Fisher, RA. The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinburgh 1918, 52:399–433.
Falconer, DS, Mackay, TFC. Introduction to Quantitative Genetics. Harlow, Essex England: Longman Group Limited; 1996.
Lynch, M, Walsh, B. Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates, Inc.; 1998.
Greenspan, RJ. Fly Pushing: The Theory and Practice of Drosophila Genetics, vol. 418. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1997. https://doi.org/10.1016/S0168-9525(97)89749-1.
Caligari, PD, Mather, K. Genotype‐environment interaction. III. Interactions in Drosophila melanogaster. Proc R Soc London Ser B Biol Sci 1975, 191:387–411.
Clayton, GA, Knight, GR, Morris, JA, Robertson, A. An experimental check on quantitative genetical theory. III. Correlated responses. J Genet 1957, 55:171–180.
Thoday, JM. Polygene mapping: Uses and limitations. In: Thompson, JN, Thoday, JM, eds. Quantitative Genetic Variation. New York, NY: Academic Press; 1979, 219–223.
Mackay, TF, Langley, CH. Molecular and phenotypic variation in the achaete‐scute region of Drosophila melanogaster. Nature 1990, 348:64–66. https://doi.org/10.1038/348064a0.
Lai, C, Lyman, RF, Long, AD, Langley, CH, Mackay, TF. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science 1994, 266:1697–1702.
Miyashita, N, Langley, CH. Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. Genetics 1988, 120:199–212.
Mackay, TFC, Richards, S, Stone, EA, Barbadilla, A, Ayroles, JF, Zhu, D, Casillas, S, Han, Y, Magwire, MM, Cridland, JM, et al. The Drosophila melanogaster Genetic Reference Panel. Nature 2012, 482:173–178. https://doi.org/10.1038/nature10811.
Huang, W, Massouras, A, Inoue, Y, Peiffer, J, Ràmia, M, Tarone, AM, Turlapati, L, Zichner, T, Zhu, D, Lyman, RF, et al. Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res 2014, 24:1193–1208. https://doi.org/10.1101/gr.171546.113.
Lander, ES, Schork, NJ. Genetic dissection of complex traits. Science 1994, 265:2037–2048.
Campbell, CD, Ogburn, EL, Lunetta, KL, Lyon, HN, Freedman, ML, Groop, LC, Altshuler, D, Ardlie, KG, Hirschhorn, JN. Demonstrating stratification in a European American population. Nat Genet 2005, 37:868–872. https://doi.org/10.1038/ng1607.
Mukai, T, Metteler, LE, Chigusa, SI. Linkage disquilibrium in a local population of Drosophila melanogaster. Proc Natl Acad Sci USA 1971, 65:1065–1069.
Langley, CH, Ito, K, Voelker, RA. Linkage disequilibrium in natural populations of Drosophila melanogaster: seasonal variation. Genetics 1977, 86:447–454.
Ayroles, JF, Carbone, MA, Stone, EA, Jordan, KW, Lyman, RF, Magwire, MM, Rollmann, SM, Duncan, LH, Lawrence, F, Anholt, RR, et al. Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 2009, 41:299–307. https://doi.org/10.1038/ng.332.
Pool, JE, Aquadro, CF. History and structure of sub‐saharan populations of Drosophila melanogaster. Genetics 2006, 174:915–929. https://doi.org/10.1534/genetics.106.058693.
Langley, CH, Stevens, K, Cardeno, C, Lee, YC, Schrider, DR, Pool, JE, Langley, SA, Suarez, C, Corbett‐Detig, RB, Kolaczkowski, B, et al. Genomic variation in natural populations of Drosophila melanogaster. Genetics 2012, 192:533–598. https://doi.org/10.1534/genetics.112.142018.
Langley, CH, Crepeau, M, Cardeno, C, Corbett‐Detig, R, Stevens, K. Circumventing heterozygosity: Sequencing the amplified genome of a single haploid Drosophila melanogaster embryo. Genetics 2011, 188:239–246. https://doi.org/10.1534/genetics.111.127530.
Pool, JE, Corbett‐Detig, RB, Sugino, RP, Stevens, KA, Cardeno, CM, Crepeau, MW, Duchen, P, Emerson, JJ, Saelao, P, Begun, DJ, et al. Population genomics of sub‐Saharan Drosophila melanogaster: African diversity and non‐African admixture. PLoS Genet 2012, 8:e1003080. https://doi.org/10.1371/journal.pgen.1003080.
