Sudhof, TC. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 2013, 80:675–690.
Fatt, P, Katz, B. An analysis of the end‐plate potential recorded with an intracellular electrode. J Physiol 1951, 115:320–370.
Van der Kloot, W. The regulation of quantal size. Prog Neurobiol 1991, 36:93–130.
Redman, S. Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol Rev 1990, 70:165–198.
Dickman, DK, Kurshan, PT, Schwarz, TL. Mutations in a Drosophila α2δ voltage‐gated calcium channel subunit reveal a crucial synaptic function. J Neurosci 2008, 28:31–38.
Dickman, DK, Horne, JA, Meinertzhagen, IA, Schwarz, TL. A slowed classical pathway rather than kiss‐and‐run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell 2005, 123:521–533.
Verstreken, P, Ly, CV, Venken, KJ, Koh, TW, Zhou, Y, Bellen, HJ. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005, 47:365–378.
Mehta, SQ, Hiesinger, PR, Beronja, S, Zhai, RG, Schulze, KL, Verstreken, P, Cao, Y, Zhou, Y, Tepass, U, Crair, MC, et al. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 2005, 46:219–232.
Stowers, RS, Schwarz, TL. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 1999, 152:1631–1639.
Dickman, DK, Lu, Z, Meinertzhagen, IA, Schwarz, TL. Altered synaptic development and active zone spacing in endocytosis mutants. Curr Biol 2006, 16:591–598.
Pielage, J, Cheng, L, Fetter, RD, Carlton, PM, Sedat, JW, Davis, GW. A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and transsynaptic cell adhesion. Neuron 2008, 58:195–209.
Salzberg, A, D`Evelyn, D, Schulze, KL, Lee, JK, Strumpf, D, Tsai, L, Bellen, HJ. Mutations affecting the pattern of the PNS in Drosophila reveal novel aspects of neuronal development. Neuron 1994, 13:269–287.
Frank, CA, Pielage, J, Davis, GW. A presynaptic homeostatic signaling system composed of the Eph receptor, ephexin, Cdc42, and CaV2.1 calcium channels. Neuron 2009, 61:556–569.
Muller, M, Pym, EC, Tong, A, Davis, GW. Rab3‐GAP controls the progression of synaptic homeostasis at a late stage of vesicle release. Neuron 2011, 69:749–762.
Littleton, JT, Chapman, ER, Kreber, R, Garment, MB, Carlson, SD, Ganetzky, B. Temperature‐sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 1998, 21:401–413.
Palladino, MJ, Bower, JE, Kreber, R, Ganetzky, B. Neural dysfunction and neurodegeneration in Drosophila Na+/K+ ATPase α subunit mutants. J Neurosci 2003, 23:1276–1286.
Rieckhof, GE, Yoshihara, M, Guan, Z, Littleton, JT. Presynaptic N‐type calcium channels regulate synaptic growth. J Biol Chem 2003, 278:41099–41108.
Gerstner, JR, Lyons, LC, Wright, KP Jr, Loh, DH, Rawashdeh, O, Eckel‐Mahan, KL, Roman, GW. Cycling behavior and memory formation. J Neurosci 2009, 29:12824–12830.
Davis, RL. Physiology and biochemistry of Drosophila learning mutants. Physiol Rev 1996, 76:299–317.
Engel, JE, Wu, CF. Genetic dissection of functional contributions of specific potassium channel subunits in habituation of an escape circuit in Drosophila. J Neurosci 1998, 18:2254–2267.
Jan, LY, Jan, YN. Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol 1976, 262:189–214.
Smith, R, Taylor, JP. Dissection and imaging of active zones in the Drosophila neuromuscular junction. J Vis Exp 2011, 50:1–5.
Stewart, BA, Atwood, HL, Renger, JJ, Wang, J, Wu, CF. Improved stability of Drosophila larval neuromuscular preparations in haemolymph‐like physiological solutions. J Comp Physiol A 1994, 175:179–191.
Feng, Y, Ueda, A, Wu, CF. A modified minimal hemolymph‐like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J Neurogenet 2004, 18:377–402.
He, T, Singh, V, Rumpal, N, Lnenicka, GA. Differences in Ca2+ regulation for high‐output Is and low‐output Ib motor terminals in Drosophila larvae. Neuroscience 2009, 159:1283–1291.
Lnenicka, GA, Keshishian, H. Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. J Neurobiol 2000, 43:186–197.
Atwood, HL, Govind, CK, Wu, CF. Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J Neurobiol 1993, 24:1008–1024.
Zhong, Y, Wu, CF. Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 1991, 251:198–201.
Del Castillo, J, Katz, B. Quantal components of the end‐plate potential. J Physiol 1954, 124:560–573.
Kita, H, van der Kloot, W. Time course and magnitude of effects of changes in tonicity on acetylcholine release at frog neuromuscular junction. J Neurophysiol 1977, 40:212–224.
