Duester, G. Retinoic acid synthesis and signaling during early organogenesis. Cell 2008, 134:921–931.
Mark, M, Ghyselinck, NB, Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 2009, 7:e002.
Rhinn, M, Dolle, P. Retinoic acid signalling during development. Development 2012, 139:843–858.
Conaway, HH, Henning, P, Lerner, UH. Vitamin a metabolism, action, and role in skeletal homeostasis. Endocr Rev 2013, 34:766–797.
Kawai, T, Yanaka, N, Richards, JS, Shimada, M. De novo‐synthesized retinoic acid in ovarian antral follicles enhances FSH‐mediated ovarian follicular cell differentiation and female fertility. Endocrinology 2016, 157:2160–2172.
Spinas, E, Saggini, A, Kritas, SK, Cerulli, G, Caraffa, A, Antinolfi, P, Pantalone, A, Frydas, A, Tei, M, Speziali, A, et al. Can vitamin a mediate immunity and inflammation? J Biol Regul Homeost Agents 2015, 29:1–6.
Petkovich, M, Brand, NJ, Krust, A, Chambon, P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 1987, 330:444–450.
Giguere, V, Ong, ES, Segui, P, Evans, RM. Identification of a receptor for the morphogen retinoic acid. Nature 1987, 330:624–629.
Brand, N, Petkovich, M, Krust, A, Chambon, P, de Thé, H, Marchio, A, Tiollais, P, Dejean, A. Identification of a second human retinoic acid receptor. Nature 1988, 332:850–853.
Krust, A, Kastner, P, Petkovich, M, Zelent, A, Chambon, P. A third human retinoic acid receptor, hRAR‐gamma. Proc Natl Acad Sci USA 1989, 86:5310–5314.
Kliewer, SA, Umesono, K, Mangelsdorf, DJ, Evans, RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 1992, 355:446–449.
Al Tanoury, Z, Piskunov, A, Rochette‐Egly, C. Vitamin A and retinoid signaling: genomic and non‐genomic effects. J Lipid Res 2013, 54:1761–1775.
Studer, M, Pöpperl, H, Marshall, H, Kuroiwa, A, Krumlauf, R. Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb‐1. Science 1994, 265:1728–1732.
Kumar, S, Duester, G. Retinoic acid controls body axis extension by directly repressing Fgf8 transcription. Development 2014, 141:2972–2977.
Kumar, S, Cunningham, TJ, Duester, G. Nuclear receptor corepressors Ncor1 and Ncor2 (Smrt) are required for retinoic acid‐dependent repression of Fgf8 during somitogenesis. Dev Biol 2016, 418:204–215.
Di Lascio, S, Saba, E, Belperio, D, Raimondi, A, Lucchetti, H, Fornasari, D, Benfante, R. PHOX2A and PHOX2B are differentially regulated during retinoic acid‐driven differentiation of SK‐N‐BE(2)C neuroblastoma cell line. Exp Cell Res 2016, 342:62–71.
Kastner, P, Mark, M, Ghyselinck, N, Krezel, W, Dupé, V, Grondona, JM, Chambon, P. Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 1997, 124:313–326.
Niederreither, K, Dolle, P. Retinoic acid in development: towards an integrated view. Nat Rev Genet 2008, 9:541–553.
Iwata, M, Hirakiyama, A, Eshima, Y, Kagechika, H, Kato, C, Song, SY. Retinoic acid imprints gut‐homing specificity on T cells. Immunity 2004, 21:527–538.
Mora, JR, Iwata, M, Eksteen, B, Song, SY, Junt, T, Senman, B, Otipoby, KL, Yokota, A, Takeuchi, H, Ricciardi‐Castagnoli, P, et al. Generation of gut‐homing IgA‐secreting B cells by intestinal dendritic cells. Science 2006, 314:1157–1160.
Blum, N, Begemann, G. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development 2011, 139:107–116.
Gudas, LJ. Retinoids induce stem cell differentiation via epigenetic changes. Semin Cell Dev Biol 2013, 24:701–705.
Shmarakov, IO, Jiang, H, Yang, KJ, Goldberg, IJ, Blaner, WS. Hepatic retinoid stores are required for normal liver regeneration. J Lipid Res 2013, 54:893–908.
Kumar, S, Sandell, LL, Trainor, PA, Koentgen, F, Duester, G. Alcohol and aldehyde dehydrogenases: retinoid metabolic effects in mouse knockout models. Biochim Biophys Acta 2012, 1821:198–205.
Kedishvili, NY. Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res 2013, 54:1744–1760.
Napoli, JL. Physiological insights into all‐trans‐retinoic acid biosynthesis. Biochim Biophys Acta 2012, 1821:152–167.
Spiegler, E, Kim, YK, Wassef, L, Shete, V, Quadro, L. Maternal‐fetal transfer and metabolism of vitamin A and its precursor β‐carotene in the developing tissues. Biochim Biophys Acta 2012, 1821:88–98.
Sandell, LL, Sanderson, BW, Moiseyev, G, Johnson, T, Mushegian, A, Young, K, Rey, JP, Ma, JX, Staehling‐Hampton, K, Trainor, PA. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 2007, 21:1113–1124.
Sandell, LL, Lynn, ML, Inman, KE, McDowell, W, Trainor, PA. RDH10 oxidation of vitamin A is a critical control step in synthesis of retinoic acid during mouse embryogenesis. PLoS One 2012, 7:e30698.
