Parker, HJ, Bronner, ME, Krumlauf, R. The vertebrate Hox gene regulatory network for hindbrain segmentation: evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. Bioessays 2016, 38:526–538.
Kiecker, C, Lumsden, A. Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 2005, 6:553–564.
Alexander, T, Nolte, C, Krumlauf, R. Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 2009, 25:431–456.
Gilland, E, Baker, R. Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Cells Tissues Organs 1993, 148:110–123.
Lumsden, A. Segmentation and compartition in the early avian hindbrain. Mech Dev 2004, 121:1081–1088.
Moens, CB, Prince, VE. Constructing the hindbrain: Insights from the zebrafish. Dev Dyn 2002, 224:1–17.
Chandrasekhar, A. Turning heads: development of vertebrate branchiomotor neurons. Dev Dyn 2004, 229:143–161.
Lumsden, A, Keynes, R. Segmental patterns of neuronal development in the chick hindbrain. Nature 1989, 337:424–428.
Clarke, JD, Lumsden, A. Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 1993, 118:151–162.
Gilland, E, Baker, R. Evolutionary patterns of cranial nerve efferent nuclei in vertebrates. Brain Behav Evol 2005, 66:234–254.
Fraser, S, Keynes, R, Lumsden, A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 1990, 344:431–435.
Birgbauer, E, Fraser, SE. Violation of cell lineage restriction compartments in the chick hindbrain. Development 1994, 120:1347–1356.
Guthrie, S, Prince, V, Lumsden, A. Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 1993, 118:527–538.
Guthrie, S, Lumsden, A. Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 1991, 112:221–229.
Wizenmann, A, Lumsden, A. Segregation of rhombomeres by differential chemoaffinity. Mol Cell Neurosci 1997, 9:448–459.
Lumsden, A, Krumlauf, R. Patterning the vertebrate neuraxis. Science 1996, 274:1109–1115.
Cambronero, F, Puelles, L. Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 2000, 427:522–545.
Tomás‐Roca, L, Corral‐San‐Miguel, R, Aroca, P, Puelles, L, Marín, F. Crypto‐rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features. Brain Struct Funct 2016, 221:815–838.
Lim, TM, Jaques, KF, Stern, CD, Keynes, RJ. An evaluation of myelomeres and segmentation of the chick embryo spinal cord. Development 1991, 113:227–238.
Maconochie, M, Nonchev, S, Morrison, A, Krumlauf, R. Paralogous Hox genes: function and regulation. Annu Rev Genet 1996, 30:529–556.
Di Bonito, M, Narita, Y, Avallone, B, Sequino, L, Mancuso, M, Andolfi, G, Franzè, AM, Puelles, L, Rijli, FM, Studer, M. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 2013, 9:e1003249.
Geisen, MJ, Di Meglio, T, Pasqualetti, M, Ducret, S, Brunet, JF, Chedotal, A, Rijli, FM. Hox paralog group 2 genes control the migration of mouse pontine neurons through slit‐robo signaling. PLoS Biol 2008, 6:e142.
Pasqualetti, M, Díaz, C, Renaud, JS, Rijli, FM, Glover, JC. Fate‐mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere‐specific Hoxa2 enhancer elements in the mouse embryo. J Neurosci 2007, 27:9670–9681.
Briscoe, J, Wilkinson, DG. Establishing neuronal circuitry: Hox genes make the connection. Genes Dev 2004, 18:1643–1648.
Carroll, SB. Homeotic genes and the evolution of arthropods and chordates. Nature 1995, 376:479–485.
Graham, A, Papalopulu, N, Krumlauf, R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 1989, 57:367–378.
Duboule, D, Dollé, P. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 1989, 8:1497–1505.
Krumlauf, R. Hox genes in vertebrate development. Cell 1994, 78:191–201.
McGinnis, W, Krumlauf, R. Homeobox genes and axial patterning. Cell 1992, 68:283–302.
Kmita, M, Duboule, D. Organizing axes in time and space: 25 years of colinear tinkering. Science 2003, 301:331–333.
Duboule, D. The rise and fall of Hox gene clusters. Development 2007, 134:2549–2560.
Noordermeer, D, Duboule, D. Chromatin architectures and Hox gene collinearity. Curr Top Dev Biol 2013, 104:113–148.
Nolte, C, Krumlauf, R. Expression of Hox genes in the nervous system of vertebrates. In: Papageorgiou, S, ed. HOX Gene Expression. Austin, TX: Landes Bioscience and Springer; 2006, 14–41.
Tumpel, S, Wiedemann, LM, Krumlauf, R. Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009, 88:103–137.
Trainor, PA, Krumlauf, R. Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 2001, 13:698–705.
Minoux, M, Rijli, FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010, 137:2605–2621.
Arenkiel, BR, Tvrdik, P, Gaufo, GO, Capecchi, MR. Hoxb1 functions in both motoneurons and in tissues of the periphery to establish and maintain the proper neuronal circuitry. Genes Dev 2004, 18:1539–1552.
Marin, F, Aroca, P, Puelles, L. Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 2008, 323:230–247.
Hutlet, B, Theys, N, Coste, C, Ahn, MT, Doshishti‐Agolli, K, Lizen, B, Gofflot, F. Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system. Brain Struct Funct 2016, 221:1223–1243.
Levine, M, Davidson, EH. Gene regulatory networks for development. Proc Natl Acad Sci USA 2005, 102:4936–4942.
Longabaugh, WJ, Davidson, EH, Bolouri, H. Computational representation of developmental genetic regulatory networks. Dev Biol 2005, 283:1–16.
Davidson, EH, Levine, MS. Properties of developmental gene regulatory networks. Proc Natl Acad Sci USA 2008, 105:20063–20066.
Erwin, DH, Davidson, EH. The evolution of hierarchical gene regulatory networks. Nat Rev Genet 2009, 10:141–148.
Deschamps, J, van Nes, J. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 2005, 132:2931–2942.
