West‐Eberhard, MJ. Developmental Plasticity and Evolution. New York, NY: Oxford University Press; 2003.
McEwen, BS, Nasca, C, Gray, JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 2016, 41:3–23. https://doi.org/10.1038/npp.2015.171.
Pener, MP, Simpson, SJ. Locust phase polyphenism: an update. Adv Insect Physiol 2009, 36:1–272. https://doi.org/10.1016/S0065‐2806(08)36001‐9.
Shuel, RW, Dixon, SE. The early establishment of dimorphism in the female honeybee, Apis mellifera L. Insectes Soc 1960, 7:265–282. https://doi.org/10.1007/BF02224497.
Mao, W, Schuler, MA, Berenbaum, MR. A dietary phytochemical alters caste‐associated gene expression in honey bees. Sci Adv 2015, 1:e1500795. https://doi.org/10.1126/sciadv.1500795.
Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77:71–94.
Sulston, JE, Schierenberg, E, White, JG, Thomson, JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64–119. https://doi.org/10.1016/0012‐1606(83)90201‐4.
Sulston, JE, Horvitz, HR. Post‐embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977, 56:110–156. https://doi.org/10.1016/0012‐1606(77)90158‐0.
White, JG, Southgate, E, Thomson, JN, Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B 1986, 314:1–340.
Mello, CC, Kramer, JM, Stinchcomb, D, Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 1991, 10:3959–3970.
Fire, A, Xu, S, Montgomery, MK, Kostas, SA, Driver, SE, Mello, CC. Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806–811. https://doi.org/10.1038/35888.
Dickinson, DJ, Goldstein, B. CRISPR‐based methods for Caenorhabditis elegans genome engineering. Genetics 2016, 202:885–901. https://doi.org/10.1534/genetics.115.182162.
Golden, JW, Riddle, DL. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol 1984, 102:368–378. https://doi.org/10.1016/0012‐1606(84)90201‐X.
Klass, M, Hirsh, D. Non‐ageing developmental variant of Caenorhabditis elegans. Nature 1976, 260:523–525.
Cassada, RC, Russell, RL. The dauerlarva, a post‐embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 1975, 46:326–342. https://doi.org/10.1016/0012‐1606(75)90109‐8.
Hodgkin, J, Doniach, T. Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 1997, 146:149–164.
Nicholas, WL, Dougherty, EC, Hansen, EL. Axenic cultivation of Caenorhabditis briggsae (Nematoda: Rhabditidae) with chemically undefined supplements; comparative studies with related nematodes. Ann N Y Acad Sci 1959, 77:218–236. https://doi.org/10.1111/j.1749‐6632.1959.tb36902.x.
Staniland, LN. Experiments on the control of chrysanthemum eelworm (Aphelenchoides ritzema‐bosi, Schwartz) hot water treatment. Ann Appl Biol 1950, 37:11–18. https://doi.org/10.1111/j.1744‐7348.1950.tb00946.x.
Staniland, LN. Now we`ll try oils. Savannah, GA: Foley House; 1950.
Staniland, LN. The Principles of Line Illustration with Emphasis on the Requirements of Biological and Other Scientific Workers. Cambridge, UK: Cambridge University Press; 1953.
Southey, JF, Staniland, LN. Observations and experiments on stem eelworm, Ditylenchus dipsaci (Kühn, 1857) Filipjev, 1936, with special reference to weed hosts. J Helminthol 1950, 24:145–154. https://doi.org/10.1017/S0022149X00019210.
Staniland, L. The swarming of Rhabditid eelworms in mushroom houses. Plant Pathol 1957, 6:61–62.
Burr, AH. The photomovement of Caenorhabditis elegans, a nematode which lacks ocelli. Proof that the response is to light not radiant heating. Photochem Photobiol 1985, 41:577–582. https://doi.org/10.1111/j.1751‐1097.1985.tb03529.x.
Kiontke, K, Sudhaus, W. Ecology of Caenorhabditis species. In: Fitch, DH, ed. WormBook. The C. elegans Research Community; 2006. Available at: http://www.wormbook.org/citewb.html.