Farjo, KM, Moiseyev, G, Nikolaeva, O, Sandell, LL, Trainor, PA, Ma, JX. RDH10 is the primary enzyme responsible for the first step of embryonic vitamin A metabolism and retinoic acid synthesis. Dev Biol 2011, 357:347–355.
Sosnik, J, Zheng, L, Rackauckas, CV, Digman, M, Gratton, E, Nie, Q, Schilling, TF. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain. Elife 2016, 5:e14034.
Shimozono, S, Iimura, T, Kitaguchi, T, Higashijima, S, Miyawaki, A. Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 2013, 496:363–366.
White, RJ, Nie, Q, Lander, AD, Schilling, TF. Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol 2007, 5:e304.
Rosselot, C, Spraggon, L, Chia, I, Batourina, E, Riccio, P, Lu, B, Niederreither, K, Dolle, P, Duester, G, Chambon, P, et al. Non‐cell‐autonomous retinoid signaling is crucial for renal development. Development 2010, 137:283–292.
Bonney, S, Harrison‐Uy, S, Mishra, S, MacPherson, AM, Choe, Y, Li, D, Jaminet, SC, Fruttiger, M, Pleasure, SJ, Siegenthaler, JA. Diverse functions of retinoic acid in brain vascular development. J Neurosci 2016, 36:7786–7801.
Vernet, N, Dennefeld, C, Guillou, F, Chambon, P, Ghyselinck, NB, Mark, M. Prepubertal testis development relies on retinoic acid but not rexinoid receptors in Sertoli cells. EMBO J 2006, 25:5816–5825.
Ross, AC. Retinoid production and catabolism: role of diet in regulating retinol esterification and retinoic acid oxidation. J Nutr 2003, 133:291S–296S.
Grune, T, Lietz, G, Palou, A, Ross, AC, Stahl, W, Tang, G, Thurnham, D, Yin, SA, Biesalski, HK. β‐carotene is an important vitamin A source for humans. J Nutr 2010, 140:2268S–2285S.
Weber, D, Grune, T. The contribution of β‐carotene to vitamin A supply of humans. Mol Nutr Food Res 2011, 56:251–258.
Sommer, A. Vitamin a deficiency and clinical disease: an historical overview. J Nutr 2008, 138:1835–1839.
von Lintig, J. Provitamin A metabolism and functions in mammalian biology. Am J Clin Nutr 2012, 96:1234S–1244S.
Bloch, CE. Further clinical investigations into the diseases arising in consequence of a deficiency in the fatsoluble a factor. Am J Dis Child 1924, 28:659–667.
Mason, KE. Foetal death, prolonged gestation, and difficult parturition in the rat as a result of vitamin A‐deficiency. Am J Anat 1935, 57:303–349.
Warkany, J, Schraffenberger, E. Congenital malformations of the eyes induced in rats by maternal vitamin A deficiency. Proc Soc Exp Biol Med 1944, 57:49–52.
Wilson, JG, Roth, CB, Warkany, J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency—effects of restoration of vitamin‐A at various times during gestation. Am J Anat 1953, 92:189–217.
Cohlan, SQ. Excessive intake of vitamin A as a cause of congenital anomalies in the rat. Science 1953, 117:535–536.
Cohlan, SQ. Congenital anomalies in the rat produced by excessive intake of vitamin A during pregnancy. Pediatrics 1954, 13:556–567.
Kalter, H, Warkany, J. Experimental production of congenital malformations in strains of inbred mice by maternal treatment with hypervitaminosis A. Am J Pathol 1961, 38:1–21.
Conlon, RA, Rossant, J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox‐2 genes in vivo. Development 1992, 116:357–368.
Jiang, H, Gyda M, III, Harnish, DC, Chandraratna, RA, Soprano, KJ, Kochhar, DM, Soprano, DR. Teratogenesis by retinoic acid analogs positively correlates with elevation of retinoic acid receptor‐β 2 mRNA levels in treated embryos. Teratology 1994, 50:38–43.
Melhus, H, Michaëlsson, K, Kindmark, A, Bergström, R, Holmberg, L, Mallmin, H, Wolk, A, Ljunghall, S. Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture. Ann Intern Med 1998, 129:770–778.
Feskanich, D, Singh, V, Willett, WC, Colditz, GA. Vitamin A intake and hip fractures among postmenopausal women. JAMA 2002, 287:47–54.
Michaelsson, K, Lithell, H, Vessby, B, Melhus, H. Serum retinol levels and the risk of fracture. N Engl J Med 2003, 348:287–294.
Larson, RS, Tallman, MS. Retinoic acid syndrome: manifestations, pathogenesis, and treatment. Best Pract Res Clin Haematol 2003, 16:453–461.
Sive, HL, Draper, BW, Harland, RM, Weintraub, H. Identification of a retinoic acid‐sensitive period during primary axis formation in Xenopus laevis. Genes Dev 1990, 4:932–942.
Tickle, C, Lee, J, Eichele, G. A quantitative analysis of the effect of all‐trans‐retinoic acid on the pattern of chick wing development. Dev Biol 1985, 109:82–95.
Frenz, DA, Liu, W, Cvekl, A, Xie, Q, Wassef, L, Quadro, L, Niederreither, K, Maconochie, M, Shanske, A. Retinoid signaling in inner ear development: a "Goldilocks" phenomenon. Am J Med Genet A 2010, 152a:2947–2961.
Lee, LM, Leung, CY, Tang, WW, Choi, HL, Leung, YC, McCaffery, PJ, Wang, CC, Woolf, AS, Shum, AS. A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci USA 2012, 109:13668–13673.