Diez del Corral, R, Storey, KG. Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. Bioessays 2004, 26:857–869.
Bel‐Vialar, S, Itasaki, N, Krumlauf, R. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 2002, 129:5103–5115.
Papalopulu, N, Lovell‐Badge, R, Krumlauf, R. The expression of murine Hox‐2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos. Nucleic Acids Res 1991, 19:5497–5506.
Simeone, A, Acampora, D, Arcioni, L, Andrews, PW, Boncinelli, E, Mavilio, F. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 1990, 346:763–766.
Simeone, A, Acampora, D, Nigro, V, Faiella, A, D`Esposito, M, Stornaiuolo, A, Mavilio, F, Boncinelli, E. Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mech Dev 1991, 33:215–227.
del Corral, RD, Olivera‐Martinez, I, Goriely, A, Gale, E, Maden, M, Storey, K. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 2003, 40:65–79.
Liu, P, Wakamiya, M, Shea, MJ, Albrecht, U, Behringer, RR, Bradley, A. Requirement for Wnt3 in vertebrate axis formation. Nat Genet 1999, 22:361–365.
Rhinn, M, Lun, K, Luz, M, Werner, M, Brand, M. Positioning of the midbrain‐hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development 2005, 132:1261–1272.
Kiecker, C, Lumsden, A. The role of organizers in patterning the nervous system. Annu Rev Neurosci 2012, 35:347–367.
Wurst, W, Bally‐Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2001, 2:99–108.
Skromne, I, Thorsen, D, Hale, M, Prince, VE, Ho, RK. Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development 2007, 134:2147–2158.
Hayward, AG 2nd, Joshi, P, Skromne, I. Spatiotemporal analysis of zebrafish hox gene regulation by Cdx4. Dev Dyn 2015, 244:1564–1573.
Sturgeon, K, Kaneko, T, Biemann, M, Gauthier, A, Chawengsaksophak, K, Cordes, SP. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 2011, 138:65–74.
Young, T, Rowland, JE, van de Ven, C, Bialecka, M, Novoa, A, Carapuco, M, van Nes, J, de Graaff, W, Duluc, I, Freund, JN, et al. Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell 2009, 17:516–526.
Sirbu, IO, Gresh, L, Barra, J, Duester, G. Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development 2005, 132:2611–2622.
White, RJ, Schilling, TF. How degrading: Cyp26s in hindbrain development. Dev Dyn 2008, 237:2775–2790.
Rhinn, M, Dolle, P. Retinoic acid signalling during development. Development 2012, 139:843–858.
Begemann, G, Schilling, TF, Rauch, GJ, Geisler, R, Ingham, PW. The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 2001, 128:3081–3094.
Duester, G. Retinoic acid synthesis and signaling during early organogenesis. Cell 2008, 134:921–931.
Hernandez, RE, Putzke, AP, Myers, JP, Margaretha, L, Moens, CB. Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 2007, 134:177–187.
White, RJ, Nie, Q, Lander, AD, Schilling, TF. Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol 2007, 5:e304.
Chomette, D, Frain, M, Cereghini, S, Charnay, P, Ghislain, J. Krox20 hindbrain cis‐regulatory landscape: interplay between multiple long‐range initiation and autoregulatory elements. Development 2006, 133:1253–1262.
Bouchoucha, YX, Reingruber, J, Labalette, C, Wassef, MA, Thierion, E, Dinh, CD, Holcman, D, Gilardi‐Hebenstreit, P, Charnay, P. Dissection of a Krox20 positive feedback loop driving cell fate choices in hindbrain patterning. Mol Syst Biol 2013, 9:690.
Labalette, C, Bouchoucha, YX, Wassef, MA, Gongal, PA, Le Men, J, Becker, T, Gilardi‐Hebenstreit, P, Charnay, P. Hindbrain patterning requires fine‐tuning of early krox20 transcription by Sprouty 4. Development 2011, 138:317–326.
Labalette, C, Wassef, MA, Dinh, CD, Bouchoucha, YX, Le Men, J, Charnay, P, Gilardi‐Hebenstreit, P. Molecular dissection of segment formation in the developing hindbrain. Development 2015, 142:185–195.
Wassef, MA, Chomette, D, Pouilhe, M, Stedman, A, Havis, E, Dinh, CD, Schneider‐Maunoury, S, Gilardi‐Hebenstreit, P, Charnay, P, Ghislain, J. Rostral hindbrain patterning involves the direct activation of a Krox20 transcriptional enhancer by Hox/Pbx and Meis factors. Development 2008, 135:3369–3378.
Stedman, A, Lecaudey, V, Havis, E, Anselme, I, Wassef, M, Gilardi‐Hebenstreit, P, Schneider‐Maunoury, S. A functional interaction between Irx and Meis patterns the anterior hindbrain and activates krox20 expression in rhombomere 3. Dev Biol 2009, 237:566–577.
Kim, FA, Sing, A, Kaneko, T, Bieman, M, Stallwood, N, Sadl, VS, Cordes, SP. The vHNF1 homeodomain protein establishes early rhombomere identity by direct regulation of Kreisler expression. Mech Dev 2005, 122:1300–1309.
Pouilhe, M, Gilardi‐Hebenstreit, P, Dinh, CD, Charnay, P. Direct regulation of vHnf1 by retinoic acid signaling and MAF‐related factors in the neural tube. Dev Biol 2007, 309:344–357.
Dupé, V, Davenne, M, Brocard, J, Dollé, P, Mark, M, Dierich, A, Chambon, P, Rijli, FM. In vivo functional analysis of the Hoxa1 3` retinoid response element (3` RARE). Development 1997, 124:399–410.
Langston, AW, Thompson, JR, Gudas, LJ. Retinoic acid‐responsive enhancers located 3` of the Hox A and Hox B homeobox gene clusters. Funct Anal J Biol Chem 1997, 272:2167–2175.