Nei, M. Molecular Evolutionary Genetics, vol. 17. Tempe, AZ: Arizona State University; 1987.
Watterson, GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol 1975, 7:256–276.
Stalker, HD. Chromosome studies in wild populations of D. melanogaster. Genetics 1976, 82:323–347.
Mettler, LE, Voelker, RA, Mukai, T. Inversion clines in populations of Drosophila melanogaster. Genetics 1977, 87:169–176.
Corbett‐Detig, RB, Hartl, DL. Population genomics of inversion polymorphisms in Drosophila melanogaster. PLoS Genet 2012, 8:e1003056. https://doi.org/10.1371/journal.pgen.1003056.
Cingolani, P, Platts, A, Wang, le, L, Coon, M, Nguyen, T, Wang, L, Land, SJ, Lu, X, Ruden, DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3. Fly 2012, 6:80–92. https://doi.org/10.4161/fly.19695.
Marygold, SJ, Leyland, PC, Seal, RL, Goodman, JL, Thurmond, J, Strelets, VB, Wilson, RJ. FlyBase consortium FlyBase: improvements to the bibliography. Nucleic Acids Res 2013, 41:D751–D757. https://doi.org/10.1093/nar/gks1024.
Ober, U, Ayroles, JF, Stone, EA, Richards, S, Zhu, D, Gibbs, RA, Stricker, C, Gianola, D, Schlather, M, Mackay, TFC, et al. Using whole‐genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. PLoS Genet 2012, 8:e1002685. https://doi.org/10.1371/journal.pgen.1002685.
Hill, WG, Robertson, A. Linkage disequilibrium in finite populations. Theor Appl Genet 1968, 38:226–231.
Navarro, A, Betrán, E, Barbadilla, A, Ruiz, A. Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. Genetics 1997, 146:695–709.
Andolfatto, P, Depaulis, F, Navarro, A. Inversion polymorphisms and nucleotide variability in Drosophila. Genet Res 2001, 77:1–8.
Skelly, DA, Magwene, PM, Stone, EA. Sporadic, global linkage disequilibrium between unlinked segregating sites. Genetics 2016, 202:427–437. https://doi.org/10.1534/genetics.115.177816.
Huang, W, Mackay, TFC. The genetic architecture of quantitative traits cannot be inferred from variance component analysis. PLoS Genet 2016, 12:e1006421. https://doi.org/10.1371/journal.pgen.1006421.
Kempthorne, O. The theoretical values of correlations between relatives in random mating populations. Genetics 1955, 40:153–167.
Bulmer, MG. The Mathematical Theory of Quantitative Genetics. Oxford, England: Oxford University Press; 1985.
Madsen, BE, Browning, SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 2009, 5:e1000384. https://doi.org/10.1371/journal.pgen.1000384.
Han, F, Pan, W. A data‐adaptive sum test for disease association with multiple common or rare variants. Hum Hered 2010, 70:42–54. https://doi.org/10.1159/000288704.
Neale, BM, Rivas, MA, Voight, BF, Altshuler, D, Devlin, B, Orho‐Melander, M, Kathiresan, S, Purcell, SM, Roeder, K, Daly, MJ. Testing for an unusual distribution of rare variants. PLoS Genet 2011, 7:e1001322. https://doi.org/10.1371/journal.pgen.1001322.
Li, B, Leal, SM. Discovery of rare variants via sequencing: Implications for the design of complex trait association studies. PLoS Genet 2009, 5:e1000481. https://doi.org/10.1371/journal.pgen.1000481.
Wu, MC, Kraft, P, Epstein, MP, Taylor, DM, Chanock, SJ, Hunter, DJ, Lin, X. Powerful SNP‐set analysis for case–control genome‐wide association studies. Am J Hum Genet 2010, 86:929–942. https://doi.org/10.1016/j.ajhg.2010.05.002.
Price, AL, Zaitlen, NA, Reich, D, Patterson, N. New approaches to population stratification in genome‐wide association studies. Nat Rev Genet 2010, 11:459–463. https://doi.org/10.1038/nrg2813.