D`Aniello, E, Rydeen, AB, Anderson, JL, Mandal, A, Waxman, JS. Depletion of retinoic acid receptors initiates a novel positive feedback mechanism that promotes teratogenic increases in retinoic acid. PLoS Genet 2013, 9:e1003689.
Kim, YK, Wassef, L, Chung, S, Jiang, H, Wyss, A, Blaner, WS, Quadro, L. β‐Carotene and its cleavage enzyme β‐carotene‐15,15`‐oxygenase (CMOI) affect retinoid metabolism in developing tissues. FASEB J 2011, 25:1641–1652.
Ashique, AM, May, SR, Kane, MA, Folias, AE, Phamluong, K, Choe, Y, Napoli, JL, Peterson, AS. Morphological defects in a novel Rdh10 mutant that has reduced retinoic acid biosynthesis and signaling. Genesis 2012, 50:415–423.
Costabile, BK, Kim, Y‐K, Iqbal, J, Zuccaro, MV, Wassef, L, Narayanasamy, S, Curley RW, Jr, Harrison, EH, Hussain, MM, Quadro, L. β‐Apo‐10`‐carotenoids modulate placental microsomal triglyceride transfer protein expression and function to optimize transport of intact β‐carotene to the embryo. J Biol Chem 2016, 291:18525–18535.
During, A, Harrison, EH. Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco‐2 cells. J Lipid Res 2007, 48:2283–2294.
Wyss, A, Wirtz, GM, Woggon, WD, Brugger, R, Wyss, M, Friedlein, A, Bachmann, H, Hunziker, W. Cloning and expression of β,β‐carotene 15,15`‐dioxygenase. Biochem Biophys Res Commun 2000, 271:334–336.
von Lintig, J, Vogt, K. Filling the gap in vitamin A research molecular identification of an enzyme cleaving β‐carotene to retinal. J Biol Chem 2000, 275:11915–11920.
Hessel, S, Eichinger, A, Isken, A, Amengual, J, Hunzelmann, S, Hoeller, U, Elste, V, Hunziker, W, Goralczyk, R, Oberhauser, V, et al. CMO1 deficiency abolishes vitamin A production from β‐carotene and alters lipid metabolism in mice. J Biol Chem 2007, 282:33553–33561.
Mora, O, Kuri‐Melo, L, González‐Gallardo, A, Meléndez, E, Morales, A, Shimada, A, Varela‐Echavarría, A. A potential role for β‐carotene in avian embryonic development. Int J Vitam Nutr Res 2004, 74:116–122.
Lindqvist, A, He, YG, Andersson, S. Cell type‐specific expression of β‐carotene 9`,10`‐monooxygenase in human tissues. J Histochem Cytochem 2005, 53:1403–1412.
Shmarakov, I, Fleshman, MK, D`Ambrosio, DN, Piantedosi, R, Riedl, KM, Schwartz, SJ, Curley RW, Jr, von Lintig, J, Rubin, LP, Harrison, EH, et al. Hepatic stellate cells are an important cellular site for β‐carotene conversion to retinoid. Arch Biochem Biophys 2010, 504:3–10.
Choi, MY, Romer, AI, Hu, M, Lepourcelet, M, Mechoor, A, Yesilaltay, A, Krieger, M, Gray, PA, Shivdasani, RA. A dynamic expression survey identifies transcription factors relevant in mouse digestive tract development. Development 2006, 133:4119–4129.
Seino, Y, Miki, T, Kiyonari, H, Abe, T, Fujimoto, W, Kimura, K, Takeuchi, A, Takahashi, Y, Oiso, Y, Iwanaga, T, et al. ISX participates in the maintenance of vitamin A metabolism by regulation of β‐carotene 15,15`‐monooxygenase (Bcmo1) expression. J Biol Chem 2008, 283:4905–4911.
Bondurand, N, Kuhlbrodt, K, Pingault, V, Enderich, J, Sajus, M, Tommerup, N, Warburg, M, Hennekam, RC, Read, AP, Wegner, M, et al. A molecular analysis of the yemenite deaf‐blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum Mol Genet 1999, 8:1785–1789.
Lobo, GP, Amengual, J, Baus, D, Shivdasani, RA, Taylor, D, von Lintig, J. Genetics and diet regulate vitamin A production via the homeobox transcription factor ISX. J Biol Chem 2013, 288:9017–9027.
Harrison, EH. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim Biophys Acta 2012, 1821:70–77.
Reboul, E. Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients 2013, 5:3563–3581.
Wongsiriroj, N, Piantedosi, R, Palczewski, K, Goldberg, IJ, Johnston, TP, Li, E, Blaner, WS. The molecular basis of retinoid absorption: a genetic dissection. J Biol Chem 2008, 283:13510–13519.
Ong, DE, Kakkad, B, MacDonald, PN. Acyl‐CoA‐independent esterification of retinol bound to cellular retinol‐binding protein (type II) by microsomes from rat small intestine. J Biol Chem 1987, 262:2729–2736.
E, X, Zhang, L, Lu, J, Tso, P, Blaner, WS, Levin, MS, Li, E. Increased neonatal mortality in mice lacking cellular retinol‐binding protein II. J Biol Chem 2002, 277:36617–36623.
Kane, MA, Bright, FV, Napoli, JL. Binding affinities of CRBPI and CRBPII for 9‐cis‐retinoids. Biochim Biophys Acta 2011, 1810:514–518.
Quadro, L, Blaner, WS, Salchow, DJ, Vogel, S, Piantedosi, R, Gouras, P, Freeman, S, Cosma, MP, Colantuoni, V, Gottesman, ME. Impaired retinal function and vitamin A availability in mice lacking retinol‐binding protein. EMBO J 1999, 18:4633–4644.