Frasch, M, Chen, X, Lufkin, T. Evolutionary‐conserved enhancers direct region‐specific expression of the murine Hoxa‐1 and Hoxa‐2 loci in both mice and Drosophila. Development 1995, 121:957–974.
Langston, AW, Gudas, LJ. Identification of a retinoic acid responsive enhancer 3` of the murine homeobox gene Hox‐1.6. Mech Dev 1992, 38:217–228.
Marshall, H, Studer, M, Pöpperl, H, Aparicio, S, Kuroiwa, A, Brenner, S, Krumlauf, R. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb‐1. Nature 1994, 370:567–571.
Studer, M, Gavalas, A, Marshall, H, Ariza‐McNaughton, L, Rijli, FM, Chambon, P, Krumlauf, R. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 1998, 125:1025–1036.
Ogura, T, Evans, RM. Evidence for two distinct retinoic acid response pathways for HOXB1 gene regulation. Proc Natl Acad Sci U S A 1995, 92:392–396.
Ogura, T, Evans, RM. A retinoic acid‐triggered cascade of HOXB1 gene activation. Proc Natl Acad Sci USA 1995, 92:387–391.
Studer, M, Popperl, H, Marshall, H, Kuroiwa, A, Krumlauf, R. Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb‐1. Science 1994, 265:1728–1732.
Pöpperl, H, Bienz, M, Studer, M, Chan, SK, Aparicio, S, Brenner, S, Mann, RS, Krumlauf, R. Segmental expression of Hoxb1 is controlled by a highly conserved autoregulatory loop dependent upon exd/Pbx. Cell 1995, 81:1031–1042.
Wong, EY, Wang, XA, Mak, SS, Sae‐Pang, JJ, Ling, KW, Fritzsch, B, Sham, MH. Hoxb3 negatively regulates Hoxb1 expression in mouse hindbrain patterning. Dev Biol 2011, 352:382–392.
Gaufo, GO, Thomas, KR, Capecchi, MR. Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 2003, 130:5191–5201.
Tvrdik, P, Capecchi, MR. Reversal of hox1 gene subfunctionalization in the mouse. Dev Cell 2006, 11:239–250.
Ferretti, E, Cambronero, F, Tümpel, S, Longobardi, E, Wiedemann, LM, Blasi, F, Krumlauf, R. Hoxb1 enhancer and control of rhombomere 4 expression: complex interplay between PREP1‐PBX1‐HOXB1 binding sites. Mol Cell Biol 2005, 25:8541–8552.
Di Rocco, G, Gavalas, A, Pöpperl, H, Krumlauf, R, Mavilio, F, Zappavigna, V. The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto‐regulatory enhancer function. J Biol Chem 2001, 276:20506–20515.
Tümpel, S, Cambronero, F, Wiedemann, LM, Krumlauf, R. Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes). Proc Natl Acad Sci USA 2006, 103:5419–5424.
Tümpel, S, Cambronero, F, Sims, C, Krumlauf, R, Wiedemann, LM. Sackler special feature: a regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2. Proc Natl Acad Sci USA 2008, 105:20077–20082.
Nonchev, S, Maconochie, M, Vesque, C, Aparicio, S, Ariza‐McNaughton, L, Manzanares, M, Maruthainar, K, Kuroiwa, A, Brenner, S, Charnay, P, et al. The conserved role of Krox‐20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proc Natl Acad Sci USA 1996, 93:9339–9345.
Nonchev, S, Vesque, C, Maconochie, M, Seitanidou, T, Ariza‐McNaughton, L, Frain, M, Marshall, H, Sham, MH, Krumlauf, R, Charnay, P. Segmental expression of Hoxa‐2 in the hindbrain is directly regulated by Krox‐20. Development 1996, 122:543–554.
Tümpel, S, Cambronero, F, Ferretti, E, Blasi, F, Wiedemann, LM, Krumlauf, R. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross‐regulatory mechanism dependent upon Hoxb1. Dev Biol 2007, 302:646–660.
Lampe, X, Samad, OA, Guiguen, A, Matis, C, Remacle, S, Picard, JJ, Rijli, FM, Rezsohazy, R. An ultraconserved Hox‐Pbx responsive element resides in the coding sequence of Hoxa2 and is active in rhombomere 4. Nucleic Acids Res 2008, 36:3214–3225.
McEllin, JA, Alexander, TB, Tümpel, S, Wiedemann, LM, Krumlauf, R. Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis‐regulatory modules during vertebrate evolution. Dev Biol 2016, 409:530–542.
Maconochie, M, Krishnamurthy, R, Nonchev, S, Meier, P, Manzanares, M, Mitchell, PJ, Krumlauf, R. Regulation of Hoxa2 in cranial neural crest cells involves members of the AP‐2 family. Development 1999, 126:1483–1494.
Nonchev, S, Maconochie, M, Gould, A, Morrison, A, Krumlauf, R. Cross‐regulatory interactions between Hox genes and the control of segmental expression in the vertebrate central nervous system. Cold Spring Harb Symp Quant Biol 1997, 62:313–323.
Sham, MH, Vesque, C, Nonchev, S, Marshall, H, Frain, M, Gupta, RD, Whiting, J, Wilkinson, D, Charnay, P, Krumlauf, R. The zinc finger gene Krox‐20 regulates Hoxb‐2 (Hox2.8) during hindbrain segmentation. Cell 1993, 72:183–196.
Ferretti, E, Marshall, H, Popperl, H, Maconochie, M, Krumlauf, R, Blasi, F. Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prep1, Pbx and Hox proteins. Development 2000, 127:155–166.
Maconochie, MK, Nonchev, S, Studer, M, Chan, SK, Pöpperl, H, Sham, MH, Mann, RS, Krumlauf, R. Cross‐regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 1997, 11:1885–1896.
Jacobs, Y, Schnabel, CA, Cleary, ML. Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell Biol 1999, 19:5134–5142.