Bain, AI, Quastel, DM. Quantal transmitter release mediated by strontium at the mouse motor nerve terminal. J Physiol 1992, 450:63–87.
Guan, YY, Quastel, DM, Saint, DA. Single Ca2+ entry and transmitter release systems at the neuromuscular synapse. Synapse 1988, 2:558–564.
Wojtowicz, JM, Atwood, HL. Maintained depolarization of synaptic terminals facilitates nerve‐evoked transmitter release at a crayfish neuromuscular junction. J Neurobiol 1983, 14:385–390.
Wojtowicz, JM, Atwood, HL. Presynaptic long‐term facilitation at the crayfish neuromuscular junction: voltage‐dependent and ion‐dependent phases. J Neurosci 1988, 8:4667–4674.
Zhang, B, Stewart, B. Electrophysiological recording from Drosophila larval body‐wall muscles. Cold Spring Harb Protoc 2010, 9:1–10.
Ruffner, ME, Cromarty, SI, Cooper, RL. Depression of synaptic efficacy in high‐ and low‐output Drosophila neuromuscular junctions by the molting hormone (20‐HE). J Neurophysiol 1999, 81:788–794.
Verstreken, P, Koh, TW, Schulze, KL, Zhai, RG, Hiesinger, PR, Zhou, Y, Mehta, SQ, Cao, Y, Roos, J, Bellen, HJ. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 2003, 40:733–748.
Koh, TW, Verstreken, P, Bellen, HJ. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 2004, 43:193–205.
Muller, M, Genc, O, Davis, GW. RIM‐binding protein links synaptic homeostasis to the stabilization and replenishment of high release probability vesicles. Neuron 2015, 85:1056–1069.
Davis, GW, Muller, M. Homeostatic control of presynaptic neurotransmitter release. Annu Rev Physiol 2015, 77:251–270.
Delgado, R, Maureira, C, Oliva, C, Kidokoro, Y, Labarca, P. Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 2000, 28:941–953.
Jorquera, RA, Huntwork‐Rodriguez, S, Akbergenova, Y, Cho, RW, Littleton, JT. Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J Neurosci 2012, 32:18234–18245.
Jan, LY, Jan, YN. L‐glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J Physiol 1976, 262:215–236.
Zhang, B, Stewart, B. Synaptic electrophysiology of the drosophila NMJ. In: Zhang, B, ed. Drosophila Neurobiology: A Laboratory Manual. Cold Spring Harbor: CSHL Press; 2012.
Fatt, P, Katz, B. Spontaneous subthreshold activity at motor nerve endings. J Physiol 1952, 117:109–128.
Dudel, J. The effect of reduced calcium on quantal unit current and release at the crayfish neuromuscular junction. Pflugers Arch 1981, 391:35–40.
Dudel, J. Contribution of Ca2+ inflow to quantal, phasic transmitter release from nerve terminals of frog muscle. Pflugers Arch 1992, 422:129–142.
Marrero, HG, Lemos, JR. Loose‐Patch‐Clamp Method. 2nd ed. Totowa, NJ: Humana Press; 2007, 325–352.
Macleod, GT, Gan, J, Bennett, MR. Vesicle‐associated proteins and quantal release at single active zones of amphibian (Bufo marinus) motor‐nerve terminals. J Neurophysiol 1999, 82:1133–1146.
Macleod, GT, Farnell, L, Gibson, WG, Bennett, MR. Quantal secretion and nerve‐terminal cable properties at neuromuscular junctions in an amphibian (Bufo marinus). J Neurophysiol 1999, 81:1135–1146.
Zefirov, A, Benish, T, Fatkullin, N, Cheranov, S, Khazipov, R. Localization of active zones. Nature 1995, 376:393–394.
Macleod, GT, Lavidis, NA, Bennett, MR. Calcium dependence of quantal secretion from visualized sympathetic nerve varicosities on the mouse vas deferens. J Physiol 1994, 480(Pt 1):61–70.
Samigullin, D, Bill, CA, Coleman, WL, Bykhovskaia, M. Regulation of transmitter release by synapsin II in mouse motor terminals. J Physiol 2004, 561:149–158.
Coleman, WL, Bykhovskaia, M. Rab3a‐mediated vesicle recruitment regulates short‐term plasticity at the mouse diaphragm synapse. Mol Cell Neurosci 2009, 41:286–296.
Atwood, HL, Parnas, H, Parnas, I, Wojtowicz, JM. Quantal currents evoked by graded intracellular depolarization of crayfish motor axon terminals. J Physiol 1987, 383:587–599.
Parnas, H, Dudel, J, Parnas, I. Neurotransmitter release and its facilitation in crayfish. I. Saturation kinetics of release, and of entry and removal of calcium. Pflugers Arch 1982, 393:1–14.
