Wetzel, R. Untersuchungen am Huhnchen: Die Entwicklung des Keims wahrend der erste beiden Bruttage. Wilhelm Roux` Arch Entwicklungsmechan Org 1929, 119:188–321.
Cui, C, Yang, X, Chuai, M, Glazier, JA, Weijer, CJ. Analysis of tissue flow patterns during primitive streak formation in the chick embryo. Dev Biol 2005, 284:37–47.
Voiculescu, O, Bertocchini, F, Wolpert, L, Keller, RE, Stern, CD. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 2007, 449:1049–1052.
Firmino, J, Rocancourt, D, Saadaoui, M, Moreau, C, Gros, J. Cell division drives epithelial cell rearrangements during gastrulation in chick. Dev Cell 2016, 36:249–261.
Voiculescu, O, Bodenstein, L, Lau, IJ, Stern, CD. Local cell interactions and self‐amplifying individual cell ingression drive amniote gastrulation. Elife 2014, 3:e01817.
Chuai, M, Zeng, W, Yang, X, Boychenko, V, Glazier, JA, Weijer, CJ. Cell movement during chick primitive streak formation. Dev Biol 2006, 296:137–149.
Wei, Y, Mikawa, T. Formation of the avian primitive streak from spatially restricted blastoderm: evidence for polarized cell division in the elongating streak. Development 2000, 127:87–96.
Vasiev, B, Balter, A, Chaplain, M, Glazier, JA, Weijer, CJ. Modeling gastrulation in the chick embryo: formation of the primitive streak. PLoS One 2010, 5:e10571.
Sandersius, SA, Chuai, M, Weijer, CJ, Newman, TJ. A `chemotactic dipole` mechanism for large‐scale vortex motion during primitive streak formation in the chick embryo. Phys Biol 2011, 8:045008.
Hamburger, V, Hamilton, HL. A series of normal stages in the development of the chick embryo. J Morphol 1951, 88:49–92.
Rozbicki, E, Chuai, M, Karjalainen, AI, Song, F, Sang, HM, Martin, R, Knolker, HJ, MacDonald, MP, Weijer, CJ. Myosin‐II‐mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nat Cell Biol 2015, 17:397–408.
Sanders, EJ. Labelling of basement membrane constituents in the living chick embryo during gastrulation. J Embryol Exp Morphol 1984, 79:113–123.
Bellairs, R. The primitive streak. Anat Embryol (Berl) 1986, 174:1–14.
Nakaya, Y, Sheng, G. Epithelial to mesenchymal transition during gastrulation: an embryological view. Dev Growth Differ 2008, 50:755–766.
Shook, DR, Keller, R. Epithelial type, ingression, blastopore architecture and the evolution of chordate mesoderm morphogenesis. J Exp Zool B Mol Dev Evol 2008, 310:85–110.
Yang, X, Dormann, D, Munsterberg, AE, Weijer, CJ. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev Cell 2002, 3:425–437.
Wilson, DE, Reder, DAM. Mammalian Species of the World: A Taxonomic and Geographic Reference, 3rd ed. Baltimore, MD: John Hopkins University Press; 2005.
Wilkinson, DG, Bhatt, S, Herrmann, BG. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 1990, 343:657–659.
Liu, P, Wakamiya, M, Shea, MJ, Albrecht, U, Behringer, RR, Bradley, A. Requirement for Wnt3 in vertebrate axis formation. Nat Genet 1999, 22:361–365.
Burdsal, CA, Damsky, CH, Pedersen, RA. The role of E‐cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak. Development 1993, 118:829–844.
Williams, M, Burdsal, C, Periasamy, A, Lewandoski, M, Sutherland, A. Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 2012, 241:270–283.
Thomas, PQ, Brown, A, Beddington, RS. Hex: a homeobox gene revealing peri‐implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 1998, 125:85–94.
Srinivas, S, Rodriguez, T, Clements, M, Smith, JC, Beddington, RS. Active cell migration drives the unilateral movements of the anterior visceral endoderm. Development 2004, 131:1157–1164.
Stern, CD, Downs, KM. The hypoblast (visceral endoderm): an evo‐devo perspective. Development 2012, 139:1059–1069.
Perea‐Gomez, A, Lawson, KA, Rhinn, M, Zakin, L, Brulet, P, Mazan, S, Ang, SL. Otx2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo. Development 2001, 128:753–765.
Martinez Barbera, JP, Clements, M, Thomas, P, Rodriguez, T, Meloy, D, Kioussis, D, Beddington, RS. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 2000, 127:2433–2445.