Manzanares, M, Bel‐Vialar, S, Ariza‐McNaughton, L, Ferretti, E, Marshall, H, Maconochie, MM, Blasi, F, Krumlauf, R. Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involves auto and cross‐regulatory mechanisms. Development 2001, 128:3595–3607.
Manzanares, M, Cordes, S, Ariza‐McNaughton, L, Sadl, V, Maruthainar, K, Barsh, G, Krumlauf, R. Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 1999, 126:759–769.
Manzanares, M, Cordes, S, Chung‐Tin, K, Sham, MH. Segmental regulation of Hoxb3 by kreisler. Nature 1997, 387:191–195.
Manzanares, M, Nardelli, J, Gilardi‐Hebenstreit, P, Marshall, H, Giudicelli, F, Martínez‐Pastor, MT, Krumlauf, R, Charnay, P. Krox20 and kreisler co‐operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain. EMBO J 2002, 21:365–376.
Gould, A, Itasaki, N, Krumlauf, R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 1998, 21:39–51.
Serpente, P, Tümpel, S, Ghyselinck, NB, Niederreither, K, Wiedemann, LM, Dollé, P, Chambon, P, Krumlauf, R, Gould, AP. Direct crossregulation between retinoic acid receptor and Hox genes during hindbrain segmentation. Development 2005, 132:503–513.
Gould, A, Morrison, A, Sproat, G, White, RA, Krumlauf, R. Positive cross‐regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 1997, 11:900–913.
Morrison, A, Chaudhuri, C, Ariza‐McNaughton, L, Muchamore, I, Kuroiwa, A, Krumlauf, R. Comparative analysis of chicken Hoxb‐4 regulation in transgenic mice. Mech Dev 1995, 53:47–59.
Nolte, C, Amores, A, Kovács, EN, Postlethwait, J, Featherstone, M. The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes. Mech Dev 2003, 120:325–335.
Nolte, C, Rastegar, M, Amores, A, Bouchard, M, Grote, D, Maas, R, Kovacs, EN, Postlethwait, J, Rambaldi, I, Rowan, S, et al. Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero‐posterior axis. Dev Biol 2006, 299:582–593.
Morrison, A, Moroni, MC, Ariza‐McNaughton, L, Krumlauf, R, Mavilio, F. In vitro and transgenic analysis of a human HOXD4 retinoid‐responsive enhancer. Development 1996, 122:1895–1907.
Zhang, F, Nagy Kovacs, E, Featherstone, MS. Murine hoxd4 expression in the CNS requires multiple elements including a retinoic acid response element. Mech Dev 2000, 96:79–89.
Ahn, Y, Mullan, HE, Krumlauf, R. Long‐range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development. Dev Biol 2014, 388:134–144.
Oosterveen, T, Niederreither, K, Dollé, P, Chambon, P, Meijlink, F, Deschamps, J. Retinoids regulate the anterior expression boundaries of 5` Hoxb genes in posterior hindbrain. EMBO J 2003, 22:262–269.
Sharpe, J, Nonchev, S, Gould, A, Whiting, J, Krumlauf, R. Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J 1998, 17:1788–1798.
Oosterveen, T, van Vliet, P, Deschamps, J, Meijlink, F. The direct context of a hox retinoic acid response element is crucial for its activity. J Biol Chem 2003, 278:24103–24107.
Theil, T, Frain, M, Gilardi‐Hebenstreit, P, Flenniken, A, Charnay, P, Wilkinson, DG. Segmental expression of the EphA4 (Sek‐1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox‐20. Development 1998, 125:443–452.
Mendelsohn, C, Ruberte, E, LeMeur, M, Morriss‐Kay, G, Chambon, P. Developmental analysis of the retinoic acid‐inducible RAR‐beta 2 promoter in transgenic animals. Development 1991, 113:723–734.
Vitobello, A, Ferretti, E, Lampe, X, Vilain, N, Ducret, S, Ori, M, Spetz, JF, Selleri, L, Rijli, FM. Hox and Pbx factors control retinoic acid synthesis during hindbrain segmentation. Dev Cell 2011, 20:469–482.
Houle, M, Sylvestre, JR, Lohnes, D. Retinoic acid regulates a subset of Cdx1 function in vivo. Development 2003, 130:6555–6567.
Hernandez, RE, Rikhof, HA, Bachmann, R, Moens, CB. vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish. Development 2004, 131:4511–4520.
Nolte, C, Jinks, T, Wang, X, Pastor, MT, Krumlauf, R. Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development. Dev Biol 2013, 383:158–173.
Mason, I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 2007, 8:583–596.
Maves, L, Jackman, W, Kimmel, CB. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 2002, 129:3825–3837.
Walshe, J, Maroon, H, McGonnell, IM, Dickson, C, Mason, I. Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr Biol 2002, 12:1117–1123.
Reifers, F, Bohli, H, Walsh, EC, Crossley, PH, Stainier, DY, Brand, M. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain‐hindbrain boundary development and somitogenesis. Development 1998, 125:2381–2395.
Sun, Z, Zhao, J, Zhang, Y, Meng, A. Sp5l is a mediator of Fgf signals in anteroposterior patterning of the neuroectoderm in zebrafish embryo. Dev Dyn 2006, 235:2999–3006.
Irving, C, Mason, I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 2000, 127:177–186.
Wiellette, EL, Sive, H. vhnf1 and Fgf signals synergize to specify rhombomere identity in the zebrafish hindbrain. Development 2003, 130:3821–3829.
Marin, F, Charnay, P. Hindbrain patterning: FGFs regulate Krox20 and mafB/kr expression in the otic/preotic region. Development 2000, 127:4925–4935.
Aragón, F, Vázquez‐Echeverría, C, Ulloa, E, Reber, M, Cereghini, S, Alsina, B, Giraldez, F, Pujades, C. vHnf1 regulates specification of caudal rhombomere identity in the chick hindbrain. Dev Dyn 2005, 234:567–576.
Waskiewicz, AJ, Rikhof, HA, Moens, CB. Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev Cell 2002, 3:723–733.