Wojtowicz, JM, Marin, L, Atwood, HL. Activity‐induced changes in synaptic release sites at the crayfish neuromuscular junction. J Neurosci 1994, 14:3688–3703.
Zucker, RS. Crayfish neuromuscular facilitation activated by constant presynaptic action potentials and depolarizing pulses. J Physiol 1974, 241:69–89.
Zucker, RS. Changes in the statistics of transmitter release during facilitation. J Physiol 1973, 229:787–810.
Worden, MK, Bykhovskaia, M, Hackett, JT. Facilitation at the lobster neuromuscular junction: a stimulus‐dependent mobilization model. J Neurophysiol 1997, 78:417–428.
Bykhovskaia, M, Hackett, JT, Worden, MK. Asynchrony of quantal events in evoked multiquantal responses indicates presynaptic quantal interaction. J Neurophysiol 1999, 81:2234–2242.
Bykhovskaia, M, Polagaeva, E, Hackett, JT. Mechnisms underlying different facilitation forms at the lobster neuromuscular synapse. Brain Res 2004, 1019:10–21.
Cooper, RL, Stewart, BA, Wojtowicz, JM, Wang, S, Atwood, HL. Quantal measurement and analysis methods compared for crayfish and Drosophila neuromuscular junctions, and rat hippocampus. J Neurosci Methods 1995, 61:67–78.
Pawlu, C, DiAntonio, A, Heckmann, M. Postfusional control of quantal current shape. Neuron 2004, 42:607–618.
Akbergenova, Y, Bykhovskaia, M. Synapsin maintains the reserve vesicle pool and spatial segregation of the recycling pool in Drosophila presynaptic boutons. Brain Res 2007, 1178:52–64.
Akbergenova, Y, Bykhovskaia, M. Enhancement of the endosomal endocytic pathway increases quantal size. Mol Cell Neurosci 2009, 40:199–206.
Vasin, A, Volfson, D, Littleton, JT, Bykhovskaia, M. Interaction of the complexin accessory helix with synaptobrevin regulates spontaneous fusion. Biophys J 2016, 111:1954–1964.
Wong, K, Karunanithi, S, Atwood, HL. Quantal unit populations at the Drosophila larval neuromuscular junction. J Neurophysiol 1999, 82:1497–1511.
Kapitsky, S, Zueva, L, Akbergenova, Y, Bykhovskaia, M. Recruitment of synapses in the neurosecretory process during long‐term facilitation at the lobster neuromuscular junction. Neuroscience 2005, 134:1261–1272.
Bykhovskaia, M. Making quantal analysis more convenient, fast, and accurate: user‐friendly software QUANTAN. J Neurosci Methods 2008, 168:500–513.
Huntwork, S, Littleton, JT. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci 2007, 10:1235–1237.
Heerssen, H, Fetter, RD, Davis, GW. Clathrin dependence of synaptic‐vesicle formation at the Drosophila neuromuscular junction. Curr Biol 2008, 18:401–409.
Marek, KW, Davis, GW. Transgenically encoded protein photoinactivation (FlAsH‐FALI): acute inactivation of synaptotagmin I. Neuron 2002, 36:805–813.
Melom, JE, Akbergenova, Y, Gavornik, JP, Littleton, JT. Spontaneous and evoked release are independently regulated at individual active zones. J Neurosci 2013, 33:17253–17263.
Nishikawa, K, Kidokoro, Y. Junctional and extrajunctional glutamate receptor channels in Drosophila embryos and larvae. J Neurosci 1995, 15:7905–7915.
Broadie, K, Bate, M. Activity‐dependent development of the neuromuscular synapse during Drosophila embryogenesis. Neuron 1993, 11:607–619.
Broadie, KS. Synaptogenesis in Drosophila: coupling genetics and electrophysiology. J Physiol Paris 1994, 88:123–139.
Schulze, KL, Broadie, K, Perin, MS, Bellen, HJ. Genetic and electrophysiological studies of Drosophila syntaxin‐1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 1995, 80:311–320.
Aravamudan, B, Fergestad, T, Davis, WS, Rodesch, CK, Broadie, K. Drosophila UNC‐13 is essential for synaptic transmission. Nat Neurosci 1999, 2:965–971.
Fergestad, T, Wu, MN, Schulze, KL, Lloyd, TE, Bellen, HJ, Broadie, K. Targeted mutations in the syntaxin H3 domain specifically disrupt SNARE complex function in synaptic transmission. J Neurosci 2001, 21:9142–9150.
Yoshihara, M, Ueda, A, Zhang, D, Deitcher, DL, Schwarz, TL, Kidokoro, Y. Selective effects of neuronal‐synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP. J Neurosci 1999, 19:2432–2441.