Quadro, L, Hamberger, L, Gottesman, ME, Wang, F, Colantuoni, V, Blaner, WS, Mendelsohn, CL. Pathways of vitamin A delivery to the embryo: insights from a new tunable model of embryonic vitamin A deficiency. Endocrinology 2005, 146:4479–4490.
Wassef, L, Quadro, L. Uptake of dietary retinoids at the maternal‐fetal barrier: in vivo evidence for the role of lipoprotein lipase and alternative pathways. J Biol Chem 2011, 286:32198–32207.
Dueker, SR, Lin, Y, Buchholz, BA, Schneider, PD, Lamé, MW, Segall, HJ, Vogel, JS, Clifford, AJ. Long‐term kinetic study of β‐carotene, using accelerator mass spectrometry in an adult volunteer. J Lipid Res 2000, 41:1790–1800.
Shirakami, Y, Lee, SA, Clugston, RD, Blaner, WS. Hepatic metabolism of retinoids and disease associations. Biochim Biophys Acta 2012, 1821:124–136.
Schreiber, R et al. Retinyl ester hydrolases and their roles in vitamin A homeostasis. Biochim Biophys Acta 2012, 1821:113–123.
Blaner, WS, Obunike, JC, Kurlandsky, SB, al‐Haideri, M, Piantedosi, R, Deckelbaum, RJ, Goldberg, IJ. Lipoprotein lipase hydrolysis of retinyl ester: possible implications for retinoid uptake by cells. J Biol Chem 1994, 269:16559–16565.
Soprano, DR, Soprano, KJ, Goodman, DS. Retinol‐binding protein and transthyretin mRNA levels in visceral yolk sac and liver during fetal development in the rat. Proc Natl Acad Sci USA 1986, 83:7330–7334.
Bavik, C, Ward, SJ, Chambon, P. Developmental abnormalities in cultured mouse embryos deprived of retinoic by inhibition of yolk‐sac retinol binding protein synthesis. Proc Natl Acad Sci USA 1996, 93:3110–3114.
Shen, J, Shi, D, Suzuki, T, Xia, Z, Zhang, H, Araki, K, Wakana, S, Takeda, N, Yamamura, K, Jin, S, et al. Severe ocular phenotypes in Rbp4‐deficient mice in the C57BL/6 genetic background. Lab Invest 2016, 96:680–691.
Ghyselinck, NB, Vernet, N, Dennefeld, C, Giese, N, Nau, H, Chambon, P, Viville, S, Mark, M. Retinoids and spermatogenesis: lessons from mutant mice lacking the plasma retinol binding protein. Dev Dyn 2006, 235:1608–1622.
Bouillet, P, Sapin, V, Chazaud, C, Messaddeq, N, Décimo, D, Dollé, P, Chambon, P. Developmental expression pattern of Stra6, a retinoic acid‐responsive gene encoding a new type of membrane protein. Mech Dev 1997, 63:173–186.
Sapin, V, Bouillet, P, Oulad‐Abdelghani, M, Dastugue, B, Chambon, P, Dollé, P. Differential expression of retinoic acid‐inducible (Stra) genes during mouse placentation. Mech Dev 2000, 92:295–299.
Amengual, J, Zhang, N, Kemerer, M, Maeda, T, Palczewski, K, Von Lintig, J. STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum Mol Genet 2014, 23:5402–5417.
Skazik, C, Amann, PM, Heise, R, Marquardt, Y, Czaja, K, Kim, A, Rühl, R, Kurschat, P, Merk, HF, Bickers, DR, et al. Downregulation of STRA6 expression in epidermal keratinocytes leads to hyperproliferation‐associated differentiation in both in vitro and in vivo skin models. J Invest Dermatol 2014, 134:1579–1588.
Ruiz, A, Mark, M, Jacobs, H, Klopfenstein, M, Hu, J, Lloyd, M, Habib, S, Tosha, C, Radu, RA, Ghyselinck, NB, et al. Retinoid content, visual responses, and ocular morphology are compromised in the retinas of mice lacking the retinol‐binding protein receptor, STRA6. Invest Ophthalmol Vis Sci 2012, 53:3027–3039.
Berry, DC, Jacobs, H, Marwarha, G, Gely‐Pernot, A, O`Byrne, SM, DeSantis, D, Klopfenstein, M, Feret, B, Dennefeld, C, Blaner, WS, et al. The STRA6 receptor is essential for retinol‐binding protein‐induced insulin resistance but not for maintaining vitamin A homeostasis in tissues other than the eye. J Biol Chem 2013, 288:24528–24539.
Terra, R, Wang, X, Hu, Y, Charpentier, T, Lamarre, A, Zhong, M, Sun, H, Mao, J, Qi, S, Luo, H, et al. To investigate the necessity of STRA6 upregulation in T cells during T cell immune responses. PLoS One 2013, 8:e82808.
Redondo, C, Vouropoulou, M, Evans, J, Findlay, JB. Identification of the retinol‐binding protein (RBP) interaction site and functional state of RBPs for the membrane receptor. FASEB J 2008, 22:1043–1054.
Kawaguchi, R, Zhong, M, Kassai, M, Ter‐Stepanian, M, Sun, H. STRA6‐catalyzed vitamin A influx, efflux, and exchange. J Membr Biol 2012, 245:731–745.