Choe, SK, Zhang, X, Hirsch, N, Straubhaar, J, Sagerström, CG. A screen for hoxb1‐regulated genes identifies ppp1r14al as a regulator of the rhombomere 4 Fgf‐signaling center. Dev Biol 2011, 358:356–367.
Aragon, F, Pujades, C. FGF signaling controls caudal hindbrain specification through Ras‐ERK1/2 pathway. BMC Dev Biol 2009, 9:61.
Weisinger, K, Kayam, G, Missulawin‐Drillman, T, Sela‐Donenfeld, D. Analysis of expression and function of FGF‐MAPK signaling components in the hindbrain reveals a central role for FGF3 in the regulation of Krox20, mediated by Pea3. Dev Biol 2010, 344:881–895.
Millet, S, Campbell, K, Epstein, DJ, Losos, K, Harris, E, Joyner, AL. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 1999, 401:161–164.
Lecaudey, V, Anselme, I, Rosa, F, Schneider‐Maunoury, S. The zebrafish Iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain. Development 2004, 131:3121–3131.
Kolm, P, Sive, H. Regulation of the Xenopus labial homeodomain genes, HoxA1 and HoxD1: activation by retinoids and peptide growth factors. Dev Biol 1995, 167:34–49.
Cooke, J, Moens, C, Roth, L, Durbin, L, Shiomi, K, Brennan, C, Kimmel, C, Wilson, S, Holder, N. Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain. Development 2001, 128:571–580.
Cooke, JE, Moens, CB. Boundary formation in the hindbrain: Eph only it were simple em leader. Trends Neurosci 2002, 25:260–267.
Cayuso, J, Xu, Q, Wilkinson, DG. Mechanisms of boundary formation by Eph receptor and ephrin signaling. Dev Biol 2015, 401:122–131.
Fagotto, F, Winklbauer, R, Rohani, N. Ephrin‐Eph signaling in embryonic tissue separation. Cell Adh Migr 2014, 8:308–326.
Mellitzer, G, Xu, Q, Wilkinson, D. Eph receptors and ephrins restrict cell intermingling and communication. Nature 1999, 400:77–81.
Xu, Q, Mellitzer, G, Robinson, V, Wilkinson, DG. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 1999, 399:267–271.
Chen, J, Ruley, HE. An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere‐specific expression is activated by HOXA1 and HOXB1 homeobox proteins. J Biol Chem 1998, 273:24670–24675.
Prin, F, Serpente, P, Itasaki, N, Gould, AP. Hox proteins drive cell segregation and non‐autonomous apical remodelling during hindbrain segmentation. Development 2014, 141:1492–1502.
Dolle, P, Lufkin, T, Krumlauf, R, Mark, M, Duboule, D, Chambon, P. Local alterations of Krox‐20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote Hoxa‐1 (Hox‐1.6) mutant embryos. Proc Natl Acad Sci USA 1993, 90:7666–7670.
Mark, M, Lufkin, T, Vonesch, JL, Ruberte, E, Olivo, JC, Dollé, P, Gorry, P, Lumsden, A, Chambon, P. Two rhombomeres are altered in Hoxa‐1 mutant mice. Development 1993, 119:319–338.
Carpenter, EM, Goddard, JM, Chisaka, O, Manley, NR, Capecchi, MR. Loss of Hoxa‐1 (Hox‐1.6) function results in the reorganization of the murine hindbrain. Development 1993, 118:1063–1075.
Slattery, M, Riley, T, Liu, P, Abe, N, Gomez‐Alcala, P, Dror, I, Zhou, T, Rohs, R, Honig, B, Bussemaker, HJ, et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 2011, 147:1270–1282.
Crocker, J, Abe, N, Rinaldi, L, McGregor, AP, Frankel, N, Wang, S, Alsawadi, A, Valenti, P, Plaza, S, Payre, F, et al. Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 2015, 160:191–203.
Merabet, S, Mann, RS. To be specific or not: the critical relationship between Hox and TALE proteins. Trends Genet 2016, 32:334–347.
Zandvakili, A, Gebelein, B. Mechanisms of specificity for Hox factor activity. J Dev Biol 2016, 4:16.
Mann, RS, Lelli, KM, Joshi, R. Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009, 88:63–101.
Hudry, B, Remacle, S, Delfini, MC, Rezsohazy, R, Graba, Y, Merabet, S. Hox proteins display a common and ancestral ability to diversify their interaction mode with the PBC class cofactors. PLoS Biol 2012, 10:e1001351.
Waskiewicz, AJ, Rikhof, HA, Hernandez, RE, Moens, CB. Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning. Development 2001, 128:4139–4151.
Dibner, C, Elias, S, Frank, D. XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos. Development 2001, 128:3415–3426.
Choe, SK, Vlachakis, N, Sagerstrom, CG. Meis family proteins are required for hindbrain development in the zebrafish. Development 2002, 129:585–595.
Pöpperl, H, Rikhof, H, Cheng, H, Haffter, P, Kimmel, CB, Moens, CB. lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol Cell 2000, 6:255–267.
Rohrschneider, MR, Elsen, GE, Prince, VE. Zebrafish Hoxb1a regulates multiple downstream genes including prickle1b. Dev Biol 2007, 309:358–372.
van den Akker, WM, Durston, AJ, Spaink, HP. Identification of hoxb1b downstream genes: hoxb1b as a regulatory factor controlling transcriptional networks and cell movement during zebrafish gastrulation. Int J Dev Biol 2010, 54:55–62.
Makki, N, Capecchi, MR. Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development. Dev Biol 2011, 357:295–304.
Pattyn, A, Vallstedt, A, Dias, JM, Samad, OA, Krumlauf, R, Rijli, FM, Brunet, JF, Ericson, J. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev 2003, 17:729–737.
Pata, I, Studer, M, van Doorninck, JH, Briscoe, J, Kuuse, S, Engel, JD, Grosveld, F, Karis, A. The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4. Development 1999, 126:5523–5531.
