Lawrence, PA. Development and determination of hairs and bristles in the milkweed bug, Oncopeltus fasciatus (Lygaeidae, Hemiptera). J Cell Sci 1966, 1:475–498.
Lawrence, PA, Shelton, PM. The determination of polarity in the developing insect retina. J Embryol Exp Morphol 1975, 33:471–486.
Gubb, D, Garcia‐Bellido, A. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J Embryol Exp Morphol 1982, 68:37–57.
Vinson, CR, Adler, PN. Directional non‐cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 1987, 329:549–551. doi:10.1038/329549a0.
Vinson, CR, Conover, S, Adler, PN. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 1989, 338:263–264. doi:10.1038/338263a0.
Wong, LL, Adler, PN. Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells. J Cell Biol 1993, 123:209–221.
Krasnow, RE, Wong, LL, Adler, PN. dishevelled is a component of the frizzled signaling pathway in Drosophila. Development 1995, 121:4095–4102.
Carvajal‐Gonzalez, JM, Mlodzik, M. Mechanisms of planar cell polarity establishment in Drosophila. F1000Prime Rep 2014, 6:98. doi:10.12703/P6‐98.
Yang, Y, Mlodzik, M. Wnt‐frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu Rev Cell Dev Biol 2015, 31:623–646. doi:10.1146/annurev‐cellbio‐100814‐125315.
Lawrence, PA, Casal, J, Struhl, G. Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development 2004, 131:4651–4664. doi:10.1242/dev.01351.
Chen, WS, Antic, D, Matis, M, Logan, CY, Povelones, M, Anderson, GA, Nusse, R, Axeldod, JD. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 2008, 133:1093–1105. doi:10.1016/j.cell.2008.04.048.
Strutt, H, Strutt, D. Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Curr Biol 2008, 18:1555–1564. doi:10.1016/j.cub.2008.08.063.
Wu, J, Mlodzik, M. The frizzled extracellular domain is a ligand for Van Gogh/Stbm during nonautonomous planar cell polarity signaling. Dev Cell 2008, 15:462–469. doi:10.1016/j.devcel.2008.08.004.
Lawrence, PA, Casal, J, Struhl, G. Towards a model of the organisation of planar polarity and pattern in the Drosophila abdomen. Development 2002, 129:2749–2760.
Sagner, A, Merkel, M, Aigouy, B, Gaebel, J, Brankatschk, M, Jülicher, F, Eaton, S. Establishment of global patterns of planar polarity during growth of the drosophila wing epithelium. Curr Biol 2012, 22:1296–1301. doi:10.1016/j.cub.2012.04.066.
Wu, J, Roman, A‐C, Carvajal‐Gonzalez, JM, Mlodzik, M. Wg and Wnt4 provide long‐range directional input to planar cell polarity orientation in Drosophila. Nat Cell Biol 2013, 15:1045–1055. doi:10.1038/ncb2806.
Matis, M, Axelrod, JD. Regulation of PCP by the fat signaling pathway. Genes Dev 2013, 27:2207–2220. doi:10.1101/gad.228098.113.
Taylor, J, Abramova, N, Charlton, J, Adler, PN. Van Gogh: a new Drosophila tissue polarity gene. Genetics 1998, 150:199–210.
Adler, PN, Taylor, J, Charlton, J. The domineering non‐autonomy of frizzled and van Gogh clones in the Drosophila wing is a consequence of a disruption in local signaling. Mech Dev 2000, 96:197–207. doi:10.1016/S0925‐4773(00)00392‐0.
Tada, M, Smith, JC. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 2000, 127:2227–2238.
Wallingford, JB, Rowning, BA, Vogeli, KM, Rothbächer, U, Fraser, SE, Harland, RM. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 2000, 405:81–85. doi:10.1038/35011077.
Heisenberg, CP, Tada, M, Rauch, GJ, Saúde, L, Concha, ML, Geisler, R, Stemple, DL, Smith, JC, Wilson, SW. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 2000, 405:76–81. doi:10.1038/35011068.