Sun, X, Meyers, EN, Lewandoski, M, Martin, GR. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev 1999, 13:1834–1846.
Shawlot, W, Deng, JM, Behringer, RR. Expression of the mouse cerberus‐related gene, Cerr1, suggests a role in anterior neural induction and somitogenesis. Proc Natl Acad Sci USA 1998, 95:6198–6203.
Kimura‐Yoshida, C, Nakano, H, Okamura, D, Nakao, K, Yonemura, S, Belo, JA, Aizawa, S, Matsui, Y, Matsuo, I. Canonical Wnt signaling and its antagonist regulate anterior‐posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev Cell 2005, 9:639–650.
Foley, AC, Skromne, I, Stern, CD. Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 2000, 127:3839–3854.
Stern, CD. The marginal zone and its contribution to the hypoblast and primitive streak of the chick embryo. Development 1990, 109:667–682.
Fraser, RC. Studies on the hypoblast of the young chick embryo. J Exp Zool 1954, 126:349–400.
Thomas, P, Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 1996, 6:1487–1496.
Yamamoto, M, Saijoh, Y, Perea‐Gomez, A, Shawlot, W, Behringer, RR, Ang, SL, Hamada, H, Meno, C. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 2004, 428:387–392.
Perea‐Gomez, A, Vella, FD, Shawlot, W, Oulad‐Abdelghani, M, Chazaud, C, Meno, C, Pfister, V, Chen, L, Robertson, E, Hamada, H, et al. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 2002, 3:745–756.
Ciruna, B, Rossant, J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 2001, 1:37–49.
Ciruna, BG, Schwartz, L, Harpal, K, Yamaguchi, TP, Rossant, J. Chimeric analysis of fibroblast growth factor receptor‐1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 1997, 124:2829–2841.
Cano, A, Perez‐Moreno, MA, Rodrigo, I, Locascio, A, Blanco, MJ, del Barrio, MG, Portillo, F, Nieto, MA. The transcription factor snail controls epithelial‐mesenchymal transitions by repressing E‐cadherin expression. Nat Cell Biol 2000, 2:76–83.
Batlle, E, Sancho, E, Franci, C, Dominguez, D, Monfar, M, Baulida, J, Garcia De Herreros, A. The transcription factor snail is a repressor of E‐cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000, 2:84–89.
Arnold, SJ, Hofmann, UK, Bikoff, EK, Robertson, EJ. Pivotal roles for eomesodermin during axis formation, epithelium‐to‐mesenchyme transition and endoderm specification in the mouse. Development 2008, 135:501–511.
Russ, AP, Wattler, S, Colledge, WH, Aparicio, SA, Carlton, MB, Pearce, JJ, Barton, SC, Surani, MA, Ryan, K, Nehls, MC, et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 2000, 404:95–99.
Hukriede, NA, Tsang, TE, Habas, R, Khoo, PL, Steiner, K, Weeks, DL, Tam, PP, Dawid, IB. Conserved requirement of Lim1 function for cell movements during gastrulation. Dev Cell 2003, 4:83–94.
Rivera‐Perez, JA, Hadjantonakis, AK. The dynamics of morphogenesis in the early mouse embryo. Cold Spring Harb Perspect Biol 2014, 7(11).
van Leeuwen, J, Berg, DK, Pfeffer, PL. Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos. PLoS One 2015, 10:e0129787.
Guillomot, M, Turbe, A, Hue, I, Renard, JP. Staging of ovine embryos and expression of the T‐box genes Brachyury and Eomesodermin around gastrulation. Reproduction 2004, 127:491–501.
Maddox‐Hyttel, P, Alexopoulos, NI, Vajta, G, Lewis, I, Rogers, P, Cann, L, Callesen, H, Tveden‐Nyborg, P, Trounson, A. Immunohistochemical and ultrastructural characterization of the initial post‐hatching development of bovine embryos. Reproduction 2003, 125:607–623.
Hue, I, Renard, JP, Viebahn, C. Brachyury is expressed in gastrulating bovine embryos well ahead of implantation. Dev Genes Evol 2001, 211:157–159.
Wolf, XA, Serup, P, Hyttel, P. Three‐dimensional immunohistochemical characterization of lineage commitment by localization of T and FOXA2 in porcine peri‐implantation embryos. Dev Dyn 2011, 240:890–897.
Hassoun, R, Schwartz, P, Feistel, K, Blum, M, Viebahn, C. Axial differentiation and early gastrulation stages of the pig embryo. Differentiation 2009, 78:301–311.