Gavalas, A, Ruhrberg, C, Livet, J, Henderson, CE, Krumlauf, R. Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 2003, 130:5663–5679.
Graham, A, Maden, M, Krumlauf, R. The murine Hox‐2 genes display dynamic dorsoventral patterns of expression during central nervous system development. Development 1991, 112:255–264.
Gaunt, SJ. Expression patterns of mouse Hox genes: clues to an understanding of developmental and evolutionary strategies. Bioessays 1991, 13:505–513.
Krumlauf, R. Hox Genes and the Hindbrain: A Study in Segments. Curr Top Dev Biol 2016, 116:581–596.
Dasen, JS, De Camilli, A, Wang, B, Tucker, PW, Jessell, TM. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell 2008, 134:304–316.
Dasen, JS, Tice, BC, Brenner‐Morton, S, Jessell, TM. A Hox regulatory network establishes motor neuron pool identity and target‐muscle connectivity. Cell 2005, 123:477–491.
Jung, H, Lacombe, J, Mazzoni, EO, Liem, KF, Grinstein, J, Mahony, S, Mukhopadhyay, D, Gifford, DK, Young, RA, Anderson, KV, et al. Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 2010, 67:781–796.
Dasen, JS, Jessell, TM. Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 2009, 88:169–200.
Tümpel, S, Maconochie, M, Wiedemann, LM, Krumlauf, R. Conservation and diversity in the cis‐regulatory networks that integrate information controlling expression of Hoxa2 in hindbrain and cranial neural crest cells in vertebrates. Dev Biol 2002, 246:45–56.
Lampe, X, Picard, JJ, Rezsohazy, R. The Hoxa2 enhancer 2 contains a critical Hoxa2 responsive regulatory element. Biochem Biophys Res Commun 2004, 316:898–902.
Scotti, M, Kmita, M. Recruitment of 5` Hoxa genes in the allantois is essential for proper extra‐embryonic function in placental mammals. Development 2012, 139:731–739.
Tschopp, P, Christen, AJ, Duboule, D. Bimodal control of Hoxd gene transcription in the spinal cord defines two regulatory subclusters. Development 2012, 139:929–939.
de Laat, W, Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 2013, 502:499–506.
Amores, A, Suzuki, T, Yan, YL, Pomeroy, J, Singer, A, Amemiya, C, Postlethwait, JH. Developmental roles of pufferfish Hox clusters and genome evolution in ray‐fin fish. Genome Res 2004, 14:1–10.
Amores, A, Force, A, Yan, YL, Joly, L, Amemiya, C, Fritz, A, Ho, RK, Langeland, J, Prince, V, Wang, YL, et al. Zebrafish hox clusters and vertebrate genome evolution. Science 1998, 282:1711–1714.
McClintock, JM, Kheirbek, MA, Prince, VE. Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 2002, 129:2339–2354.
McClintock, JM, Carlson, R, Mann, DM, Prince, VE. Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 2001, 128:2471–2484.
Hurley, IA, Scemama, JL, Prince, VE. Consequences of hoxb1 duplication in teleost fish. Evol Dev 2007, 9:540–554.
Hurley, I, Hale, ME, Prince, VE. Duplication events and the evolution of segmental identity. Evol Dev 2005, 7:556–567.
Prince, VE, Moens, CB, Kimmel, CB, Ho, RK. Zebrafish hox genes: expression in the hindbrain region of wild‐type and mutants of the segmentation gene, valentino. Development 1998, 125:393–406.
Parker, HJ, Bronner, ME, Krumlauf, R. A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature 2014, 514:490–493.
Minoux, M, Antonarakis, GS, Kmita, M, Duboule, D, Rijli, FM. Rostral and caudal pharyngeal arches share a common neural crest ground pattern. Development 2009, 136:637–645.
Aparicio, S, Morrison, A, Gould, A, Gilthorpe, J, Chaudhuri, C, Rigby, P, Krumlauf, R, Brenner, S. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish Fugu rubripes. Proc Natl Acad Sci USA 1995, 92:1684–1688.
Maconochie, MK, Nonchev, S, Manzanares, M, Marshall, H, Krumlauf, R. Differences in Krox20‐dependent regulation of Hoxa2 and Hoxb2 during hindbrain development. Dev Biol 2001, 233:468–481.
Ravi, V, Lam, K, Tay, BH, Tay, A, Brenner, S, Venkatesh, B. Elephant shark (Callorhinchus milii) provides insights into the evolution of Hox gene clusters in gnathostomes. Proc Natl Acad Sci USA 2009, 106:16327–16332.
Kim, CB, Amemiya, C, Bailey, W, Kawasaki, K, Mezey, J, Miller, W, Minoshima, S, Shimizu, N, Wagner, G, Ruddle, F. Hox cluster genomics in the horn shark, Heterodontus francisci. Proc Natl Acad Sci USA 2000, 97:1655–1660.
Shimeld, SM, Donoghue, PC. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 2012, 139:2091–2099.
Smith, JJ, Kuraku, S, Holt, C, Sauka‐Spengler, T, Jiang, N, Campbell, MS, Yandell, MD, Manousaki, T, Meyer, A, Bloom, OE, et al. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 2013, 45:415–21, 421e1‐2.
Parker, HJ, Sauka‐Spengler, T, Bronner, M, Elgar, G. A reporter assay in lamprey embryos reveals both functional conservation and elaboration of vertebrate enhancers. PLoS One 2014, 9:e85492.
Nikitina, N, Bronner‐Fraser, M, Sauka‐Spengler, T. The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology. Cold Spring Harb Protoc 2009: p. pdb emo113.
Murakami, Y, Uchida, K, Rijli, FM, Kuratani, S. Evolution of the brain developmental plan: Insights from agnathans. Dev Biol 2005, 280:249–259.
Osorio, J, Retaux, S. The lamprey in evolutionary studies. Dev Genes Evol 2008, 218:221–235.