Lee, H, Choi, M, Lee, D, Kim, H, Hwang, H, Kim, H, Park, S, Paik, Y, Lee, J. Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci 2012, 15:107–112. https://doi.org/10.1038/nn.2975.
Frézal, L. Félix M‐A. C. elegans outside the Petri dish. Elife 2015, 4:e05849. https://doi.org/10.1016/j.cub.2010.09.050.
Félix, M‐A, Braendle, C. The natural history of Caenorhabditis elegans. Curr Biol 2010, 20:R965–R969. https://doi.org/10.1016/j.cub.2010.09.050.
Crook, M. The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J Parasitol 2014, 44:1–8. https://doi.org/10.1016/j.ijpara.2013.08.004.
Castelletto, ML, Gang, SS, Okubo, RP, Tselikova, AA, Nolan, TJ, Platzer, EG, Lok, JB, Hallem, EA. Diverse host‐seeking behaviors of skin‐penetrating nematodes. PLoS Pathog 2014, 10:e1004305. https://doi.org/10.1371/journal.ppat.1004305.
Ashton, FT, Zhu, X, Boston, R, Lok, JB, Schad, GA. Strongyloides stercoralis: amphidial neuron pair ASJ triggers significant resumption of development by infective larvae under host‐mimicking in vitro conditions. Exp Parasitol 2007, 115:92–97. https://doi.org/10.1016/j.exppara.2006.08.010.
Procko, C, Lu, Y, Shaham, S. Sensory organ remodeling in Caenorhabditis elegans requires the zinc‐finger protein ZTF‐16. Genetics 2012, 190:1405–1415. https://doi.org/10.1534/genetics.111.137786.
Hallem, EA, Rengarajan, M, Ciche, TA, Sternberg, PW. Nematodes, bacteria, and flies : a tripartite model for nematode parasitism. Curr Biol 2007, 17:898–904. https://doi.org/10.1016/j.cub.2007.04.027.
Albarqi, MMY, Stoltzfus, JD, Pilgrim, AA, Nolan, TJ, Wang, Z, Kliewer, SA, Mangelsdorf, DJ, Lok, JB. Regulation of life cycle checkpoints and developmental activation of infective larvae in Strongyloides stercoralis by dafachronic acid. PLoS Pathog 2016, 12:e1005358. https://doi.org/10.1371/journal.ppat.1005358.
Ogawa, A, Streit, A, Antebi, A, Sommer, RJ. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr Biol 2009, 19:67–71.
Fielenbach, N, Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 2008, 22:2149–2165. https://doi.org/10.1101/gad.1701508.
Hu, PJ. Dauer. In: Riddle, DL, ed. WormBook. WormBook; 2007, 1–19. https://doi.org/10.1895/wormbook.1.144.1. Available at: http://www.wormbook.org/citewb.html.
Riddle, DL, Albert, PS. Genetic and environmental regulation of dauer larva development. In: Riddle, DL, Blumenthal, T, Meyer, BJ, Priess, JR, eds. C. elegans II. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1998.
Golden, JW, Riddle, DL. A Caenorhabditis elegans dauer‐inducing pheromone and an antagonistic component of the food supply. J Chem Ecol 1984, 10:1265–1280. https://doi.org/10.1007/BF00988553.
Golden, J, Riddle, D. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 1982, 218:578–580.
Ailion, M, Thomas, JH. Dauer formation induced by high temperatures in Caenorhabditis elegans. Genetics 2000, 156:1047–1067.
Vowels, JJ, Thomas, JH. Multiple chemosensory defects in daf‐11 and daf‐21 mutants of Caenorhabditis elegans. Genetics 1994, 138:303–316.
Ren, P, Lim, C‐S, Johnsen, R, Albert, PS, Pilgrim, D, Riddle, DL. Control of C. elegans larval development by neuronal expression of a TGF‐beta homolog. Science 1996, 274:1389–1391. https://doi.org/10.1126/science.274.5291.1389.
Li, W, Kennedy, SG, Ruvkun, G. daf‐28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF‐2 signaling pathway. Genes Dev 2003, 17:844–858. https://doi.org/10.1101/gad.1066503.
