Malatesta, P, Hartfuss, E, Gotz, M. Isolation of radial glial cells by fluorescent‐activated cell sorting reveals a neuronal lineage. Development 2000, 127:5253–5263.
Noctor, SC, Flint, AC, Weissman, TA, Dammerman, RS, Kriegstein, AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001, 409:714–720.
Rakic, P. Specification of cerebral cortical areas. Science 1988, 241:170–176.
Englund, C, Fink, A, Lau, C, Pham, D, Daza, RAM, Bulfone, A, Kowalczyk, T, Hevner, RF. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 2005, 25:247–251.
Stancik, EK, Navarro‐Quiroga, I, Sellke, R, Haydar, TF. Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J Neurosci 2010, 30:7028–7036.
Mihalas, AB, Elsen, GE, Bedogni, F, Daza, RAM, Ramos‐Laguna, KA, Arnold, SJ, Hevner, RF. Intermediate progenitor cohorts differentially generate cortical layers and require Tbr2 for timely acquisition of neuronal subtype identity. Cell Rep 2016, 16:92–105.
Vasistha, NA, García‐Moreno, F, Arora, S, Cheung, AFP, Arnold, SJ, Robertson, EJ, Molnar, Z. Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb Cortex 2014, 25:3290–3302.
Kriegstein, AR, Alvarez‐Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009, 32:149–184.
Singh, G, Pratt, G, Yeo, GW, Moore, MJ. The clothes make the mRNA: past and present trends in mRNP fashion. Annu Rev Biochem 2015, 84:325–354.
Le Hir, HE, Sauliere, J, Wang, Z. The exon junction complex as a node of post‐transcriptional networks. Nat Rev Mol Cell Biol 2016, 17:41–54.
Aprea, J, Calegari, F. Long non‐coding RNAs in corticogenesis: deciphering the non‐coding code of the brain. EMBO J 2015, 34:2865–2884.
Dillman, AA, Hauser, DN, Gibbs, JR, Nalls, MA, McCoy, MK, Rudenko, IN, Galter, D, Cookson, MR. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci 2013, 16:499–506.
Ayoub, AE, Oh, S, Xie, Y, Leng, J, Cotney, J, Dominguez, MH, Noonan, JP, Rakic, P. Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high‐resolution mRNA sequencing. Proc Natl Acad Sci USA 2011, 108:14950–14955.
Molyneaux, BJ, Goff, LA, Brettler, AC, Chen, H‐H, Brown, JR, Hrvatin, S, Rinn, JL, Arlotta, P. DeCoN: genome‐wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 2015, 85:275–288.
Zhang, X, Chen, MH, Wu, X, Kodani, A, Fan, J, Doan, R, Ozawa, M, Ma, J, Yoshida, N, Reiter, JF, et al. Cell‐type‐specific alternative splicing governs cell fate in the developing cerebral cortex. Cell 2016, 166:1147.e15–1162.e15.
Katz, Y, Wang, ET, Airoldi, EM, Burge, CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 2010, 7:1009–1015.
Macosko, EZ, Basu, A, Satija, R, Nemesh, J, Shekhar, K, Goldman, M, Tirosh, I, Bialas, AR, Kamitaki, N, Marterstek, EM, et al. Highly parallel genome‐wide expression profiling of individual cells using nanoliter droplets. Cell 2015, 161:1202–1214.
Johnson, MB, Walsh, CA. Cerebral cortical neuron diversity and development at single‐cell resolution. Curr Opin Neurobiol 2017, 42:9–16.
Keene, JD, Komisarow, JM, Friedersdorf, MB. RIP‐Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 2006, 1:302–307.
Nussbacher, JK, Batra, R, Lagier‐Tourenne, C, Yeo, GW. RNA‐binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci 2015, 38:226–236.
Nicholson, CO, Friedersdorf, MB, Keene, JD. Quantifying RNA Binding sites transcriptome‐wide using DO‐RIP‐seq. RNA 2017, 23:32–46.
Sundararaman, B, Zhan, L, Blue, SM, Stanton, R, Elkins, K, Olson, S, Wei, X, Van Nostrand, EL, Pratt, GA, Huelga, SC, et al. Resources for the comprehensive discovery of functional RNA elements. Mol Cell 2016, 61:903–913.
McKee, AE, Minet, E, Stern, C, Riahi, S, Stiles, CD, Silver, PA. A genome‐wide in situ hybridization map of RNA‐binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev Biol 2005, 5:14.