Huang, W, Carbone, MA, Magwire, MM, Peiffer, JA, Lyman, RF, Stone, EA, Anholt, RR, Mackay, TFC. Genetic basis of transcriptome diversity in Drosophila melanogaster. Proc Natl Acad Sci USA 2015, 112:E6010–E6019. https://doi.org/10.1073/pnas.1519159112.
Ehrenreich, IM, Torabi, N, Jia, Y, Kent, J, Martis, S, Shapiro, JA, Gresham, D, Caudy, AA, Kruglyak, L. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 2010, 464:1039–1042. https://doi.org/10.1038/nature08923.
Swarup, S, Huang, W, Mackay, TFC, Anholt, RRH. Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior. Proc Natl Acad Sci USA 2013, 110:1017–1022. https://doi.org/10.1073/pnas.1220168110.
Shorter, J, Couch, C, Huang, W, Carbone, MA, Peiffer, J, Anholt, RR, Mackay, TF. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior. Proc Natl Acad Sci USA 2015, 112:E3555–E3563. https://doi.org/10.1073/pnas.1510104112.
Huang, W, Richards, S, Carbone, MA, Zhu, D, Anholt, RRH, Ayroles, JF, Duncan, L, Jordan, KW, Lawrence, F, Magwire, MM, et al. Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci USA 2012, 109:15553–15559. https://doi.org/10.1073/pnas.1213423109.
Morozova, TV, Huang, W, Pray, VA, Whitham, T, Anholt, RRH, Mackay, TFC. Polymorphisms in early neurodevelopmental genes affect natural variation in alcohol sensitivity in adult drosophila. BMC Genomics 2015, 16:865. https://doi.org/10.1186/s12864-015-2064-5.
Carbone, MA, Yamamoto, A, Huang, W, Lyman, RA, Meadors, TB, Yamamoto, R, Anholt, RRH, Mackay, TFC. Genetic architecture of natural variation in visual senescence in Drosophila. Proc Natl Acad Sci USA 2016, 113:E6620–E6629. https://doi.org/10.1073/pnas.1613833113.
Mitchell, CL, Latuszek, CE, Vogel, KR, Greenlund, IM, Hobmeier, RE, Ingram, OK, Dufek, SR, Pecore, JL, Nip, FR, Johnson, ZJ, et al. α‐Amanitin resistance in Drosophila melanogaster: a genome‐wide association approach. PLoS One 2017, 12:e0173162. https://doi.org/10.1371/journal.pone.0173162.
Gaertner, BE, Ruedi, EA, McCoy, LJ, Moore, JM, Wolfner, MF, Mackay, TFC. Heritable variation in courtship patterns in Drosophila melanogaster. G3 (Bethesda) 2015, 5:531–539. https://doi.org/10.1534/g3.114.014811.
Turner, TL, Miller, PM, Cochrane, VA. Combining genome‐wide methods to investigate the genetic complexity of courtship song variation in Drosophila melanogaster. Mol Biol Evol 2013, 30:2113–2120. https://doi.org/10.1093/molbev/mst111.
Dembeck, LM, Böröczky, K, Huang, W, Schal, C, Anholt, RRH, Mackay, TFC. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife 2015, 4:pii: e09861. https://doi.org/10.7554/eLife.09861.
Katzenberger, RJ, Chtarbanova, S, Rimkus, SA, Fischer, JA, Kaur, G, Seppala, JM, Swanson, LC, Zajac, JE, Ganetzky, B, Wassarman, DA. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. eLife 2015, 4:e04790. https://doi.org/10.7554/eLife.04790.
Horváth, B, Betancourt, AJ, Kalinka, AT. A novel method for quantifying the rate of embryogenesis uncovers considerable genetic variation for the duration of embryonic development in Drosophila melanogaster. BMC Evol Biol 2016, 16:200. https://doi.org/10.1186/s12862-016-0776-z.
Appel, M, Scholz, CJ, Müller, T, Dittrich, M, König, C, Bockstaller, M, Oguz, T, Khalili, A, Antwi‐Adjei, E, Schauer, T, et al. Genome‐wide association analyses point to candidate genes for electric shock avoidance in Drosophila melanogaster. PLoS One 2015, 10:e0126986. https://doi.org/10.1371/journal.pone.0126986.
Chow, CY, Wolfner, MF, Clark, AG. Using natural variation in Drosophila to discover previously unknown endoplasmic reticulum stress genes. Proc Natl Acad Sci USA 2013, 110:9013–9018. https://doi.org/10.1073/pnas.1307125110.