Schackwitz, WS, Inoue, T, Thomas, JH. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron 1996, 17:719–728. https://doi.org/10.1016/S0896‐6273(00)80203‐2.
Kimura, KD, Tissenbaum, HA, Liu, Y, Ruvkun, G. daf‐2, an insulin receptor‐like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997, 277:942–946.
Ogg, S, Paradis, S, Gottlieb, S, Patterson, GI, Lee, L, Tissenbaum, HA. The Fork head transcription factor DAF‐16 transduces insulin‐like metabolic and longevity signals in C. elegans. Nature 1997, 389:994–999.
Lin, K, Dorman, JB, Rodan, A, Kenyon, C. daf‐16: An HNF‐3/forkhead family member that can function to double the life‐span of Caenorhabditis elegans. Science 1997, 278:1319–1322.
Thomas, JH, Birnby, DA, Vowels, JJ. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics 1993, 134:1105–1117.
Gerisch, B, Antebi, A. Hormonal signals produced by DAF‐9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development 2004, 131:1765–1776. https://doi.org/10.1242/dev.01068.
Mak, HY, Ruvkun, G. Intercellular signaling of reproductive development by the C. elegans DAF‐9 cytochrome P450. Development 2004, 131:1777–1786.
Gerisch, B, Weitzel, C, Kober‐Eisermann, C, Rottiers, V, Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 2001, 1:841–851. https://doi.org/10.1016/S1534‐5807(01)00085‐5.
Jia, K, Albert, PS, Riddle, DL. DAF‐9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 2002, 129:221–231.
Motola, DL, Cummins, CL, Rottiers, V, Sharma, KK, Li, T, Li, Y, Suino‐Powell, K, Xu, HE, Auchus, RJ, Antebi, A, et al. Identification of ligands for DAF‐12 that govern dauer formation and reproduction in C. elegans. Cell 2006, 124:1209–1223. https://doi.org/10.1016/j.cell.2006.01.037.
Antebi, A, Yeh, WH, Tait, D, Hedgecock, EM, Riddle, DL. daf‐12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 2000, 14:1512–1527. https://doi.org/10.1101/gad.14.12.1512.
Wang, J, Kim, SK. Global analysis of dauer gene expression in Caenorhabditis elegans. Development 2003, 130:1621–1634.
Jeong, P‐Y, Kwon, M‐S, Joo, H‐J, Paik, Y‐K. Molecular time‐course and the metabolic basis of entry into dauer in Caenorhabditis elegans. PLoS One 2009, 4:e4162. https://doi.org/10.1371/journal.pone.0004162.
Nika, L, Gibson, T, Konkus, R, Karp, X. Fluorescent beads are a versatile tool for staging Caenorhabditis elegans in different life histories. G3 (Bethesda) 2016, 6:1923–1933. https://doi.org/10.1534/g3.116.030163.
Bird, AF, Bird, J. The Structure of Nematodes. 2nd ed. San Diego, CA: Academic Press; 1991.
Cox, GN, Staprans, S, Edgar, RS. The cuticle of Caenorhabditis elegans. Dev Biol 1981, 86:456–470. https://doi.org/10.1016/0012‐1606(81)90204‐9.
Blaxter, ML. Cuticle surface proteins of wild type and mutant Caenorhabditis elegans. J Biol Chem 1993, 268:6600–6609.
Proudfoot, L, Kusel, JR, Smith, HV, Harnett, W, Worms, MJ, Kennedy, MW. Rapid changes in the surface of parasitic nematodes during transition from pre‐ to post‐parasitic forms. Parasitology 1993, 107:107–117.
Link, CD, Silverman, MA, Breen, M, Watt, KE, Dames, SA. Characterization of Caenorhabditis elegans lectin‐binding mutants. Genetics 1992, 131:867–881.
Höflich, J, Berninsone, P, Göbel, C, Gravato‐Nobre, MJ, Libby, BJ, Darby, C, Politz, SM, Hodgkin, J, Hirschberg, CB, Baumeister, R. Loss of srf‐3‐encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. J Biol Chem 2004, 279:30440–30448. https://doi.org/10.1074/jbc.M402429200.