Gerstberger, S, Hafner, M, Tuschl, T. A census of human RNA‐binding proteins. Nat Rev Genet 2014, 15:829–845.
DeBoer, EM, Kraushar, ML, Hart, RP, Rasin, M‐RR. Post‐transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience 2013, 248:499–528.
Shibasaki, T, Tokunaga, A, Sakamoto, R, Sagara, H, Noguchi, S, Sasaoka, T, Yoshida, N. PTB deficiency causes the loss of adherens junctions in the dorsal telencephalon and leads to lethal hydrocephalus. Cereb Cortex 2013, 23:1824–1835.
Ramos, AD, Andersen, RE, Liu, SJ, Nowakowski, TJ, Hong, SJ, Gertz, CC, Salinas, RD, Zarabi, H, Kriegstein, AR, Lim, DA. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 2015, 16:439–447.
Licatalosi, DD, Yano, M, Fak, JJ, Mele, A, Grabinski, SE, Zhang, C, Darnell, RB. Ptbp2 represses adult‐specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev 2012, 26:1626–1642.
Li, Q, Zheng, S, Han, A, Lin, CH, Stoilov, P, Fu, XD, Black, DL. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. Elife 2014, 3:e01201.
Zheng, S, Gray, EE, Chawla, G, Porse, BT, O`Dell, TJ, Black, DL. PSD‐95 is post‐transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nat Neurosci 2012, 15:381–388.
Makeyev, EV, Zhang, J, Carrasco, MA, Maniatis, T. The microRNA miR‐124 promotes neuronal differentiation by triggering brain‐specific alternative pre‐mRNA splicing. Mol Cell 2007, 27:435–448.
Storbeck, M, Hupperich, K, Gaspar, JA, Meganathan, K, Martínez Carrera, L, Wirth, R, Sachinidis, A, Wirth, B. Neuronal‐specific deficiency of the splicing factor Tra2b causes apoptosis in neurogenic areas of the developing mouse brain. PLoS One 2014, 9:e89020.
Roberts, JM, Ennajdaoui, H, Edmondson, C, Wirth, B, Sanford, JR, Chen, B. Splicing factor TRA2B is required for neural progenitor survival. J Comp Neurol 2013, 522:372–392.
Quesnel‐Vallières, M, Irimia, M, Cordes, SP, Blencowe, BJ. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev 2015, 29:746–759.
Irimia, M, Weatheritt, RJ, Ellis, JD, Parikshak, NN, Gonatopoulos‐Pournatzis, T, Babor, M, Quesnel‐Vallieres, M, Tapial, J, Raj, B, O`Hanlon, D, et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 2014, 159:1511–1523.
La Rosa, P, Bielli, P, Compagnucci, C, Cesari, E, Volpe, E, Farioli Vecchioli, S, Sette, C. Sam68 promotes self‐renewal and glycolytic metabolism in mouse neural progenitor cells by modulating Aldh1a3 pre‐mRNA 3′‐end processing. Elife 2016, 5:e20750.
Paronetto, MP, Messina, V, Bianchi, E, Barchi, M, Vogel, G, Moretti, C, Palombi, F, Stefanini, M, Geremia, R, Richard, S, et al. Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J Cell Biol 2009, 185:235–249.
Tokita, MJ, Braxton, AA, Shao, Y, Lewis, AM, Vincent, M, Küry, S, Besnard, T, Isidor, B, Latypova, X, Bezieau, S, et al. De novo truncating variants in SON cause intellectual disability, congenital malformations, and failure to thrive. Am J Hum Genet 2016, 99:720–727.
Kim, J‐H, Shinde, DN, Reijnders, MRF, Hauser, NS, Belmonte, RL, Wilson, GR, Bosch, DG, Bubulya, PA, Shashi, V, Petrovski, S, et al. De novo mutations in SON disrupt RNA splicing of genes essential for brain development and metabolism, causing an intellectual‐disability syndrome. Am J Hum Genet 2016, 99:711–719.
Yano, M, Hayakawa‐Yano, Y, Mele, A, Darnell, RB. Nova2 regulates neuronal migration through an RNA switch in disabled‐1 signaling. Neuron 2010, 66:848–858.
Saito, Y, Miranda‐Rottmann, S, Ruggiu, M, Park, CY, Fak, JJ, Zhong, R, Duncan, JS, Fabella, BA, Junge, HJ, Chen, Z, et al. NOVA2‐mediated RNA regulation is required for axonal pathfinding during development. Elife 2016, 5:487.