Durham, MF, Magwire, MM, Stone, EA, Leips, J. Genome‐wide analysis in Drosophila reveals age‐specific effects of SNPs on fitness traits. Nat Commun 2014, 5:1–8. https://doi.org/10.1038/ncomms5338.
Garlapow, ME, Huang, W, Yarboro, MT, Peterson, KR, Mackay, TFC. Quantitative genetics of food intake in Drosophila melanogaster. PLoS One 2015, 10:e0138129. https://doi.org/10.1371/journal.pone.0138129.
Battlay, P, Schmidt, JM, Fournier‐Level, A, Robin, C. Genomic and transcriptomic associations identify a new insecticide resistance phenotype for the selective sweep at the Cyp6g1 locus of Drosophila melanogaster. G3 (Bethesda) 2016, 6:2573–2581. https://doi.org/10.1534/g3.116.031054.
Zhou, S, Morozova, TV, Hussain, YN, Luoma, SE, McCoy, L, Yamamoto, A, Mackay, TFC, Anholt, RRH. The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environ Health Perspect 2016, 124:1062–1070. https://doi.org/10.1289/ehp.1510513.
Grubbs, N, Leach, M, Su, X, Petrisko, T, Rosario, JB, Mahaffey, JW. New components of Drosophila leg development identified through genome wide association studies. PLoS One 2013, 8:e60261. https://doi.org/10.1371/journal.pone.0060261.
Takahara, B, Takahashi, KH. Genome‐wide association study on male genital shape and size in Drosophila melanogaster. PLoS One 2015, 10:e0132846. https://doi.org/10.1371/journal.pone.0132846.
Montgomery, SL, Vorojeikina, D, Huang, W, Mackay, TFC, Anholt, RRH, Rand, MD. Genome‐wide association analysis of tolerance to methylmercury toxicity in Drosophila implicates myogenic and neuromuscular developmental pathways. PLoS One 2014, 9:e110375. https://doi.org/10.1371/journal.pone.0110375.
Chaston, JM, Dobson, AJ, Newell, PD, Douglas, AE. Host genetic control of the microbiota mediates the Drosophila nutritional phenotype. Appl Environ Microbiol 2016, 82:671–679. https://doi.org/10.1128/AEM.03301-15.
Dobson, AJ, Chaston, JM, Newell, PD, Donahue, L, Hermann, SL, Sannino, DR, Westmiller, S, Wong, AC, Clark, AG, Lazzaro, BP, et al. Host genetic determinants of microbiota‐dependent nutrition revealed by genome‐wide analysis of Drosophila melanogaster. Nat Commun 2015, 6:6312. https://doi.org/10.1038/ncomms7312.
Morgante, F, Sørensen, P, Sorensen, DA, Maltecca, C, Mackay, TFC. Genetic architecture of micro‐environmental plasticity in Drosophila melanogaster. Sci Rep 2015, 5:9785. https://doi.org/10.1038/srep09785.
Jumbo‐Lucioni, P, Bu, S, Harbison, ST, Slaughter, JC, Mackay, TFC, Moellering, DR, De Luca, M. Nuclear genomic control of naturally occurring variation in mitochondrial function in Drosophila melanogaster. BMC Genomics 2012, 13:659. https://doi.org/10.1186/1471-2164-13-659.
Zwarts, L, Vanden Broeck, L, Cappuyns, E, Ayroles, JF, Magwire, MM, Vulsteke, V, Clements, J, Mackay, TFC, Callaerts, P. The genetic basis of natural variation in mushroom body size in Drosophila melanogaster. Nat Commun 2015, 6:10115. https://doi.org/10.1038/ncomms10115.
Unckless, RL, Rottschaefer, SM, Lazzaro, BP. A genome‐wide association study for nutritional indices in Drosophila. G3 (Bethesda) 2015, 5:417–425. https://doi.org/10.1534/g3.114.016477.
Brown, EB, Layne, JE, Zhu, C, Jegga, AG, Rollmann, SM. Genome‐wide association mapping of natural variation in odour‐guided behaviour in Drosophila. Genes Brain Behav 2013, 12:503–515. https://doi.org/10.1111/gbb.12048.