Krall, EL. Root Parasitic Nematodes Family Hoploaimidae. English ed. New Delhi, India: Amerind Publishing; 1990.
Chitwood, BG, Chitwood, M. Introduction to Nematology. Consolidat. Baltimore, MD: University Park Press; 1974.
Singh, RN, Sulston, JE. Some observations on moulting in Caenorhabditis elegans. Nematologica 1978, 24:63–71.
Melendez, A, Talloczy, Z, Seaman, M, Eskelinen, EL, Hall, DH, Levine, B. Autophagy genes are essential for dauer development and life‐span extension in C. elegans. Science 2003, 301:1387–1391. https://doi.org/10.1126/science.1087782.
Fujimoto, D, Kanaya, S. Cuticlin: a noncollagen structural protein from Ascaris cuticle. Arch Biochem Biophys 1973, 157:1–6. https://doi.org/10.1016/0003‐9861(73)90382‐2.
Sapio, MR, Hilliard, MA, Cermola, M, Favre, R, Bazzicalupo, P. The Zona Pellucida domain containing proteins, CUT‐1, CUT‐3 and CUT‐5, play essential roles in the development of the larval alae in Caenorhabditis elegans. Dev Biol 2005, 282:231–245. https://doi.org/10.1016/j.ydbio.2005.03.011.
Muriel, JM, Brannan, M, Taylor, K, Johnstone, IL, Lithgow, GJ, Tuckwell, D. M142.2 (cut‐6), a novel Caenorhabditis elegans matrix gene important for dauer body shape. Dev Biol 2003, 260:339–351. https://doi.org/10.1016/S0012‐1606(03)00237‐9.
Ambros, V, Horvitz, HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 1984, 226:409–416. https://doi.org/10.1126/science.6494891.
Liu, Z, Ambros, V. Heterochronic genes control the stage‐specific initiation and expression of the dauer larva developmental program in Caenorhabditis elegans. Genes Dev 1989, 3:2039–2049. https://doi.org/10.1101/gad.3.12b.2039.
Euling, S, Ambros, V. Reversal of cell fate determination in Caenorhabditis elegans vulval development. Development 1996, 122:2507–2515.
Liu, Z, Ambros, V. Alternative temporal control systems for hypodermal cell differentiation in Caenorhabditis elegans. Nature 1991, 350:162–165.
Abrahante, JE, Miller, EA, Rougvie, AE. Identification of heterochronic mutants in Caenorhabditis elegans: temporal misexpression of a collagen: green fluorescent protein fusion gene. Genetics 1998, 149:1335–1351.
Abrahante, JE, Daul, AL, Li, M, Volk, ML, Tennessen, JM, Miller, EA, Rougvie, AE. The Caenorhabditis elegans hunchback‐like gene lin‐57/hbl‐1 controls developmental time and is regulated by microRNAs. Dev Cell 2003, 4:625–637.
Morita, K, Han, M. Multiple mechanisms are involved in regulating the expression of the developmental timing regulator lin‐28 in Caenorhabditis elegans. EMBO J 2006, 25:5794–5804.
Karp, X, Ambros, V. Dauer larva quiescence alters the circuitry of microRNA pathways regulating cell fate progression in C. elegans. Development 2012, 139:2177–2186.
Hall, SE, Beverly, M, Russ, C, Nusbaum, C, Sengupta, P. A cellular memory of developmental history generates phenotypic diversity in C. elegans. Curr Biol 2010, 20:149–155. https://doi.org/10.1016/j.cub.2009.11.035.
Popham, JD, Webster, JM. Aspects of the fine structure of the dauer larva of the nematode Caenorhabditis elegans. Can J Zool 1979, 57:794–800. https://doi.org/10.1139/z79‐098.
Hellerer, T, Axäng, C, Brackmann, C, Hillertz, P, Pilon, M, Enejder, A. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti‐Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci U S A 2007, 104:14658–14663. https://doi.org/10.1073/pnas.0703594104.
White, JG, Southgate, E, Thomson, JN, Brenner, S. The structure of the ventral nerve of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1976, 275:327–348.