Hamada, N, Ito, H, Nishijo, T, Iwamoto, I, Morishita, R, Tabata, H, Momiyama, T, Nagata, K. Essential role of the nuclear isoform of RBFOX1, a candidate gene for autism spectrum disorders, in the brain development. Sci Rep 2016, 25:1–19.
McMahon, JJ, Miller, EE, Silver, DL. The exon junction complex in neural development and neurodevelopmental disease. Int J Dev Neurosci 2016, 55:117–123.
Silver, DL, Watkins‐Chow, DE, Schreck, KC, Pierfelice, TJ, Larson, DM, Burnetti, AJ, Liaw, HJ, Myung, K, Walsh, CA, Gaiano, N, et al. The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat Neurosci 2010, 13:551–558.
McMahon, JJ, Shi, L, Silver, DL. Generation of a Magoh conditional allele in mice. Genesis 2014, 52:752–758.
Pilaz, L‐J, McMahon, JJ, Miller, EE, Lennox, AL, Suzuki, A, Salmon, E, Silver, DL. Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 2016, 89:83–99.
Mao, H, Pilaz, L‐J, McMahon, JJ, Golzio, C, Wu, D, Shi, L, Katsanis, N, Silver, DL. Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly. J Neurosci 2015, 35:7003–7018.
Mao, H, McMahon, JJ, Tsai, Y‐H, Wang, Z, Silver, DL. Haploinsufficiency for core exon junction complex components disrupts embryonic neurogenesis and causes p53‐mediated microcephaly. PLoS Genet 2016, 12:e1006282.
Zou, D, McSweeney, C, Sebastian, A, Reynolds, DJ, Dong, F, Zhou, Y, et al. A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors. Neural Dev 2015, 10:1–16.
Mao, H, Brown, HE, Silver, DL. Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex. RNA 2017, 23:23–31.
Singh, G, Kucukural, A, Cenik, C, Leszyk, JD, Shaffer, SA, Weng, Z, Moore, MJ. The cellular EJC interactome reveals higher‐order mRNP structure and an EJC‐SR protein nexus. Cell 2012, 151:750–764.
Nguyen, LS, Kim, H‐G, Rosenfeld, JA, Shen, Y, Gusella, JF, Lacassie, Y, Layman, LC, Shaffer, LG, Gecz, J. Contribution of copy number variants involving nonsense‐mediated mRNA decay pathway genes to neuro‐developmental disorders. Hum Mol Genet 2013, 22:1816–1825.
Lee, JH, Daugharthy, ER, Scheiman, J, Kalhor, R, Yang, JL, Ferrante, TC, Terry, R, Jeanty, SS, Li, C, Amamonto, R, et al. Highly multiplexed subcellular RNA sequencing in situ. Science 2014, 343:1360–1363.
Jao, CY, Salic, A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci USA 2008, 105:15779–15784.
Ingolia, NT, Ghaemmaghami, S, Newman, J, Weissman, J. Genome‐wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009, 324:218–223.
Halstead, JM, Lionnet, T, Wilbertz, JH, Wippich, F, Ephrussi, A, Singer, RH, Chao, JA. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 2015, 347:1367–1671.
Tom Dieck, S, Kochen, L, Hanus, C, Heumüller, M, Bartnik, I, Nassim‐Assir, B, Merk, K, Mosler, T, Garg, S, Bunse, S, et al. Direct visualization of newly synthesized target proteins in situ. Nat Methods 2015, 12:411–414.
Yan, X, Hoek, TA, Vale, RD, Tanenbaum, ME. Dynamics of translation of single mRNA molecules in vivo. Cell 2016, 165:976–989.
Kusek, G, Campbell, M, Doyle, F, Tenenbaum, SA, Kiebler, MA, Temple, S. Asymmetric segregation of the double‐stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression. Cell Stem Cell 2012, 11:505–516.
Vessey, JP, Amadei, G, Burns, SE, Kiebler, MA, Kaplan, DR, Miller, FD. An asymmetrically localized Staufen2‐dependent RNA complex regulates maintenance of mammalian neural stem cells. Cell Stem Cell 2012, 11:517–528.
Yokota, Y, Kim, W‐Y, Chen, Y, Wang, X, Stanco, A, Komuro, Y, Snider, W, Anton, ES. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron 2009, 61:42–56.