Arya, GH, Magwire, MM, Huang, W, Serrano‐Negron, YL, Mackay, TFC, Anholt, RRH. The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem Senses 2015, 40:233–243. https://doi.org/10.1093/chemse/bjv001.
Weber, AL, Khan, GF, Magwire, MM, Tabor, CL, Mackay, TFC, Anholt, RRH. Genome‐wide association analysis of oxidative stress resistance in Drosophila melanogaster. PLoS One 2012, 7:e34745. https://doi.org/10.1371/journal.pone.0034745.
Ayroles, JF, Buchanan, SM, O`Leary, C, Skutt‐Kakaria, K, Grenier, JK, Clark, AG, Hartl, DL, de Bivort, BL. Behavioral idiosyncrasy reveals genetic control of phenotypic variability. Proc Natl Acad Sci USA 2015, 112:201503830. https://doi.org/10.1073/pnas.1503830112.
Dembeck, LM, Huang, W, Magwire, MM, Lawrence, F, Lyman, RF, Mackay, TFC. Genetic architecture of abdominal pigmentation in Drosophila melanogaster. PLoS Genet 2015, 11:e1005163. https://doi.org/10.1371/journal.pgen.1005163.
Vaisnav, M, Xing, C, Ku, HC, Hwang, D, Stojadinovic, S, Pertsemlidis, A, Abrams, JM. Genome‐wide association analysis of radiation resistance in Drosophila melanogaster. PLoS One 2014, 9:e104858. https://doi.org/10.1371/journal.pone.0104858.
Hunter, CM, Huang, W, Mackay, TFC, Singh, ND. The genetic architecture of natural variation in recombination rate in Drosophila melanogaster. PLoS Genet 2016, 12:e1005951. https://doi.org/10.1371/journal.pgen.1005951.
Howick, VM, Lazzaro, BP. The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster. Mol Ecol 2017, 26:1533–1546. https://doi.org/10.1111/mec.14017.
Unckless, RL, Rottschaefer, SM, Lazzaro, BP. The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster. PLoS Genet 2015, 11:e1005030. https://doi.org/10.1371/journal.pgen.1005030.
Wang, JB, Lu, H‐L, St. Leger, RJ. The genetic basis for variation in resistance to infection in the Drosophila melanogaster Genetic Reference Panel. PLoS Pathog 2017, 13:e1006260. https://doi.org/10.1371/journal.ppat.1006260.
Magwire, MM, Fabian, DK, Schweyen, H, Cao, C, Longdon, B, Bayer, F, Jiggins, FM. Genome‐wide association studies reveal a simple genetic basis of resistance to naturally coevolving viruses in Drosophila melanogaster. PLoS Genet 2012, 8:e1003057. https://doi.org/10.1371/journal.pgen.1003057.
Jordan, KW, Craver, KL, Magwire, MM, Cubilla, CE, Mackay, TFC, Anholt, RRH. Genome‐wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster. PLoS One 2012, 7:e38722. https://doi.org/10.1371/journal.pone.0038722.
Harbison, ST, McCoy, LJ, Mackay, TF. Genome‐wide association study of sleep in Drosophila melanogaster. BMC Genomics 2013, 14:281. https://doi.org/10.1186/1471-2164-14-281.
Nelson, CS, Beck, JN, Wilson, KA, Pilcher, ER, Kapahi, P, Brem, RB. Cross‐phenotype association tests uncover genes mediating nutrient response in Drosophila. BMC Genomics 2016, 17:867. https://doi.org/10.1186/s12864-016-3137-9.
Chow, CY, Wolfner, MF, Clark, AG. Large neurological component to genetic differences underlying biased sperm use in Drosophila. Genetics 2013, 193:177–185. https://doi.org/10.1534/genetics.112.146357.
Bou Sleiman, MS, Osman, D, Massouras, A, Hoffmann, AA, Lemaitre, B, Deplancke, B. Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence. Nat Commun 2015, 6:7829. https://doi.org/10.1038/ncomms8829.
Akhund‐Zade, J, Bergland, AO, Crowe, SO, Unckless, RL. The genetic basis of natural variation in Drosophila (Diptera: Drosophilidae) virgin egg retention. J Insect Sci 2017, 17:pii 5. https://doi.org/10.1093/jisesa/iew094.