Dixon, SJ, Alexander, M, Chan, KKM, Roy, PJ. Insulin‐like signaling negatively regulates muscle arm extension through DAF‐12 in Caenorhabditis elegans. Dev Biol 2008, 318:153–161. https://doi.org/10.1016/j.ydbio.2008.03.019.
Ward, S, Thomson, N, White, JG, Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 1975, 160:313–337. https://doi.org/10.1002/cne.901600305.
Albert, PS, Riddle, DL. Developmental alterations in sensory neuroanatomy of the Caenorhabditis elegans dauer larva. J Comp Neurol 1983, 219:461–481. https://doi.org/10.1002/cne.902190407.
Mori, I, Ohshima, Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 1995, 376:344–348. https://doi.org/10.1038/376344a0.
Hedgecock, EM, Russell, RL. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 1975, 72:4061–4065. https://doi.org/10.1073/pnas.72.10.4061.
Procko, C, Lu, Y, Shaham, S. Glia delimit shape changes of sensory neuron receptive endings in C. elegans. Development 2011, 138:1371–1381. https://doi.org/10.1242/dev.058305.
Bacaj, T, Tevlin, M, Lu, Y, Shaham, S. Glia are essential for sensory organ function in C. elegans. Science 2008, 322:744–747.
Bargmann, CI, Horvitz, HR. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 1991, 251:1243–1246. https://doi.org/10.1126/science.2006412.
Peckol, EL, Troemel, ER, Bargmann, CI. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2001, 98:11032–11038. https://doi.org/10.1073/pnas.191352498.
Han, Z, Boas, S, Schroeder, NE. Unexpected variation in neuroanatomy among diverse nematode species. Front Neuroanat 2016, 9:1–11. https://doi.org/10.3389/fnana.2015.00162.
Schroeder, NE, Androwski, RJ, Rashid, A, Lee, H, Lee, J, Barr, MM. Dauer‐specific dendrite arborization in C. elegans is regulated by KPC‐1/Furin. Curr Biol 2013, 23:1527–1535. https://doi.org/10.1016/j.cub.2013.06.058.
Smith, CJ, Watson, JD, Spencer, WC, Brien, TO, Cha, B, Albeg, A, Treinin, M, Miller, DM. Time‐lapse imaging and cell‐specific expression profiling reveal dynamic branching and molecular determinants of a multi‐dendritic nociceptor in C. elegans. Dev Biol 2010, 345:18–33. https://doi.org/10.1016/j.ydbio.2010.05.502.
Sawin, ER, Ranganathan, R. Horvitz HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000, 26:619–631. https://doi.org/10.1016/S0896‐6273(00)81199‐X.
Li, W, Kang, L, Piggott, BJ, Feng, Z, Xu, XZS. The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans. Nat Commun 2011, 2:315. https://doi.org/10.1038/ncomms1308.
Cinar, HN, Chisholm, AD. Genetic analysis of the Caenorhabditis elegans pax‐6 locus: roles of paired domain‐containing and nonpaired domain‐containing isoforms. Genetics 2004, 168:1307–1322. https://doi.org/10.1534/genetics.104.031724.
Keane, J, Avery, L. Mechanosensory inputs influence Caenorhabditis elegans pharyngeal activity via ivermectin sensitivity genes. Genetics 2003, 164:153–162.
Choe, A, von Reuss, SH, Kogan, D, Gasser, RB, Platzer, EG, Schroeder, FC, Sternberg, PW. Ascaroside signaling is widely conserved among nematodes. Curr Biol 2012, 22:772–780. https://doi.org/10.1016/j.cub.2012.03.024.
Gems, D, McElwee, JJ. Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF‐1 signaling? Mech Ageing Dev 2005, 126:381–387. https://doi.org/10.1016/j.mad.2004.09.001.
Wolkow, C, Hall, DH. The Dauer Cuticle. Wormatlas; 2011. Available at: http://www.wormatlas.org/dauer/cuticle/Cutframeset.html.
Colella, E, Li, S, Roy, R. Developmental and cell cycle quiescence is mediated by the nuclear hormone receptor co‐regulator DIN‐1S in the C. elegans dauer larva. Genetics 2016, 203:1763–1776. https://doi.org/10.1534/genetics.116.191858.