Keller, RE. Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol 1975, 42:222–241.
Keller, RE. Vital Dye Mapping of the Gastrula and Neurula laevis. II. Prospective areas and morphogenetic movements of the deep layer. Dev Biol 1976, 51:118–137.
Keller, R, Danilchik, M. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 1988, 103:193–209.
Warga, RM, Kimmel, CB. Cell movements during epiboly and gastrulation in zebrafish. Development 1990, 108:569–580.
Solnica‐Krezel, L, Sepich, DS. Gastrulation: making and shaping germ layers. Annu Rev Cell Dev Biol 2012, 28:687–717. doi:10.1146/annurev‐cellbio‐092910‐154043.
Yin, C, Ciruna, B, Solnica‐Krezel, L. Convergence and extension movements during vertebrate gastrulation. Curr Top Dev Biol 2009, 89:163–192. doi:10.1016/S0070‐2153(09)89007‐8.
Roszko, I, Sawada, A, Solnica‐Krezel, L. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 2009, 20:986–997. doi:10.1016/j.semcdb.2009.09.004.
Heisenberg, CP, Nusslein‐Volhard, C. The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev Biol 1997, 184:85–94. doi:10.1006/dbio.1997.8511.
Boutros, M, Paricio, N, Strutt, DI, Mlodzik, M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 1998, 94:109–118. doi:10.1016/S0092‐8674(00)81226‐X.
Axelrod, JD, Miller, JR, Shulman, JM, Moon, RT, Perrimon, N. Differential recruitment of dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 1998, 12:2610–2622. doi:10.1101/gad.12.16.2610.
Sokol, S. Analysis of dishevelled signalling pathways during Xenopus development. Curr Biol 1996, 6:1456–1467.
Driever, W, Solnica‐Krezel, L, Schier, AF, Neuhauss, SC, Malicki, J, Stemple, DL, Stainier, DYR, Zwartkruis, F, Abdelilah, S, Rangini, Z, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 1996, 123:37–46. doi:9007227.
Haffter, P, Granato, M, Brand, M, Mullins, MC, Hammerschmidt, M, Kane, D, Odenthal, J, van Eeden, FJM, Jiang, Y‐J, Heisenberg, C‐P, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996, 123:1–36. doi:9007226.
Kibar, Z, Vogan, KJ, Groulx, N, Justice, MJ, Underhill, DA, Gros, P. Ltap, a mammalian homolog of Drosophila strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop‐tail. Nat Genet 2001, 28:251–255. doi:10.1038/90081.
Greene, ND, Gerrelli, D, Van Straaten, HWM, Copp, AJ. Abnormalities of floor plate, notochord and somite differentiation in the loop‐tail (Lp) mouse: a model of severe neural tube defects. Mech Dev 1998, 73:59–72.
De Marco, P, Merello, E, Piatelli, G, Cama, A, Kibar, Z, Capra, V. Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population. Birth Defects Res A Clin Mol Teratol 2014, 100:633–641. doi:10.1002/bdra.23255.
Greene, ND, Copp, AJ. Neural tube defects. Annu Rev Neurosci 2014, 37:221–242. doi:10.1146/annurev‐neuro‐062012‐170354.
Ciruna, B, Jenny, A, Lee, D, Mlodzik, M, Schier, AF. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 2006, 439:220–224. doi:10.1038/nature04375.
Jessen, JR, Topczewski, J, Bingham, S, Sepich, DS, Marlow, F, Chandrasekhar, A, Solnica‐Krezel L. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 2002, 4:610–615. doi:10.1038/ncb828.
Hayes, M, Naito, M, Daulat, A, Angers, S, Ciruna, BG. Ptk7 promotes non‐canonical Wnt/PCP‐mediated morphogenesis and inhibits Wnt/β‐catenin‐dependent cell fate decisions during vertebrate development. Development 2013, 140:1807–1818. doi:10.1242/dev.090183.