Preitner, N, Quan, J, Nowakowski, DW, Hancock, ML, Shi, J, Tcherkezian, J, Young‐Pearse, TL, Flanagan, JG. APC is an RNA‐binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 2014, 158:368–382.
Yasuda, K, Zhang, H, Loiselle, D, Haystead, T, Macara, IG, Mili, S. The RNA‐binding protein Fus directs translation of localized mRNAs in APC‐RNP granules. J Cell Biol 2013, 203:737–746.
Mili, S, Moissoglu, K, Macara, IG. Genome‐wide screen reveals APC‐associated RNAs enriched in cell protrusions. Nature 2008, 453:115–119.
Nishino, J, Kim, S, Zhu, Y, Zhu, H, Morrison, SJ. A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties. Elife 2013, 2:e00924.
La Fata, G, Gärtner, A, Domínguez‐Iturza, N, Dresselaers, T, Dawitz, J, Poorthuis, RB, Averna, M, Himmelreich, U, Meredith, RM, Achsel, T, et al. FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. Nat Neurosci 2014, 17:1693–1700.
Saffary, R, Xie, Z. FMRP regulates the transition from radial glial cells to intermediate progenitor cells during neocortical development. J Neurosci Soc Neurosci 2011, 31:1427–1439.
Kwan, KY, Lam, MMS, Johnson, MB, Dube, U, Shim, S, Rasin, M‐RR, Sousa, AM, Fertuzinhos, S, Chen, JG, Arellano, JI, et al. Species‐dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 2012, 149:899–911.
Darnell, JC, Van Driesche, SJ, Zhang, C, Hung, KYS, Mele, A, Fraser, CE, Stone, EF, Chen, C, Fak, JJ, Chi, SW, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011, 146:247–261.
Pilaz, L‐J, Silver, DL. Moving messages in the developing brain‐emerging roles for mRNA transport and local translation in neural stem cells. FEBS Lett 2017, 409:714–724.
Pilaz, L‐J, Lennox, AL, Rouanet, JP, Silver, DL. Dynamic mRNA transport and local translation in radial glial progenitors of the developing brain. Curr Biol 2016, 26:3383–3392.
Kelleher, RJ III, Bear, MF. The autistic neuron: troubled translation? Cell 2008, 135:401–406.
Garcia‐Dominguez, DJ, Morello, D, Cisneros, E, Kontoyiannis, DL, Frade, JM. Stabilization of Dll1 mRNA by Elavl1/HuR in neuroepithelial cells undergoing mitosis. Mol Biol Cell 2011, 22:1227–1239.
Kraushar, ML, Thompson, K, Wijeratne, HRS, Viljetic, B, Sakers, K, Marson, JW, Kontoyiannis, DL, Buyske, S, Hart, RP, Rasin, MR. Temporally defined neocortical translation and polysome assembly are determined by the RNA‐binding protein Hu antigen R. Proc Natl Acad Sci USA 2014, 111:E3815–E3824.
Popovitchenko, T, Thompson, K, Viljetic, B, Jiao, X, Kontonyiannis, DL, Kiledjian, M, Hart, RP, Rasin, MR. The RNA binding protein HuR determines the differential translation of autism‐associated FoxP subfamily members in the developing neocortex. Sci Rep 2016, 6:289–298.
DeBoer, EM, Azevedo, R, Vega, TA, Brodkin, J, Akamatsu, W, Okano, H, Wagner, GC, Rasin, MR. Prenatal deletion of the RNA‐binding protein HuD disrupts postnatal cortical circuit maturation and behavior. J Neurosci 2014, 34:3674–3686.
Akamatsu, W, Fujihara, H, Mitsuhashi, T, Yano, M, Shibata, S, Hayakawa, Y, Okano, HJ, Sakakibara, S, Takano, H, Takano, T, et al. The RNA‐binding protein HuD regulates neuronal cell identity and maturation. Proc Natl Acad Sci USA 2005, 102:4625–4630.
Wang, F, Tidei, JJ, Polich, ED, Gao, Y, Zhao, H, Perrone‐Bizzozero, NI, Guo, W, Zhao, X. Positive feedback between RNA‐binding protein HuD and transcription factor SATB1 promotes neurogenesis. Proc Natl Acad Sci USA 2015, 112:E4995–E5004.