Mehta, TK, Ravi, V, Yamasaki, S, Lee, AP, Lian, MM, Tay, BH, Tohari, S, Yanai, S, Tay, A, Brenner, S, et al. Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc Natl Acad Sci USA 2013, 110:16044–16049.
Smith, JJ, Keinath, MC. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications. Genome Res 2015, 25:1081–1090.
McEwen, GK, Goode, DK, Parker, HJ, Woolfe, A, Callaway, H, Elgar, G. Early evolution of conserved regulatory sequences associated with development in vertebrates. PLoS Genet 2009, 5:e1000762.
Parker, HJ, Piccinelli, P, Sauka‐Spengler, T, Bronner, M, Elgar, G. Ancient Pbx‐Hox signatures define hundreds of vertebrate developmental enhancers. BMC Genomics 2011, 12:637.
Grice, J, Noyvert, B, Doglio, L, Elgar, G. A Simple Predictive Enhancer Syntax for Hindbrain Patterning Is Conserved in Vertebrate Genomes. PLoS One 2015, 10:e0130413.
Kuratani, S, Ueki, T, Aizawa, S, Hirano, S. Peripheral development of cranial nerves in a cyclostome, Lampetra japonica: morphological distribution of nerve branches and the vertebrate body plan. J Comp Neurol 1997, 384:483–500.
Murakami, Y, Ogasawara, M, Sugahara, F, Hirano, S, Satoh, N, Kuratani, S. Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 2001, 128:3521–3531.
Murakami, Y, Pasqualetti, M, Takio, Y, Hirano, S, Rijli, FM, Kuratani, S. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 2004, 131:983–995.
Osorio, J, Mazan, S, Retaux, S. Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: insights from LIM‐homeodomain, Pax and hedgehog genes. Dev Biol 2005, 288:100–112.
Kuratani, S, Horigome, N, Ueki, T, Aizawa, S, Hirano, S. Stereotyped axonal bundle formation and neuromeric patterns in embryos of a cyclostome, Lampetra japonica. J Comp Neurol 1998, 391:99–114.
Jimenez‐Guri, E, Pujades, C. An ancient mechanism of hindbrain patterning has been conserved in vertebrate evolution. Evol Dev 2011, 13:38–46.
Takio, Y, Pasqualetti, M, Kuraku, S, Hirano, S, Rijli, FM, Kuratani, S. Evolutionary biology: lamprey Hox genes and the evolution of jaws. Nature 2004, 429:1–2.
Takio, Y, Kuraku, S, Murakami, Y, Pasqualetti, M, Rijli, FM, Narita, Y, Kuratani, S, Kusakabe, R. Hox gene expression patterns in Lethenteron japonicum embryos—insights into the evolution of the vertebrate Hox code. Dev Biol 2007, 308:606–620.
Bertrand, S, Escriva, H. Evolutionary crossroads in developmental biology: amphioxus. Development 2011, 138:4819–4830.
Lemaire, P. Evolutionary crossroads in developmental biology: the tunicates. Development 2011, 138:2143–2152.
Shimeld, SM, Holland, PW. Vertebrate innovations. Proc Natl Acad Sci USA 2000, 97:4449–4452.
Schilling, TF, Knight, RD. Origins of anteroposterior patterning and Hox gene regulation during chordate evolution. Philos Trans R Soc Lond B Biol Sci 2001, 356:1599–1613.
Dufour, HD, Chettouh, Z, Deyts, C, De Rosa, R, Goridis, C, Joly, JS, Brunet, JF. Precraniate origin of cranial motoneurons. Proc Natl Acad Sci USA 2006, 103:8727–8732.
Dufour, HD, Chettouh, Z, Deyts, C, De Rosa, R, Goridis, C, Joly, JS, Brunet, JF. Ciona intestinalis Hox gene cluster: its dispersed structure and residual colinear expression in development. Proc Natl Acad Sci USA 2004, 101:15118–15123.
Spagnuolo, A, Ristoratore, F, Di Gregorio, A, Aniello, F, Branno, M, Di Lauro, R. Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. Gene 2003, 309:71–79.
Seo, HC, Edvardsen, RB, Maeland, AD, Bjordal, M, Jensen, MF, Hansen, A, Flaat, M, Weissenbach, J, Lehrach, H, Wincker, P, et al. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 2004, 431:67–71.
Ikuta, T, Satoh, N, Saiga, H. Limited functions of Hox genes in the larval development of the ascidian Ciona intestinalis. Development 2010, 137:1505–1513.
Locascio, A, Aniello, F, Amoroso, A, Manzanares, M, Krumlauf, R, Branno, M. Patterning the ascidian nervous system: structure, expression and transgenic analysis of the CiHox3 gene. Development 1999, 126:4737–4748.
Natale, A, Sims, C, Chiusano, ML, Amoroso, A, D`Aniello, E, Fucci, L, Krumlauf, R, Branno, M, Locascio, A. Evolution of anterior Hox regulatory elements among chordates. BMC Evol Biol 2011, 11:330.
Ishibashi, T, Usami, T, Fujie, M, Azumi, K, Satoh, N, Fujiwara, S. Oligonucleotide‐based microarray analysis of retinoic acid target genes in the protochordate, Ciona intestinalis. Dev Dyn 2005, 233:1571–1578.
Sasakura, Y, Kanda, M, Ikeda, T, Horie, T, Kawai, N, Ogura, Y, Yoshida, R, Hozumi, A, Satoh, N, Fujiwara, S. Retinoic acid‐driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 2012, 139:2156–2160.
Kanda, M, Ikeda, T, Fujiwara, S. Identification of a retinoic acid‐responsive neural enhancer in the Ciona intestinalis Hox1 gene. Dev Growth Differ 2013, 55:260–269.
Canestro, C, Postlethwait, JH. Development of a chordate anterior‐posterior axis without classical retinoic acid signaling. Dev Biol 2007, 305:522–538.