Chen, Y, Clarke, OB, Kim, J, Stowe, S, Kim, YK, Assur, Z, Cavalier, M, Godoy‐Ruiz, R, von Alpen, DC, Manzini, C, et al. Structure of the STRA6 receptor for retinol uptake. Science 2016, 353:pii:aad8266.
Isken, A, Golczak, M, Oberhauser, V, Hunzelmann, S, Driever, W, Imanishi, Y, Palczewski, K, von Lintig, J. RBP4 disrupts vitamin A uptake homeostasis in a STRA6‐deficient animal model for Matthew‐Wood syndrome. Cell Metab 2008, 7:258–268.
Muenzner, M, Tuvia, N, Deutschmann, C, Witte, N, Tolkachov, A, Valai, A, Henze, A, Sander, LE, Raila, J, Schupp, M. Retinol‐binding protein 4 and its membrane receptor STRA6 control adipogenesis by regulating cellular retinoid homeostasis and retinoic acid receptor alpha activity. Mol Cell Biol 2013, 33:4068–4082.
Alapatt, P, Guo, F, Komanetsky, SM, Wang, S, Cai, J, Sargsyan, A, Rodríguez Díaz, E, Bacon, BT, Aryal, P, Graham, TE. Liver retinol transporter and receptor for serum retinol‐binding protein (RBP4). J Biol Chem 2013, 288:1250–1265.
Quadro, L, Hamberger, L, Gottesman, ME, Colantuoni, V, Ramakrishnan, R, Blaner, WS. Transplacental delivery of retinoid: the role of retinol‐binding protein and lipoprotein retinyl ester. Am J Physiol Endocrinol Metab 2004, 286:E844–E851.
Rask, L, Peterson, PA. In vitro uptake of vitamin A from the retinol‐binding plasma protein to mucosal epithelial cells from the monkey`s small intestine. J Biol Chem 1976, 251:6360–6366.
Sivaprasadarao, A, Findlay, JB. The mechanism of uptake of retinol by plasma‐membrane vesicles. Biochem J 1988, 255:571–579.
Smeland, S, Bjerknes, T, Malaba, L, Eskild, W, Norum, KR, Blomhoff, R. Tissue distribution of the receptor for plasma retinol‐binding protein. Biochem J 1995, 305 (pt 2):419–424.
Kawaguchi, R, Yu, J, Honda, J, Hu, J, Whitelegge, J, Ping, P, Wiita, P, Bok, D, Sun, H. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 2007, 315:820–825.
Georgiades, P, Ferguson‐Smith, AC, Burton, GJ. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 2002, 23:3–19.
Furukawa, S, Hayashi, S, Usuda, K, Abe, M, Hagio, S, Ogawa, I. Toxicological pathology in the rat placenta. J Toxicol Pathol 2011, 24:95–111.
Dancis, J, Levitz, M, Katz, J, Wilson, D, Blaner, WS, Piantedosi, R, Goodman, DS. Transfer and metabolism of retinol by the perfused human placenta. Pediatr Res 1992, 32:195–199.
Sapin, V, Chaïb, S, Blanchon, L, Alexandre‐Gouabau, MC, Lémery, D, Charbonne, F, Gallot, D, Jacquetin, B, Dastugue, B, Azais‐Braesco, V. Esterification of vitamin A by the human placenta involves villous mesenchymal fibroblasts. Pediatr Res 2000, 48:565–572.
Amengual, J, Golczak, M, Palczewski, K, von Lintig, J. Lecithin:retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol‐binding protein. J Biol Chem 2012, 287:24216–24227.
Friedman, SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008, 88:125–172.
Yost, RW, Harrison, EH, Ross, AC. Esterification by rat liver microsomes of retinol bound to cellular retinol‐binding protein. J Biol Chem 1988, 263:18693–18701.
Ghyselinck, NB, Båvik, C, Sapin, V, Mark, M, Bonnier, D, Hindelang, C, Dierich, A, Nilsson, CB, Håkansson, H, Sauvant, P, et al. Cellular retinol‐binding protein I is essential for vitamin A homeostasis. EMBO J 1999, 18:4903–4914.
Saari, JC, Nawrot, M, Garwin, GG, Kennedy, MJ, Hurley, JB, Ghyselinck, NB, Chambon, P. Analysis of the visual cycle in cellular retinol‐binding protein type I (CRBPI) knockout mice. Invest Ophthalmol Vis Sci 2002, 43:1730–1735.
Wei, S, Lai, K, Patel, S, Piantedosi, R, Shen, H, Colantuoni, V, Kraemer, FB, Blaner, WS. Retinyl ester hydrolysis and retinol efflux from BFC‐1β adipocytes. J Biol Chem 1997, 272:14159–14165.
Strom, K, Gundersen, TE, Hansson, O, Lucas, S, Fernandez, C, Blomhoff, R, Holm, C. Hormone‐sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL. FASEB J 2009, 23:2307–2316.
Pirazzi, C, Valenti, L, Motta, BM, Pingitore, P, Hedfalk, K, Mancina, RM, Burza, MA, Indiveri, C, Ferro, Y, Montalcini, T, et al. PNPLA3 has retinyl‐palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 2014, 23:4077–4085.
Taneja, R, Bouillet, P, Boylan, JF, Gaub, MP, Roy, B, Gudas, LJ, Chambon, P. Reexpression of retinoic acid receptor (RAR) gamma or overexpression of RAR alpha or RAR beta in RAR gamma‐ F9 cells reveals a partial functional redundancy between the three RAR types. Proc Natl Acad Sci USA 1995, 92:7854–7858.