Deitcher, DL, Ueda, A, Stewart, BA, Burgess, RW, Kidokoro, Y, Schwarz, TL. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal‐synaptobrevin. J Neurosci 1998, 18:2028–2039.
Yoshihara, M, Littleton, JT. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 2002, 36:897–908.
Chen, MS, Obar, RA, Schroeder, CC, Austin, TW, Poodry, CA, Wadsworth, SC, Vallee, RB. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 1991, 351:583–586.
van der Bliek, AM, Meyerowitz, EM. Dynamin‐like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 1991, 351:411–414.
Kelly, LE, Suzuki, DT. The effects of increased temperature on electroretinograms of temperature‐sensitive paralysis mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 1974, 71:4906–4909.
Pallanck, L, Ordway, RW, Ganetzky, B. A Drosophila NSF mutant. Nature 1995, 376:25.
Siddiqi, O, Benzer, S. Neurophysiological defects in temperature‐sensitive paralytic mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 1976, 73:3253–3257.
Kawasaki, F, Mattiuz, AM, Ordway, RW. Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release. J Neurosci 1998, 18:10241–10249.
Kawasaki, F, Ordway, RW. The Drosophila NSF protein, dNSF1, plays a similar role at neuromuscular and some central synapses. J Neurophysiol 1999, 82:123–130.
Kawasaki, F, Hazen, M, Ordway, RW. Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking. Nat Neurosci 2000, 3:859–860.
Gasque, G, Labarca, P, Delgado, R, Darszon, A. Bridging behavior and physiology: ion‐channel perspective on mushroom body‐dependent olfactory learning and memory in Drosophila. J Cell Physiol 2006, 209:1046–1053.
Perisse, E, Burke, C, Huetteroth, W, Waddell, S. Shocking revelations and saccharin sweetness in the study of Drosophila olfactory memory. Curr Biol 2013, 23:R752–R763.
Hong, W, Luo, L. Genetic control of wiring specificity in the fly olfactory system. Genetics 2014, 196:17–29.
Jefferis, GS, Hummel, T. Wiring specificity in the olfactory system. Semin Cell Dev Biol 2006, 17:50–65.
Owald, D, Waddell, S. Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Curr Opin Neurobiol 2015, 35:178–184.
Masse, NY, Turner, GC, Jefferis, GS. Olfactory information processing in Drosophila. Curr Biol 2009, 19:R700–R713.
Su, H, O`Dowd, DK. Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by α‐bungarotoxin‐sensitive nicotinic acetylcholine receptors and picrotoxin‐sensitive GABA receptors. J Neurosci 2003, 23:9246–9253.
Wilson, RI, Turner, GC, Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 2004, 303:366–370.
Seecof, RL, Alleaume, N, Teplitz, RL, Gerson, I. Differentiation of neurons and myocytes in cell cultures made from Drosophila gastrulae. Exp Cell Res 1971, 69:161–173.
Wu, CF, Suzuki, N, Poo, MM. Dissociated neurons from normal and mutant Drosophila larval central nervous system in cell culture. J Neurosci 1983, 3:1888–1899.
Yao, WD, Rusch, J, Poo, M, Wu, CF. Spontaneous acetylcholine secretion from developing growth cones of Drosophila central neurons in culture: effects of cAMP‐pathway mutations. J Neurosci 2000, 20:2626–2637.
Rohrbough, J, O`Dowd, DK, Baines, RA, Broadie, K. Cellular bases of behavioral plasticity: establishing and modifying synaptic circuits in the Drosophila genetic system. J Neurobiol 2003, 54:254–271.
Jiang, SA, Campusano, JM, Su, H, O`Dowd, DK. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX‐sensitive calcium channels. J Neurophysiol 2005, 94:491–500.
Gu, H, O`Dowd, DK. Cholinergic synaptic transmission in adult Drosophila Kenyon cells in situ. J Neurosci 2006, 26:265–272.
Gu, H, O`Dowd, DK. Whole cell recordings from brain of adult Drosophila. J Vis Exp 2007, 6:1–2.
Gu, H, Jiang, SA, Campusano, JM, Iniguez, J, Su, H, Hoang, AA, Lavian, M, Sun, X, O`Dowd, DK. Cav2‐type calcium channels encoded by cac regulate AP‐independent neurotransmitter release at cholinergic synapses in adult Drosophila brain. J Neurophysiol 2009, 101:42–53.
Rohrbough, J, Broadie, K. Electrophysiological analysis of synaptic transmission in central neurons of Drosophila larvae. J Neurophysiol 2002, 88:847–860.
Murthy, M, Turner, G. Whole‐cell in vivo patch‐clamp recordings in the Drosophila brain. Cold Spring Harb Protoc 2013, 2013:140–148.
Hige, T, Aso, Y, Rubin, GM, Turner, GC. Plasticity‐driven individualization of olfactory coding in mushroom body output neurons. Nature 2015, 526:258–262.