Narbonne, P, Roy, R. Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 2006, 133:611–619. https://doi.org/10.1242/dev.02232.
Nelson, FK, Riddle, DL. Functional study of the Caenorhabditis elegans secretory‐excretory system using laser microsurgery. J Exp Zool 1984, 231:45–56. https://doi.org/10.1002/jez.1402310107.
Nelson, FK, Albert, PS, Riddle, DL. Fine structure of the Caenorhabditis elegans secretory—excretory system. J Ultrastruct Res 1983, 82:156–171. https://doi.org/10.1016/S0022‐5320(83)90050‐3.
Schaedel, ON, Gerisch, B, Antebi, A, Sternberg, PW. Hormonal signal amplification mediates environmental conditions during development and controls an irreversible commitment to adulthood. PLoS Biol 2012, 10:e1001306. https://doi.org/10.1371/journal.pbio.1001306.
Albert, PS, Riddle, DL. Mutants of Caenorhabditis elegans that form dauer‐like larvae. Dev Biol 1988, 126:270–293. https://doi.org/10.1016/0012‐1606(88)90138‐8.
Antebi, A, Culotti, JG, Hedgecock, EM. daf‐12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development 1998, 125:1191–1205.
Ohkura, K, Suzuki, N, Ishihara, T, Katsura, I. SDF‐9, a protein tyrosine phosphatase‐like molecule, regulates the L3/dauer developmental decision through hormonal signaling in C. elegans. Development 2003, 130:3237–3248. https://doi.org/10.1242/dev.00540.
Li, J, Brown, G, Ailion, M, Lee, S, Thomas, JH. NCR‐1 and NCR‐2, the C. elegans homologs of the human Niemann‐Pick type C1 disease protein, function upstream of DAF‐9 in the dauer formation pathways. Development 2004, 131:5741–5752. https://doi.org/10.1242/dev.01408.
Chitwood, DJ, Lusby, WR, Lozano, R, Thompson, MJ, Svoboda, JA. Sterol metabolism in the nematode Caenorhabditis elegans. Lipids 1984, 19:500–506. https://doi.org/10.1007/BF02534482.
Matyash, V, Entchev, EV, Mende, F, Wilsch‐Bräuninger, M, Thiele, C, Schmidt, AW, Knölker, H‐J, Ward, S, Kurzchalia, TV. Sterol‐derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF‐12 and DAF‐16. PLoS Biol 2004, 2:e280. https://doi.org/10.1371/journal.pbio.0020280.
Kenyon, C, Chang, J, Gensch, E, Rudner, A, Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 1993, 366:461–464. https://doi.org/10.1038/366461a0.
Gottlieb, S, Ruvkun, G. daf‐2, daf‐16 and daf‐23: genetically interacting genes controlling dauer formation in Caenorhabditis elegans. Genetics 1994, 137:107–120.
Vowels, JJ, Thomas, JH. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 1992, 130:105–123.
Jia, K, Chen, D, Riddle, DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004, 131:3897–3906. https://doi.org/10.1242/dev.01255.
Narbonne, P, Roy, R. Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long‐term survival. Nature 2009, 457:210–214. https://doi.org/10.1038/nature07536.
Cunningham, KA, Bouagnon, AD, Barros, AG, Lin, L, Malard, L, Romano‐Silva, MA, Ashrafi, K. Loss of a neural AMP‐activated kinase mimics the effects of elevated serotonin on fat, movement, and hormonal secretions. PLoS Genet 2014, 10:17–20. https://doi.org/10.1371/journal.pgen.1004394.
Ailion, M, Thomas, JH. Isolation and characterization of high‐temperature‐induced dauer formation mutants in Caenorhabditis elegans. Genetics 2003, 165:127–144.
West‐Eberhard, MJ. Developmental plasticity and the origin of species differences. Proc Natl Acad Sci 2005, 102:6543–6549.
Viney, ME, Gardner, MP, Jackson, JA. Variation in Caenorhabditis elegans dauer larva formation. Dev Growth Differ 2003, 45:389–396. https://doi.org/10.1046/j.1440‐169X.2003.00703.x.