Kilian, B, Mansukoski, H, Barbosa, FC, Ulrich, F, Tada, M, Heisenberg, CP. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev 2003, 120:467–476. doi:10.1016/S0925‐4773(03)00004‐2.
Ulrich, F, Concha, ML, Heid, PJ, Voss, E, Witzel, S, Roehl, H, Tada M, Wilson SW, Adams RJ, Soll DR, et al. Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 2003, 130:5375–5384. doi:10.1016/j.devcel.2005.08.011.
Topczewski, J, Sepich, DS, Myers, DC, Walker, C, Amores, A, Lele, Z, Hammerschmidt M, Postlethwait J, Solnica‐Krezel L. The zebrafish Glypican Knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 2001, 1:251–264. doi:10.1016/S1534‐5807(01)00005‐3.
Sepich, DS, Myers, DC, Short, R, Topczewski, J, Marlow, F, Solnica‐Krezel, L. Role of the zebrafish trilobite locus in gastrulation movements of convergence and extension. Genesis 2000, 27:159–173. doi:10.1002/1526‐968X(200008)27:4%3C159::AID‐GENE50%3E3.0.CO;2‐T.
Carreira‐Barbosa, F, Concha, ML, Takeuchi, M, Ueno, N, Wilson, SW, Tada, M. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 2003, 130:4037–4046. doi:10.1242/dev.00567.
Formstone, CJ, Mason, I. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway. Dev Biol 2005, 282:320–335. doi:10.1016/j.ydbio.2005.03.026.
Nasevicius, A, Ekker, S. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 2000, 26:216–220. doi:10.1038/79951.
Robu, ME, Larson, JD, Nasevicius, A, Beiraghi, S, Brenner, C, Farber, SA, Ekker, SC. P53 activation by knockdown technologies. PLoS Genet 2007, 3:787–801. doi:10.1371/journal.pgen.0030078.
Kok, FO, Shin, M, Ni, C‐W, Gupta, A, Grosse, AS, van Impel, A, Kirchmaier, BC, Peterson‐Maduro, J, Kourkoulis, G, Male, I, et al. Reverse genetic screening reveals poor correlation between morpholino‐induced and mutant phenotypes in zebrafish. Dev Cell 2014, 32:97–108. doi:10.1016/j.devcel.2014.11.018.
Kawahara, A, Hisano, Y, Ota, S, Taimatsu, K. Site‐specific integration of exogenous genes using genome editing technologies in zebrafish. Int J Mol Sci 2016, 17:9–11. doi:10.3390/ijms17050727.
Ata, H, Clark, KJ, Ekker, SC. The zebrafish genome editing toolkit. Methods Cell Biol 2016, 135:149–170. doi:10.1016/bs.mcb.2016.04.023.
Djiane, A, Riou, J‐FR, Umbhauer, M, Boucaut, J‐C, Shi, D‐L. Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 2000, 127:3091–3100.
Quesada‐Hernandez, E, Caneparo, L, Schneider, S, Winkler, S, Liebling, M, Fraser, SE, Heisenberg, C‐P. Stereotypical cell division orientation controls neural rod midline formation in zebrafish. Curr Biol 2010, 20:1966–1972. doi:10.1016/j.cub.2010.10.009.
Borovina, A, Superina, S, Voskas, D, Ciruna, B. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 2010, 12:407–412. doi:10.1038/ncb2042.
Gritsman, K, Zhang, J, Cheng, S, Heckscher, E, Talbot, WS, Schier, AF. The EGF‐CFC protein one‐eyed pinhead is essential for nodal signaling. Cell 1999, 97:121–132. doi:10.1016/S0092‐8674(00)80720‐5.
Mintzer, KA, Lee, MA, Runke, G, Trout, J, Whitman, M, Mullins, MC. Lost‐a‐fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 2001, 128:859–869.