Bouillet, P, Oulad‐Abdelghani, M, Vicaire, S, Garnier, JM, Schuhbaur, B, Dollé, P, Chambon, P. Efficient cloning of cDNAs of retinoic acid‐responsive genes in P19 embryonal carcinoma cells and characterization of a novel mouse gene, Stra1 (mouse LERK‐2/Eplg2). Dev Biol 1995, 170:420–433.
Kashyap, V, Laursen, KB, Brenet, F, Viale, AJ, Scandura, JM, Gudas, LJ. RARγ is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells. J Cell Sci 2013, 126:999–1008.
Mangelsdorf, DJ, Umesono, K, Kliewer, SA, Borgmeyer, U, Ong, ES, Evans, RM. A direct repeat in the cellular retinol‐binding protein type II gene confers differential regulation by RXR and RAR. Cell 1991, 66:555–561.
Smith, WC, Nakshatri, H, Leroy, P, Rees, J, Chambon, P. A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J 1991, 10:2223–2230.
Rajan, N, Blaner, WS, Soprano, DR, Suhara, A, Goodman, DS. Cellular retinol‐binding protein messenger RNA levels in normal and retinoid‐deficient rats. J Lipid Res 1990, 31:821–829.
Wu, L, Ross, AC. Acidic retinoids synergize with vitamin A to enhance retinol uptake and STRA6, LRAT, and CYP26B1 expression in neonatal lung. J Lipid Res 2009, 51:378–387.
Zolfaghari, R, Ross, AC. An essential set of basic DNA response elements is required for receptor‐dependent transcription of the lecithin:retinol acyltransferase (Lrat) gene. Arch Biochem Biophys 2009, 489:1–9.
Dixon, JL, Kim, YK, Brinker, A, Quadro, L. Loss of β‐carotene 15,15`‐oxygenase in developing mouse tissues alters esterification of retinol, cholesterol and diacylglycerols. Biochim Biophys Acta 2014, 1841:34–43.
Ang, HL, Deltour, L, Zgombic‐Knight, M, Wagner, MA, Duester, G. Expression patterns of class I and class IV alcohol dehydrogenase genes in developing epithelia suggest a role for alcohol dehydrogenase in local retinoic acid synthesis. Alcohol Clin Exp Res 1996, 20:1050–1064.
Molotkov, A, Deltour, L, Foglio, MH, Cuenca, AE, Duester, G. Distinct retinoid metabolic functions for alcohol dehydrogenase genes Adh1 and Adh4 in protection against vitamin A toxicity or deficiency revealed in double mutant mice. J Biol Chem 2002, 277:13804–13811.
Molotkov, A, Fan, X, Deltour, L, Foglio, MH, Martras, S, Farrés, J, Parés, X, Duester, G. Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci USA 2002, 99:5337–5342.
Deltour, L, Foglio, MH, Duester, G. Metabolic deficiencies in alcohol dehydrogenase Adh1, Adh3, and Adh4 mutant mice: overlapping roles of Adh1 and Adh4 in ethanol clearance and metabolism of retinol to retinoic acid. J Biol Chem 1999, 274:16796–16801.
Niederreither, K, Subbarayan, V, Dolle, P, Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post‐implantation development. Nat Genet 1999, 21:444–448.
Billings, SE, Pierzchalski, K, Butler Tjaden, NE, Pang, XY, Trainor, PA, Kane, MA, Moise, AR. The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development. FASEB J 2013, 27:4877–4889.
Cunningham, TJ, Chatzi, C, Sandell, LL, Trainor, PA, Duester, G. Rdh10 mutants deficient in limb field retinoic acid signaling exhibit normal limb patterning but display interdigital webbing. Dev Dyn 2011, 240:1142–1150.
Cunningham, TJ, Zhao, X, Sandell, LL, Evans, SM, Trainor, PA, Duester, G. Antagonism between retinoic acid and fibroblast growth factor signaling during limb development. Cell Rep 2013, 3:1503–1511.
Farjo, KM, Moiseyev, G, Takahashi, Y, Crouch, RK, Ma, JX. The 11‐cis‐retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins. Invest Ophthalmol Vis Sci 2009, 50:5089–5097.
Adams, MK, Belyaeva, OV, Wu, L, Kedishvili, NY. The retinaldehyde reductase activity of DHRS3 is reciprocally activated by Retinol Dehydrogenase 10 to control retinoid homeostasis. J Biol Chem 2014, 289:14868–14880.
Cunningham, TJ, Duester, G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 2015, 16:110–123.
Kam, RK, Shi, W, Chan, SO, Chen, Y, Xu, G, Lau, CB, Fung, KP, Chan, WY, Zhao, H. Dhrs3 protein attenuates retinoic acid signaling and is required for early embryonic patterning. J Biol Chem 2013, 288:31477–31487.
Rhinn, M, Schuhbaur, B, Niederreither, K, Dolle, P. Involvement of retinol dehydrogenase 10 in embryonic patterning and rescue of its loss of function by maternal retinaldehyde treatment. Proc Natl Acad Sci USA 2011, 108:16687–16692.
Chatzi, C, Cunningham, TJ, Duester, G. Investigation of retinoic acid function during embryonic brain development using retinaldehyde‐rescued Rdh10 knockout mice. Dev Dyn 2013, 242:1056–1065.
D`Aniello, E, Ravisankar, P, Waxman, JS. Rdh10a provides a conserved critical step in the synthesis of retinoic acid during zebrafish embryogenesis. PLoS One 2015, 10:e0138588.