Ivanov, DK, Escott‐Price, V, Ziehm, M, Magwire, MM, Mackay, TFC, Partridge, L, Thornton, JM. Longevity GWAS using the Drosophila Genetic Reference Panel. J Gerontol Ser A Biol Sci Med Sci 2015, 70:1470–1478. https://doi.org/10.1093/gerona/glv047.
Vonesch, SC, Lamparter, D, Mackay, TFC, Bergmann, S, Hafen, E. Genome‐wide analysis reveals novel regulators of growth in Drosophila melanogaster. PLoS Genet 2016, 12:e1005616. https://doi.org/10.1371/journal.pgen.1005616.
Massouras, A, Waszak, SM, Albarca‐Aguilera, M, Hens, K, Holcombe, W, Ayroles, JF, Dermitzakis, ET, Stone, EA, Jensen, JD, Mackay, TFC, et al. Genomic variation and its impact on gene expression in Drosophila melanogaster. PLoS Genet 2012, 8:e1003055. https://doi.org/10.1371/journal.pgen.1003055.
Cannavò, E, Koelling, N, Harnett, D, Garfield, D, Casale, FP, Ciglar, L, Gustafson, HE, Viales, RR, Marco‐Ferreres, R, Degner, JF, et al. Genetic variants regulating expression levels and isoform diversity during embryogenesis. Nature 2017, 541:402–406. https://doi.org/10.1038/nature20802.
Robertson, A. The nature of quantitative genetic variation. In: Brink, A, ed. Heritage from Mendel. Madison, WI: The University of Wisconsin Press; 1967, 265–280.
Graveley, BR, Brooks, AN, Carlson, JW, Duff, MO, Landolin, JM, Yang, L, Artieri, CG, van Baren, MJ, Boley, N, Booth, BW, et al. The developmental transcriptome of Drosophila melanogaster. Nature 2011, 471:473–479. https://doi.org/10.1038/nature09715.
Dietzl, G, Chen, D, Schnorrer, F, Su, KC, Barinova, Y, Fellner, M, Gasser, B, Kinsey, K, Oppel, S, Scheiblauer, S, et al. A genome‐wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 2007, 448:151–156. https://doi.org/10.1038/nature05954.
Ryder, E, Blows, F, Ashburner, M, Bautista‐Llacer, R, Coulson, D, Drummond, J, Webster, J, Gubb, D, Gunton, N, Johnson, G, et al. The DrosDel collection: a set of P‐element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 2004, 167:797–813. https://doi.org/10.1534/genetics.104.026658.
Thibault, ST, Singer, MA, Miyazaki, WY, Milash, B, Dompe, NA, Singh, CM, Buchholz, R, Demsky, M, Fawcett, R, Francis‐Lang, HL, et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 2004, 36:283–287. https://doi.org/10.1038/ng1314.
Anholt, RRH, Lyman, RF, Mackay, TFC. Effects of single P‐Element insertions on olfactory behavior in Drosophila melanogaster. Genetics 1996, 143:293–301.
Lyman, RF, Lawrence, F, Nuzhdin, SV, Mackay, TFC. Effects of single P‐element insertions on bristle number and viability in Drosophila melanogaster. Genetics 1996, 143:277–292.
Norga, KK, Gurganus, MC, Dilda, CL, Yamamoto, A, Lyman, RF, Patel, PH, Rubin, GM, Hoskins, RA, Mackay, TF, Bellen, HJ. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development. Curr Biol 2003, 13:1388–1397.
Edwards, AC, Zwarts, L, Yamamoto, A, Callaerts, P, Mackay, TFC. Mutations in many genes affect aggressive behavior in Drosophila melanogaster. BMC Biol 2009, 7:29. https://doi.org/10.1186/1741-7007-7-29.
Magwire, MM, Yamamoto, A, Carbone, MA, Roshina, NV, Symonenko, AV, Pasyukova, EG, Morozova, TV, Mackay, TFC. Quantitative and molecular genetic analyses of mutations increasing Drosophila life span. PLoS Genet 2010, 6:e1001037. https://doi.org/0.1371/journal.pgen.1001037.
Mackay, TFC. Epistasis and quantitative traits: using model organisms to study gene‐gene interactions. Nat Rev Genet 2014, 15:22–33. https://doi.org/10.1038/nrg3627.
Rönnegård, L, Valdar, W. Detecting major genetic loci controlling phenotypic variability in experimental crosses. Genetics 2011, 188:435–447. https://doi.org/10.1534/genetics.111.127068.