Ciruna, B, Weidinger, G, Knaut, H, Thisse, B, Thisse, C, Raz, E, Schier, AF. Production of maternal‐zygotic mutant zebrafish by germ‐line replacement. Proc Natl Acad Sci USA 2002, 99:14919–14924. doi:10.1073/pnas.222459999.
Chu, C‐W, Sokol, SY. Wnt proteins can direct planar cell polarity in vertebrate ectoderm. Elife 2016, 5:e16463. doi:10.7554/eLife.16463.
Gao, B, Song, H, Bishop, K, Elliot, G, Garrett, L, English, MA, Andre, P, Robinson, J, Sood, R, Minami, Y, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 2011, 20:163–176. doi:10.1016/j.devcel.2011.01.001.
Collu, GM, Mlodzik, M. Planar polarity: converting a morphogen gradient into cellular polarity. Curr Biol 2015, 25:R372–R374. doi:10.1016/j.cub.2015.03.011.
Bai, Y, Tan, X, Zhang, H, Liu, C, Zhao, B, Li, Y, Lu, L, Liu, Y, Zhou, J. Ror2 receptor mediates wnt11 ligand signaling and affects convergence and extension movements in zebrafish. J Biol Chem 2014, 289:20664–20676. doi:10.1016/j.cub.2015.03.011.
Young, T, Poobalan, Y, Tan, EK, Tao, S, Ong, S, Wehner, P, Schwenty‐Lara, J, Lim, CY, Sadasivam, A, Lovatt, M, et al. The PDZ domain protein Mcc is a novel effector of non‐canonical Wnt signaling during convergence and extension in zebrafish. Development 2014, 141:3505–3516. doi:10.1242/dev.114033.
Lin, S, Baye, LM, Westfall, TA, Slusarski, DC. Wnt5b‐Ryk pathway provides directional signals to regulate gastrulation movement. J Cell Biol 2010, 190:263–279. doi:10.1242/dev.114033.
Roszko, I, Sepich, D, Jessen, JR, Chandrasekhar, A, Solnica‐Krezel, L. A dynamic intracellular distribution of Vangl2 accompanies cell polarization during zebrafish gastrulation. Development 2015, 142:2508–2520. doi:10.1242/dev.119032.
Davey, CF, Mathewson, AW, Moens, CB. PCP Signaling between migrating neurons and their planar‐polarized neuroepithelial environment controls filopodial dynamics and directional migration. PLoS Genet 2016, 12:e1005934. doi:10.1371/journal.pgen.1005934.
Yin, C, Kiskowski, M, Pouille, P‐A, Farge, E, Solnica‐Krezel, L. Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J Cell Biol 2008, 180:221–232. doi:10.1083/jcb.200704150.
Sepich, DS, Usmani, M, Pawlicki, S, Solnica‐Krezel, L. Wnt/PCP signaling controls intracellular position of MTOCs during gastrulation convergence and extension movements. Development 2011, 138:543–552. doi:10.1242/dev.053959.
Blankenship, JT, Backovic, ST, Sanny, JS, Weitz, O, Zallen, JA. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev Cell 2006, 11:459–470. doi:10.1016/j.devcel.2006.09.007.
Rauzi, M, Lenne, PF, Lecuit, T. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 2010, 468:1110–1114. doi:10.1038/ncb1798.
Lienkamp, SS, Liu, K, Karner, CM, Carroll, TJ, Ronneberger, O, Wallingford, JB, Walz, G. Vertebrate kidney tubules elongate using a planar cell polarity‐dependent, rosette‐based mechanism of convergent extension. Nat Genet 2012, 44:1382–1387. doi:10.1038/ng.2452.
Nishimura, T, Honda, H, Takeichi, M. Planar cell polarity links axes of spatial dynamics in neural‐tube closure. Cell 2012, 149:1084–1097. doi:10.1016/j.cell.2012.04.021.