Sakakibara, S‐I, Imai, T, Hamaguchi, K, Okabe, M, Aruga, J, Nakajima, K, Yasutomi, D, Nagata, T, Kurihara, Y, Uesugi, S, et al. Mouse‐Musashi‐1, a neural RNA‐binding protein highly enriched in the mammalian CNS stem cell. Dev Biol 1996, 176:230–242.
Sakakibara, S‐I, Nakamura, Y, Yoshida, T, Shibata, S, Koike, M, Takano, H, Ueda, S, Uchiyan, Y, Noda, T, Okano, H. RNA‐binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci USA 2002, 99:15194–15199.
Imai, T, Tokunaga, A, Yoshida, T, Hashimoto, M, Mikoshiba, K, Weinmaster, G, Nakafuku, M, Okano, H. The neural RNA‐binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 2001, 21:3888–3900.
Chavali, PL, Stojic, L, Meredith, LW, Joseph, N, Nahorski, MS, Sanford, TJ, Sweeney, TR, Krishna, BA, Hosmillo, M, Firth, AE, et al. Neurodevelopmental protein Musashi 1 interacts with the Zika genome and promotes viral replication. Science 2017, 357:83–84.
Yang, G, Smibert, CA, Kaplan, DR, Miller, FD. An eIF4E1/4E‐T complex determines the genesis of neurons from precursors by translationally repressing a proneurogenic transcription program. Neuron 2014, 84:723–739.
Amadei, G, Zander, MA, Yang, G, Dumelie, JG, Vessey, JP, Lipshitz, HD, Smibert, CA, Kaplan, DR, Miller, FD. A Smaug2‐based translational repression complex determines the balance between precursor maintenance versus differentiation during mammalian neurogenesis. J Neurosci 2015, 35:15666–15681.
Yang, M, Yang, S‐L, Herrlinger, S, Liang, C, Dzieciatkowska, M, Hansen, KC, Desai, R, Nagy, A, Niswander, L, Moss, EG, et al. Lin28 promotes the proliferative capacity of neural progenitor cells in brain development. Development 2015, 142:1616–1627.
Zhao, P‐P, Yao, M‐J, Chang, S‐Y, Gou, L‐T, Liu, M‐F, Qiu, Z‐L, Yuan, X. Novel function of PIWIL1 in neuronal polarization and migration via regulation of microtubule‐associated proteins. Mol Brain 2016, 19:1–12.
Murn, J, Zarnack, K, Yang, YJ, Durak, O, Murphy, EA, Cheloufi, S, Gonzalez, DM, Teplova, M, Curk, T, Zuber, J, et al. Control of a neuronal morphology program by an RNA‐binding zinc finger protein. Genes Dev 2015, 29:501–512.
Brooks, SS, Wall, AL, Golzio, C, Reid, DW. A novel ribosomopathy caused by dysfunction of RPL10 disrupts neurodevelopment and causes X‐linked microcephaly in humans. Genetics 2014, 198:723–733.
Thevenon, J, Michot, C, Bole, C, Nitschke, P, Nizon, M, Faivre, L, Munnich, A, Lyonnet, S, Bonnefont, JP, Portes, VD, et al. RPL10mutation segregating in a family with X‐linked syndromic intellectual disability. Am J Med Genet A 2015 Apr 6, 167:1908–1912.
Ahmed, I, Buchert, R, Zhou, M, Jiao, X, Mittal, K, Sheikh, TI, Scheller, U, Vasli, N, Rafig, MA, Brohi, MQ, et al. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment. Hum Mol Genet 2015, 24:3172–3180.
Ng, CKL, Shboul, M, Taverniti, V, Bonnard, C, Lee, H, Eskin, A, Nelson, SF, Al‐Ragad, M, Altawalbeh, S, Seraphin, B, et al. Loss of the scavenger mRNA decapping enzyme DCPS causes syndromic intellectual disability with neuromuscular defects. Hum Mol Genet 2015, 24:3163–3171.
Sempere, LF, Freemantle, S, Pitha‐Rowe, I, Moss, E, Dmitrovsky, E, Ambros, V. Expression profiling of mammalian microRNAs uncovers a subset of brain‐expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004, 5:R13.
Kapsimali, M, Kloosterman, WP, de Bruijn, E, Rosa, F, Plasterk, RHA, Wilson, SW. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 2007, 8:R173.