Sahu, B, Sun, W, Perusek, L, Parmar, V, Le, Y‐Z, Griswold, MD, Palczewski, K, Maeda, A. Conditional ablation of retinol dehydrogenase 10 in the retinal pigmented epithelium causes delayed dark adaption in mice. J Biol Chem 2015, 290:27239–27247.
Wright, DM, Buenger, DE, Abashev, TM, Lindeman, RP, Ding, J, Sandell, LL. Retinoic acid regulates embryonic development of mammalian submandibular salivary glands. Dev Biol 2015, 407:57–67.
Tong, MH, Yang, QE, Davis, JC, Griswold, MD. Retinol dehydrogenase 10 is indispensible for spermatogenesis in juvenile males. Proc Natl Acad Sci USA 2013, 110:543–548.
Feng, L, Hernandez, RE, Waxman, JS, Yelon, D, Moens, CB. Dhrs3a regulates retinoic acid biosynthesis through a feedback inhibition mechanism. Dev Biol 2010, 338:1–14.
Strate, I, Min, TH, Iliev, D, Pera, EM. Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system. Development 2009, 136:461–472.
Zhang, M, Hu, P, Krois, CR, Kane, MA, Napoli, JL. Altered vitamin A homeostasis and increased size and adiposity in the rdh1‐ mouse. FASEB J 2007, 21:2886–2896.
Wang, C, Kane, MA, Napoli, JL. Multiple retinol and retinal dehydrogenases catalyze all‐trans‐retinoic acid biosynthesis in astrocytes. J Biol Chem 2011, 286:6542–6553.
Deltour, L, Foglio, MH, Duester, G. Impaired retinol utilization in Adh4 alcohol dehydrogenase mutant mice. Dev Genet 1999, 25:1–10.
Molotkov, A, Fan, X, Duester, G. Excessive vitamin A toxicity in mice genetically deficient in either alcohol dehydrogenase Adh1 or Adh3. Eur J Biochem 2002, 269:2607–2612.
Molotkov, A, Ghyselinck, NB, Chambon, P, Duester, G. Opposing actions of cellular retinol‐binding protein and alcohol dehydrogenase control the balance between retinol storage and retinoic acid synthesis. Biochem J 2004, 383:295–302.
Kiser, PD, Golczak, M, Palczewski, K. Chemistry of the retinoid (visual) cycle. Chem Rev 2014, 114:194–232.
Travis, GH, Golczak, M, Moise, AR, Palczewski, K. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol Toxicol 2007, 47:469–512.
Lundova, T, Zemanová, L, Malčeková, B, Skarka, A, Štambergová, H, Havránková, J, Šafr, M, Wsól, V. Molecular and biochemical characterisation of human short‐chain dehydrogenase/reductase member 3 (DHRS3). Chem Biol Interact 2015, 234:178–187.
Kam, RK, Chen, Y, Chan, SO, Chan, WY, Dawid, IB, Zhao, H. Developmental expression of Xenopus short‐chain dehydrogenase/reductase 3. Int J Dev Biol 2010, 54:1355–1360.
Gallego, O, Ruiz, FX, Ardèvol, A, Domínguez, M, Alvarez, R, de Lera, AR, Rovira, C, Farrés, J, Fita, I, Parés, X. Structural basis for the high all‐trans‐retinaldehyde reductase activity of the tumor marker AKR1B10. Proc Natl Acad Sci USA 2007, 104:20764–20769.
Ruiz, FX, Gallego, O, Ardèvol, A, Moro, A, Domínguez, M, Alvarez, S, Alvarez, R, de Lera, AR, Rovira, C, Fita, I, et al. Aldo‐keto reductases from the AKR1B subfamily: retinoid specificity and control of cellular retinoic acid levels. Chem Biol Interact 2009, 178:171–177.
Ruiz, FX, Porté, S, Gallego, O, Moro, A, Ardèvol, A, Del Río‐Espínola, A, Rovira, C, Farrés, J, Parés, X. Retinaldehyde is a substrate for human aldo‐keto reductases of the 1C subfamily. Biochem J 2011, 440:335–344.
Porté, S, Xavier Ruiz, F, Giménez, J, Molist, I, Alvarez, S, Domínguez, M, Alvarez, R, de Lera, AR, Parés, X, Farrés, J. Aldo‐keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity. Chem Biol Interact 2012, 202:186–194.
Bhat, PV, Labrecque, J, Boutin, JM, Lacroix, A, Yoshida, A. Cloning of a cDNA encoding rat aldehyde dehydrogenase with high activity for retinal oxidation. Gene 1995, 166:303–306.
Wang, X, Penzes, P, Napoli, JL. Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in Escherichia coli: recognition of retinal as substrate. J Biol Chem 1996, 271:16288–16293.
Zhao, D, McCaffery, P, Ivins, KJ, Neve, RL, Hogan, P, Chin, WW, Dräger, UC. Molecular identification of a major retinoic‐acid‐synthesizing enzyme, a retinaldehyde‐specific dehydrogenase. Eur J Biochem 1996, 240:15–22.
Penzes, P, Wang, X, Sperkova, Z, Napoli, JL. Cloning of a rat cDNA encoding retinal dehydrogenase isozyme type I and its expression in E. coli. Gene 1997, 191:167–172.
McCaffery, P, Tempst, P, Lara, G, Drager, UC. Aldehyde dehydrogenase is a positional marker in the retina. Development 1991, 112:693–702.
Hochgreb, T, Linhares, VL, Menezes, DC, Sampaio, AC, Yan, CY, Cardoso, WV, Rosenthal, N, Xavier‐Neto, J. A caudorostral wave of RALDH2 conveys anteroposterior information to the cardiac field. Development 2003, 130:5363–5374.