Marlétaz, F, Holland, LZ, Laudet, V, Schubert, M. Retinoic acid signaling and the evolution of chordates. Int J Biol Sci 2006, 2:38–47.
Garcia‐Fernandez, J, Holland, PWH. Archetypal organisation of the amphioxus Hox gene cluster. Nature 1994, 370:563–566.
Amemiya, CT, Prohaska, SJ, Hill‐Force, A, Cook, A, Wasserscheid, J, Ferrier, DE, Pascual‐Anaya, J, Garcia‐Fernàndez, J, Dewar, K, Stadler, PF. The amphioxus Hox cluster: characterization, comparative genomics, and evolution. J Exp Zool B Mol Dev Evol 2008, 310:465–477.
Wada, H, Garcia‐Fernandez, J, Holland, PW. Colinear and segmental expression of amphioxus Hox genes. Dev Biol 1999, 213:131–141.
Schubert, M, Holland, ND, Laudet, V, Holland, LZ. A retinoic acid‐Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus. Dev Biol 2006, 296:190–202.
Pascual‐Anaya, J, Adachi, N, Álvarez, S, Kuratani, S, D`Aniello, S, Garcia‐Fernàndez, J. Broken colinearity of the amphioxus Hox cluster. Evodevo 2012, 3:28.
Koop, D, Holland, ND, Sémon, M, Alvarez, S, de Lera, AR, Laudet, V, Holland, LZ, Schubert, M. Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: insights into early anterior‐posterior patterning of the chordate body plan. Dev Biol 2010, 338:98–106.
Holland, LZ, Holland, ND. Expression of AmphiHox‐1 and AmphiPax‐1 in amphioxus embryos treated with retinoic acid: insights into evolution and patterning of the chordate nerve cord and pharynx. Development 1996, 122:1829–1838.
Manzanares, M, Wada, H, Itasaki, N, Trainor, PA, Krumlauf, R, Holland, PW. Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. Nature 2000, 408:854–857.
Wada, H, Escriva, H, Zhang, S, Laudet, V. Conserved RARE localization in amphioxus Hox clusters and implications for Hox code evolution in the vertebrate neural crest. Dev Dyn 2006, 235:1522–1531.
Lowe, CJ, Wu, M, Salic, A, Evans, L, Lander, E, Stange‐Thomann, N, Gruber, CE, Gerhart, J, Kirschner, M. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 2003, 113:853–865.
Pani, AM, Mullarkey, EE, Aronowicz, J, Assimacopoulos, S, Grove, EA, Lowe, CJ. Ancient deuterostome origins of vertebrate brain signalling centres. Nature 2012, 483:289–294.
Aronowicz, J, Lowe, CJ. Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Integr Comp Biol 2006, 46:890–901.
Lowe, CJ, Clarke, DN, Medeiros, DM, Rokhsar, DS, Gerhart, J. The deuterostome context of chordate origins. Nature 2015, 520:456–465.
Yu, JK, Holland, ND, Holland, LZ. Tissue‐specific expression of FoxD reporter constructs in amphioxus embryos. Dev Biol 2004, 274:452–461.
Beaster‐Jones, L. Cis‐regulation and conserved non‐coding elements in amphioxus. Brief Funct Genomics 2012, 11:118–130.
Vassalli, QA, Anishchenko, E, Caputi, L, Sordino, P, D`Aniello, S, Locascio, A. Regulatory elements retained during chordate evolution: coming across tunicates. Genesis 2015, 53:66–81.
Keys, DN, Lee, BI, Di Gregorio, A, Harafuji, N, Detter, JC, Wang, M, Kahsai, O, Ahn, S, Zhang, C, Doyle, SA, et al. A saturation screen for cis‐acting regulatory DNA in the Hox genes of Ciona intestinalis. Proc Natl Acad Sci USA 2005, 102:679–683.
Kanda, M, Wada, H, Fujiwara, S. Epidermal expression of Hox1 is directly activated by retinoic acid in the Ciona intestinalis embryo. Dev Biol 2009, 335:454–463.
Jackman, WR, Langeland, JA, Kimmel, CB. islet reveals segmentation in the Amphioxus hindbrain homolog. Dev Biol 2000, 220:16–26.
Jackman, WR, Kimmel, CB. Coincident iterated gene expression in the amphioxus neural tube. Evol Dev 2002, 4:366–374.
Ferrier, DE, Brooke, NM, Panopoulou, G, Holland, PW. The Mnx homeobox gene class defined by HB9, MNR2 and amphioxus AmphiMnx. Dev Genes Evol 2001, 211:103–107.
Bardet, PL, Schubert, M, Horard, B, Holland, LZ, Laudet, V, Holland, ND, Vanacker, JM. Expression of estrogen‐receptor related receptors in amphioxus and zebrafish: implications for the evolution of posterior brain segmentation at the invertebrate‐to‐vertebrate transition. Evol Dev 2005, 7:223–233.
Mazet, F, Shimeld, SM. The evolution of chordate neural segmentation. Dev Biol 2002, 251:258–270.
Wicht, H, Lacalli, TC. The nervous system of amphioxus: structure, development, and evolutionary significance. Can J Zool 2005, 83:122–150.
Knight, RD, Panopoulou, GD, Holland, PW, Shimeld, SM. An amphioxus Krox gene: insights into vertebrate hindbrain evolution. Dev Genes Evol 2000, 210:518–521.
Yao, Y, Minor, PJ, Zhao, YT, Jeong, Y, Pani, AM, King, AN, Symmons, O, Gan, L, Cardoso, WV, Spitz, F, et al. Cis‐regulatory architecture of a brain signaling center predates the origin of chordates. Nat Genet 2016, 48:575–580.
Hudry, B, Thomas‐Chollier, M, Volovik, Y, Duffraisse, M, Dard, A, Frank, D, Technau, U, Merabet, S. Molecular insights into the origin of the Hox‐TALE patterning system. Elife 2014, 3:e01939.