Lagos‐Quintana, M, Rauhut, R, Yalcin, A, Meyer, J, Lendeckel, W, Tuschl, T. Identification of tissue‐specific microRNAs from mouse. Curr Biol 2002, 12:735–739.
Landgraf, P, Rusu, M, Sheridan, R, Sewer, A, Iovino, N, Aravin, A, Pfeffer, S, Rice, A, Kamphorst, AO, Landthaler, M, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129:1401–1414.
Krichevsky, AM. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003, 9:1274–1281.
Volvert, M‐L, Rogister, F, Moonen, G, Malgrange, B, Nguyen, L. MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 2012, 19:1573–1581.
Bartel, DP. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215–233.
de Pietri, TD, Pulvers, JN, Haffner, C, Murchison, EP, Hannon, GJ, Huttner, WB. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 2008, 135:3911–3921.
Kawase‐Koga, Y, Otaegi, G, Sun, T. Different timings of dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 2009, 238:2800–2812.
Davis, TH, Cuellar, TL, Koch, SM, Barker, AJ, Harfe, BD, McManus, MT, Ullian, EM. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 2008, 28:4322–4330.
Barca‐Mayo, O, de Pietri Tonelli, D. Convergent microRNA actions coordinate neocortical development. Cell Mol Life Sci 2014, 71:2975–2995.
Gorski, JA, Talley, T, Qiu, M, Puelles, L, Rubenstein, JLR, Jones, KR. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1‐expressing lineage. J Neurosci 2002, 22:6309–6314.
Chou, SJ, Perez‐Garcia, CG, Kroll, TT, O`Leary, DDM. Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex. Nat Neurosci 2009, 12:1381–1389.
Nowakowski, TJ, Mysiak, KS, O`Leary, T, Fotaki, V, Pratt, T, Price, DJ. Loss of functional Dicer in mouse radial glia cell‐autonomously prolongs cortical neurogenesis. Dev Biol 2013, 382:530–537.
Volvert, M‐L, Prévot, P‐P, Close, P, Laguesse, S, Pirotte, S, Hemphill, J, Rogister, F, Kruzy, N, Sacheli, R, Moonen, G, et al. MicroRNA targeting of CoREST controls polarization of migrating cortical neurons. Cell Rep 2014, 7:1168–1183.
Shibata, M, Nakao, H, Kiyonari, H, Abe, T, Aizawa, S. MicroRNA‐9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 2011, 31:3407–3422.
Shibata, M, Kurokawa, D, Nakao, H, Ohmura, T, Aizawa, S. MicroRNA‐9 modulates Cajal‐Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 2008, 28:10415–10421.
Zhao, C, Sun, G, Ye, P, Li, S, Shi, Y. MicroRNA let‐7d regulates the TLX/microRNA‐9 cascade to control neural cell fate and neurogenesis. Sci Rep 2013, 3:1329.
Sun, G, Ye, P, Murai, K, Lang, M‐F, Li, S, Zhang, H, Li, W, Fu, C, Yin, J, Wang, A, et al. miR‐137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun 2011, 2:529.
Dajas‐Bailador, F, Bonev, B, Garcez, P, Stanley, P, Guillemot, F, Papalopulu, N. microRNA‐9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 2012, 15:697–699.
Clovis, YM, Enard, W, Marinaro, F, Huttner, WB, De Pietri Tonelli, D. Convergent repression of Foxp2 3′UTR by miR‐9 and miR‐132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 2012, 139:3332–3342.
Franzoni, E, Booker, SA, Parthasarathy, S, Rehfeld, F, Grosser, S, Srivatsa, S, Fuchs, HR, Tarabykin, V, Vida, I, Wulczyn, FG. miR‐128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. ELife 2015, 4:207–223.
Zhang, W, Kim, PJ, Chen, Z, Lokman, H, Qiu, L, Zhang, K. MiRNA‐128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. Elife 2016, 5:e11324.
Bruno, IG, Karam, R, Huang, L, Bhardwaj, A, Lou, CH, Shum, EY, Song, HW, Corbett, MA, Gifford, WD, Gecz, J, et al. Identification of a microRNA that activates gene expression by repressing nonsense‐mediated RNA decay. Mol Cell 2011, 42:500–510.
Zhang, C, Mejia, LA, Huang, J, Valnegri, P, Bennett, EJ, Anckar, J, Jahani‐Asl, A, Gallardo, G, Ikeuchi, Y, Yamada, T, et al. The X‐linked intellectual disability protein PHF6 associates with the PAF1 complex and regulates neuronal migration in the mammalian brain. Neuron 2013, 78:986–993.