Wagner, E, McCaffery, P, Drager, UC. Retinoic acid in the formation of the dorsoventral retina and its central projections. Dev Biol 2000, 222:460–470.
Chen, F, Marquez, H, Kim, YK, Qian, J, Shao, F, Fine, A, Cruikshank, WW, Quadro, L, Cardoso, WV. Prenatal retinoid deficiency leads to airway hyperresponsiveness in adult mice. J Clin Invest 2014, 124:801–811.
Romand, R, Albuisson, E, Niederreither, K, Fraulob, V, Chambon, P, Dollé, P. Specific expression of the retinoic acid‐synthesizing enzyme RALDH2 during mouse inner ear development. Mech Dev 2001, 106:185–189.
Grun, F, Hirose, Y, Kawauchi, S, Ogura, T, Umesono, K. Aldehyde dehydrogenase 6, a cytosolic retinaldehyde dehydrogenase prominently expressed in sensory neuroepithelia during development. J Biol Chem 2000, 275:41210–41218.
Mic, FA, Molotkov, A, Fan, X, Cuenca, AE, Duester, G. RALDH3, a retinaldehyde dehydrogenase that generates retinoic acid, is expressed in the ventral retina, otic vesicle and olfactory pit during mouse development. Mech Dev 2000, 97:227–230.
Dupe, V, Matt, N, Garnier, JM, Chambon, P, Mark, M, Ghyselinck, NB. A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. Proc Natl Acad Sci USA 2003, 100:14036–14041.
Yahyavi, M, Abouzeid, H, Gawdat, G, de Preux, AS, Xiao, T, Bardakjian, T, Schneider, A, Choi, A, Jorgenson, E, Baier, H, et al. ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum Mol Genet 2013, 22:3250–3258.
Fan, X, Molotkov, A, Manabe, S, Donmoyer, CM, Deltour, L, Foglio, MH, Cuenca, AE, Blaner, WS, Lipton, SA, Duester, G. Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina. Mol Cell Biol 2003, 23:4637–4648.
Ziouzenkova, O, Orasanu, G, Sharlach, M, Akiyama, TE, Berger, JP, Viereck, J, Hamilton, JA, Tang, G, Dolnikowski, GG, Vogel, S, et al. Retinaldehyde represses adipogenesis and diet‐induced obesity. Nat Med 2007, 13:695–702.
Kiefer, FW, Orasanu, G, Nallamshetty, S, Brown, JD, Wang, H, Luger, P, Qi, NR, Burant, CF, Duester, G, Plutzky, J. Retinaldehyde dehydrogenase 1 coordinates hepatic gluconeogenesis and lipid metabolism. Endocrinology 2012, 153:3089–3099.
Kiefer, FW, Vernochet, C, O`Brien, P, Spoerl, S, Brown, JD, Nallamshetty, S, Zeyda, M, Stulnig, TM, Cohen, DE, Kahn, CR, et al. Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nat Med 2012, 18:918–925.
Nallamshetty, S, Wang, H, Rhee, EJ, Kiefer, FW, Brown, JD, Lotinun, S, Le, P, Baron, R, Rosen, CJ, Plutzky, J. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo. PLoS One 2013, 8:e71307.
Yasmeen, R, Reichert, B, Deiuliis, J, Yang, F, Lynch, A, Meyers, J, Sharlach, M, Shin, S, Volz, KS, Green, KB, et al. Autocrine function of aldehyde dehydrogenase 1 as a determinant of diet‐ and sex‐specific differences in visceral adiposity. Diabetes 2013, 62:124–136.
Zhang, QY, Dunbar, D, Kaminsky, L. Human cytochrome P‐450 metabolism of retinals to retinoic acids. Drug Metab Dispos 2000, 28:292–297.
Chambers, D, Wilson, L, Maden, M, Lumsden, A. RALDH‐independent generation of retinoic acid during vertebrate embryogenesis by CYP1B1. Development 2007, 134:1369–1383.
Elizondo, G, Corchero, J, Sterneck, E, Gonzalez, FJ. Feedback inhibition of the retinaldehyde dehydrogenase gene ALDH1 by retinoic acid through retinoic acid receptor α and CCAAT/enhancer‐binding protein β. J Biol Chem 2000, 275:39747–39753.
Elizondo, G, Medina‐Diaz, IM, Cruz, R, Gonzalez, FJ, Vega, L. Retinoic acid modulates retinaldehyde dehydrogenase 1 gene expression through the induction of GADD153‐C/EBPβ interaction. Biochem Pharmacol 2009, 77:248–257.
Niederreither, K, McCaffery, P, Drager, UC, Chambon, P, Dolle, P. Restricted expression and retinoic acid‐induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH‐2) gene during mouse development. Mech Dev 1997, 62:67–78.
Cerignoli, F, Guo, X, Cardinali, B, Rinaldi, C, Casaletto, J, Frati, L, Screpanti, I, Gudas, LJ, Gulino, A, Thiele, CJ, et al. retSDR1, a short‐chain retinol dehydrogenase/reductase, is retinoic acid‐inducible and frequently deleted in human neuroblastoma cell lines. Cancer Res 2002, 62:1196–1204.
Zolfaghari, R, Chen, Q, Ross, AC. DHRS3, a retinal reductase, is differentially regulated by retinoic acid and lipopolysaccharide‐induced inflammation in THP‐1 cells and rat liver. Am J Physiol Gastrointest Liver Physiol 2012, 303:G578–G588.