Yamamoto, A, Anholt, RRH, Mackay, TFC. Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster. Genet Res 2009, 91:373–382. https://doi.org/10.1017/S0016672309990279.
Swarup, S, Harbison, ST, Hahn, LE, Morozova, TV, Yamamoto, A, Mackay, TFC, Anholt, RRH. Extensive epistasis for olfactory behaviour, sleep and waking activity in Drosophila melanogaster. Genet Res 2012, 94:9–20. https://doi.org/10.1017/S001667231200002X.
He, X, Zhou, S, St. Armour, GE, Mackay, TFC, Anholt, RRH. Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior. Genes Brain Behav 2016, 15:280–290. https://doi.org/10.1111/gbb.12279.
He, BZ, Ludwig, MZ, Dickerson, DA, Barse, L, Arun, B, Vilhjálmsson, BJ, Jiang, P, Park, SY, Tamarina, NA, Selleck, SB, et al. Effect of genetic variation in a Drosophila model of diabetes‐associated misfolded human proinsulin. Genetics 2014, 196:557–567. https://doi.org/10.1534/genetics.113.157800.
Park, SY, Ludwig, MZ, Tamarina, NA, He, BZ, Carl, SH, Dickerson, DA, Barse, L, Arun, B, Williams, CL, Miles, CM, et al. Genetic complexity in a Drosophila model of diabetes‐associated misfolded human proinsulin. Genetics 2014, 196:539–555. https://doi.org/10.1534/genetics.113.157602.
Chow, CY, Kelsey, KJP, Wolfner, MF, Clark, AG. Candidate genetic modifiers of retinitis pigmentosa identified by exploiting natural variation in Drosophila. Hum Mol Genet 2016, 25:651–659. https://doi.org/10.1093/hmg/ddv502.
Lin, Y, Chen, Z‐X, Oliver, B, Harbison, ST. Micro‐environmental gene expression plasticity among individual Drosophila melanogaster. G3 (Bethesda) 2016, 6:4197–4210. https://doi.org/10.1534/g3.116.035444.
Hill, WG, Mulder, H. Genetic analysis of environmental variation. Genet Res 2010, 92:381–395. https://doi.org/10.1017/S0016672310000546.
Manolio, TA, Collins, FS, Cox, NJ, Goldstein, DB, Hindorff, LA, Hunter, DJ, McCarthy, MI, Ramos, EM, Cardon, LR, Chakravarti, A, et al. Finding the missing heritability of complex diseases. Nature 2009, 461:747–753. https://doi.org/10.1038/nature08494.
Lango Allen, H, Estrada, K, Lettre, G, Berndt, SI, Weedon, MN, Rivadeneira, F, Willer, CJ, Jackson, AU, Vedantam, S, Raychaudhuri, S, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010, 467:832–838. https://doi.org/10.1038/nature09410.
VanRaden, PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008, 91:4414–4423. https://doi.org/10.3168/jds.2007-0980.
Ober, U, Huang, W, Magwire, MM, Schlather, M, Simianer, H, Mackay, TFC. Accounting for genetic architecture improves sequence based genomic prediction for a Drosophila fitness trait. PLoS One 2015, 10:e0126880. https://doi.org/10.1371/journal.pone.0126880.
Greene, CS, Penrod, NM, Williams, SM, Moore, JH. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One 2009, 4:e5639. https://doi.org/10.1371/journal.pone.0005639.
Zuk, O, Hechter, E, Sunyaev, SR, Lander, ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 2012, 109:1193–1198. https://doi.org/10.1073/pnas.1119675109.
Yang, J, Benyamin, B, McEvoy, BP, Gordon, S, Henders, AK, Nyholt, DR, Madden, PA, Heath, AC, Martin, NG, Montgomery, GW, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Gen 2010, 42:565–569. https://doi.org/10.1038/ng.608.
Yang, J, Lee, SH, Goddard, ME, Visscher, PM. GCTA: a tool for genome‐wide complex trait analysis. Am J Hum Genet 2011, 88:76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.
Bassett, AR, Liu, J‐L. CRISPR/Cas9 and genome editing in Drosophila. J Genet Genomics 2014, 41:7–19. https://doi.org/10.1016/j.jgg.2013.12.004.