Nowakowski, TJ, Fotaki, V, Pollock, A, Sun, T, Pratt, T, Price, DJ. MicroRNA‐92b regulates the development of intermediate cortical progenitors in embryonic mouse brain. Proc Natl Acad Sci USA 2013, 110:7056–7061.
Bian, S, Hong, J, Li, Q, Schebelle, L, Pollock, A, Knauss, JL, Garg, V, Sun, T. MicroRNA cluster miR‐17‐92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex. Cell Rep 2013, 3:1398–1406.
Fei, J‐F, Haffner, C, Huttner, WB. 3′ UTR‐dependent, miR‐92‐mediated restriction of Tis21 expression maintains asymmetric neural stem cell division to ensure proper neocortex size. Cell Rep 2014, 9:1–14.
Chen, Y, Bian, S, Zhang, J, Zhang, H, Tang, B, Sun, T. The silencing effect of microRNA miR‐17 on p21 maintains the neural progenitor pool in the developing cerebral cortex. Front Neurol 2014, 5:132.
Pollock, A, Bian, S, Zhang, C, Chen, Z, Sun, T. Growth of the developing cerebral cortex is controlled by microRNA‐7 through the p53 pathway. Cell Rep 2014, 7:1184–1196.
Abdullah, AI, Zhang, H, Nie, Y, Tang, W, Sun, T. CDK7 and miR‐210 co‐regulate cell‐cycle progression of neural progenitors in the developing neocortex. Stem Cell Rep 2016, 7:69–79.
Fededa, JP, Esk, C, Mierzwa, B, Stanyte, R, Yuan, S, Zheng, H, Ebnet, K, Yan, W, Knoblich, JA, Gerlich, DW. MicroRNA‐34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO J 2016, 35:2386–2398.
Pollen, AA, Nowakowski, TJ, Shuga, J, Wang, X, Leyrat, AA, Lui, JH, Li, N, Szpankowski, L, Fowler, B, Chen, P, et al. Low‐coverage single‐cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 2014, 32:1053–1058.
Shin, J, Shin, Y, Oh, S‐M, Yang, H, Yu, W‐J, Lee, J‐P, Huh, SO, Lee, SH, Suh, YH, Chung, S, et al. MiR‐29b controls fetal mouse neurogenesis by regulating ICAT‐mediated Wnt/β‐catenin signaling. Cell Death Dis 2014, 5:e1473.
Gaughwin, P, Ciesla, M, Yang, H, Lim, B, Brundin, P. Stage‐specific modulation of cortical neuronal development by Mmu‐miR‐134. Cereb Cortex 2011, 21:1857–1869.
Lv, X, Jiang, H, Liu, Y, Lei, X, Jiao, J. MicroRNA‐15b promotes neurogenesis and inhibits neural progenitor proliferation by directly repressing TET3 during early neocortical development. EMBO Rep 2014, 15:1305–1314.
Yoo, AS, Staahl, BT, Chen, L, Crabtree, GR. MicroRNA‐mediated switching of chromatin‐remodelling complexes in neural development. Nature 2009, 460:642–646.
Keene, JD. RNA regulons: coordination of post‐transcriptional events. Nat Rev Genet 2007, 8:533–543.
Xue, Y, Ouyang, K, Huang, J, Zhou, Y, Ouyang, H, Li, H, Wang, G, Wu, Q, Wei, C, Bi, Y, et al. Direct conversion of fibroblasts to neurons by reprogramming PTB‐regulated microRNA circuits. Cell 2013, 152:82–96.
Kraushar, ML, Viljetic, B, Wijeratne, HRS, Thompson, K, Jiao, X, Pike, JW, Medvedeva, V, Groszer, M, Kiledijan, M, Hart, RP, et al. Thalamic WNT3 secretion spatiotemporally regulates the neocortical ribosome signature and mRNA translation to specify neocortical cell subtypes. J Neurosci 2015, 35:10911–10926.
Karam, R, Wilkinson, M. A conserved microRNA/NMD regulatory circuit controls gene expression. RNA Biol 2012, 9:20–24.
Shenoy, A, Blelloch, RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 2014, 15:565–576.
Telley, L, Govindan, S, Prados, J, Stevant, I, Nef, S, Dermitzakis, E, Dayer, A, Jabaudon, D. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 2016, 351:1443–1446.