Trichas, G, Smith, AM, White, N, Wilkins, V, Watanabe, T, Moore, A, Joyce, B, Sugnaseelan, J, Rodriguez, TA, Kay, D, et al. Multi‐cellular rosette in the mouse visceral endoderm facilitate the ordered migration of anterior visceral endoderm cells. PLoS Biol 2012, 10:e1001256. doi:10.1371/journal.pbio.1001256.
Shindo, A, Wallingford, JB. PCP and septins compartmentalize cortical actomyosin to direct collective cell movement. Science 2014, 343:649–652. doi:10.1126/science.1243126.
Hoshijima, K, Jurynec, MJ, Grunwald, DJ. Precise genome editing by homologous recombination. Methods Cell Biol 2016, 135:121–147. doi:10.1016/bs.mcb.2016.04.008.
Tada, M, Kai, M. Planar cell polarity in coordinated and directed movements. Curr Top Dev Biol 2012, 101:77–110. doi:10.1016/B978‐0‐12‐394592‐1.00004‐1.
Witzel, S, Zimyanin, V, Carreira‐Barbosa, F, Tada, M, Heisenberg, CP. Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J Cell Biol 2006, 175:791–802. doi:10.1083/jcb.200606017.
Ulrich, F, Krieg, M, Schötz, EM, Link, V, Castanon, I, Schnabel, V, Taubenberger, A, Muelelr, D, Puech, P‐H, Heisenberg, C‐P. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E‐Cadherin. Dev Cell 2005, 9:555–564. doi:10.1016/j.devcel.2005.08.011.
Skoglund, P, Keller, R. Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan. Curr Opin Cell Biol 2010, 22:589–596. doi:10.1016/j.ceb.2010.07.012.
Jessen, JR. Recent advances in the study of zebrafish extracellular matrix proteins. Dev Biol 2015, 401:110–121. doi:10.1016/j.ceb.2010.07.012.
Coyle, RC, Latimer, A, Jessen, JR. Membrane‐type 1 matrix metalloproteinase regulates cell migration during zebrafish gastrulation: evidence for an interaction with non‐canonical Wnt signaling. Exp Cell Res 2008, 314:2150–2162. doi:10.1016/j.yexcr.2008.03.010.
Wanner, SJ, Saeger, I, Guthrie, S, Prince, VE. Facial motor neuron migration advances. Curr Opin Neurobiol 2013, 23:943–950. doi:10.1016/j.conb.2013.09.001.
Mapp, OM, Walsh, GS, Moens, CB, Tada, M, Prince, VE. Zebrafish Prickle1b mediates facial branchiomotor neuron migration via a farnesylation‐dependent nuclear activity. Development 2011, 138:2121–2132. doi:10.1242/dev.060442.
Wada, H, Iwasaki, M, Sato, T, Masai, I, Nishiwaki, Y, Tanaka, H, Sato, A, Nojima, Y, Okamoto, H. Dual roles of zygotic and maternal Scribble1 in neural migration and convergent extension movements in zebrafish embryos. Development 2005, 132:2273–2285. doi:10.1242/dev.01810.
Wada, H, Tanaka, H, Nakayama, S, Iwasaki, M, Okamoto, H. Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain. Development 2006, 133:4749–4759. doi:10.1242/dev.02665.
Walsh, GS, Grant, PK, Morgan, JA, Moens, CB. Planar polarity pathway and Nance‐Horan syndrome‐like 1b have essential cell‐autonomous functions in neuronal migration. Development 2011, 138:3033–3042. doi:10.1242/dev.063842.
Bingham, S, Higashijima, S, Okamoto, H, Chandrasekhar, A. The Zebrafish trilobite gene is essential for tangential migration of branchiomotor neurons. Dev Biol 2002, 242:149–160. doi:10.1006/dbio.2001.0532.