Oestrup, O, Hall, V, Petkov, SG, Wolf, XA, Hyldig, S, Hyttel, P. From zygote to implantation: morphological and molecular dynamics during embryo development in the pig. Reprod Domest Anim 2009, 44(suppl 3):39–49.
Valdez Magana, G, Rodriguez, A, Zhang, H, Webb, R, Alberio, R. Paracrine effects of embryo‐derived FGF4 and BMP4 during pig trophoblast elongation. Dev Biol 2014, 387:15–27.
Sun, R, Lei, L, Liu, S, Xue, B, Wang, J, Wang, J, Shen, J, Duan, L, Shen, X, Cong, Y, et al. Morphological changes and germ layer formation in the porcine embryos from days 7–13 of development. Zygote 2015, 23:266–276.
Viebahn, C, Stortz, C, Mitchell, SA, Blum, M. Low proliferative and high migratory activity in the area of Brachyury expressing mesoderm progenitor cells in the gastrulating rabbit embryo. Development 2002, 129:2355–2365.
Perea‐Gomez, A, Camus, A, Moreau, A, Grieve, K, Moneron, G, Dubois, A, Cibert, C, Collignon, J. Initiation of gastrulation in the mouse embryo is preceded by an apparent shift in the orientation of the anterior‐posterior axis. Curr Biol 2004, 14:197–207.
Viebahn, C. Epithelio‐mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anat (Basel) 1995, 154:79–97.
Stankova, V, Tsikolia, N, Viebahn, C. Rho kinase activity controls directional cell movements during primitive streak formation in the rabbit embryo. Development 2015, 142:92–98.
Rivera‐Perez, JA, Magnuson, T. Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev Biol 2005, 288:363–371.
Lawson, KA, Meneses, JJ, Pedersen, RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 1991, 113:891–911.
Lu, CC, Robertson, EJ. Multiple roles for Nodal in the epiblast of the mouse embryo in the establishment of anterior‐posterior patterning. Dev Biol 2004, 273:149–159.
Halacheva, V, Fuchs, M, Donitz, J, Reupke, T, Puschel, B, Viebahn, C. Planar cell movements and oriented cell division during early primitive streak formation in the mammalian embryo. Dev Dyn 2011, 240:1905–1916.
Tao, H, Suzuki, M, Kiyonari, H, Abe, T, Sasaoka, T, Ueno, N. Mouse prickle1, the homolog of a PCP gene, is essential for epiblast apical‐basal polarity. Proc Natl Acad Sci USA 2009, 106:14426–14431.
Coolen, M, Nicolle, D, Plouhinec, JL, Gombault, A, Sauka‐Spengler, T, Menuet, A, Pieau, C, Mazan, S. Molecular characterization of the gastrula in the turtle Emys orbicularis: an evolutionary perspective on gastrulation. PLoS One 2008, 3:e2676.
Stower, MJ, Diaz, RE, Fernandez, LC, Crother, MW, Crother, B, Marco, A, Trainor, PA, Srinivas, S, Bertocchini, F. Bi‐modal strategy of gastrulation in reptiles. Dev Dyn 2015, 244:1144–1157.
Pasteels, J. Etude sur la gastrulation des vertebres meroblastiques. II: reptiles. Arch Biol 1937, 48:105–184.
Chandrasekharan, NM. In vitro vital staining of chelonian blastoderma. Indian Acad Sci 1966, 49B:402–407.
Clarke, SF. The habits and embryology of the American alligator. J Morphol 1891, 5:181–205.
Reese, A. The development of the American alligator (A. mississipiensis). Smithsonian Misc Collect 1908, 51:1–66.
Yoshida, M, Kajikawa, E, Kurokawa, D, Noro, M, Iwai, T, Yonemura, S, Kobayashi, K, Kiyonari, H, Aizawa, S. Conserved and divergent expression patterns of markers of axial development in reptilian embryos: Chinese soft‐shell turtle and Madagascar ground gecko. Dev Biol 2016, 415:122–142.
Shook, DR, Majer, C, Keller, R. Urodeles remove mesoderm from the superficial layer by subduction through a bilateral primitive streak. Dev Biol 2002, 248:220–239.
Arendt, D, Nubler‐Jung, K. Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk‐rich amniote eggs. Mech Dev 1999, 81:3–22.
Ossipova, O, Chuykin, I, Chu, CW, Sokol, SY. Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development 2015, 142:99–107.
Warmflash, A, Sorre, B, Etoc, F, Siggia, ED, Brivanlou, AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods 2014, 11:847–854.
van den Brink, SC, Baillie‐Johnson, P, Balayo, T, Hadjantonakis, AK, Nowotschin, S, Turner, DA, Martinez, AA. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2014, 141:4231–4242.