Glasco, DM, Sittaramane, V, Bryant, W, Fritzsch, B, Sawant, A, Paudyal, A, Stewart, M, Andre, P, Vihais‐Neto, GC, Yang, Y, et al. The mouse Wnt/PCP protein Vangl2 is necessary for migration of facial branchiomotor neurons, and functions independently of Dishevelled. Dev Biol 2012, 369:211–222. doi:10.1016/j.ydbio.2012.06.021.
Sittaramane, V, Pan, X, Glasco, DM, Huang, P, Gurung, S, Bock, A, Li, S, Wang, H, Kawakami, K, Matise, MP, et al. The PCP protein Vangl2 regulates migration of hindbrain motor neurons by acting in floor plate cells, and independently of cilia function. Dev Biol 2013, 382:400–412. doi:10.1016/j.ydbio.2013.08.017.
Gong, Y, Mo, C, Fraser, SE. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 2004, 430:689–693. doi:10.1038/nature02796.
Segalen, M, Johnston, CA, Martin, CA, Dumortier, JG, Prehoda, KE, David, NB, Doe, CQ, Bellaiche, Y. The Fz‐Dsh planar cell polarity pathway induces oriented cell division via Mud/NuMA in Drosophila and zebrafish. Dev Cell 2010, 19:740–752. doi:10.1016/j.devcel.2010.10.004.
Johnston, CA, Manning, L, Lu, MS, Golub, O, Doe, CQ, Prehoda, KE. Formin‐mediated actin polymerization cooperates with mushroom body defect (Mud)‐Dynein during frizzled‐dishevelled spindle orientation. J Cell Sci 2013, 126:4436–4444. doi:10.1016/j.devcel.2010.10.004.
Wallingford, JB, Mitchell, B. Strange as it may seem: The many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 2011, 25:201–213. doi:10.1101/gad.2008011.
Grimes, DT, Boswell, CW, Morante, NFC, Henkelman, RM, Burdine, RD, Ciruna, B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 2016, 352:1341–1344. doi:10.1126/science.aaf6419.
Carvajal‐Gonzalez, JM, Roman, A‐C, Mlodzik, M. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling. Nat Commun 2016, 7:11135. doi:10.1126/science.aaf6419.
Aw, WY, Heck, BW, Joyce, B, Devenport, D. Transient tissue‐scale deformation coordinates alignment of planar cell polarity junctions in the mammalian skin. Curr Biol 2016, 26:1–11. doi:10.1016/j.cub.2016.06.030.
Devenport, D, Oristian, D, Heller, E, Fuchs, E. Mitotic internalization of planar cell polarity proteins preserves tissue polarity. Nat Cell Biol 2011, 13:893–902. doi:10.1038/ncb2284.
Shrestha, R, Little, KA, Tamayo, JV, Li, W, Perlman, DH, Devenport, D. Mitotic control of planar cell polarity by Polo‐like kinase 1. Dev Cell 2015, 33:522–534. doi:10.1016/j.devcel.2015.03.024.
Jessen, JR. Noncanonical Wnt signaling in tumor progression and metastasis. Zebrafish 2009, 6:21–28. doi:10.1089/zeb.2008.0571.
Wang, Y. Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther 2009, 8:2103–2109. doi:10.1158/1535‐7163.MCT‐09‐0282.
Luga, V, Wrana, JL. Tumor‐stroma interaction: revealing fibroblast‐secreted exosomes as potent regulators of Wnt‐planar cell polarity signaling in cancer metastasis. Cancer Res 2013, 73:6843–6847. doi:10.1158/0008‐5472.CAN‐13‐1791.
Luga, V, Zhang, L, Viloria‐Petit, AM, Ogunjimi, AA, Inanlou, MR, Chiu, E, Buchanan, M, Nasser Hosein, A, Basik, M, Wrana, JL. Exosomes mediate stromal mobilization of autocrine Wnt‐PCP signaling in breast cancer cell migration. Cell 2012, 151:1542–1556. doi:10.1016/j.cell.2012.11.024.