Malpighi, M. De Formatione Pulli in Ovo. London; 1672. Reprinted in Adelmannm HB, Malpighi M. Evolution of Embryology. Ithaca, NY: Cornell University Press; 1966.
Sanders, EJ, Lash, JW, Ordahl, CP. Origin and Fate of Somites. Amsterdam: IOS Press; 2001.
Le Douarin, N, Barq, G. Sur l`utilisation des cellules de la caille japonaise comme ‘marqueurs biologiques’en embryologie expérimentale. C r Hebd Séanc Acad Sei Paris D 1969, 269:1543–1546.
Chevallier, A, Kieny, M, Mauger, A. Limb‐somite relationship: origin of the limb musculature. Embryol Exp Morphol 1977, 41:245–258.
Christ, B, Jacob, HJ, Jacob, M. Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 1977, 150:171–186.
Christ, B, Brand‐Saberi, B, Grim, M, Wilting, J. Local signalling in dermomyotomal cell type specification. Anat Embryol 1992, 186:505–510.
Ordahl, CP, Le Douarin, NM. Two myogenic lineages within the developing somite. Development 1992, 114:339–353.
Kaehn, K, Jacob, HJ, Christ, B, Hinrichsen, K, Poelmann, RE. The onset of myotome formation in the chick. Anat Embryol 1988, 177:191–201.
Denetclaw, WF Jr, Christ, B, Ordahl, CP. Location and growth of epaxial myotome precursor cells. Development 1997, 124:1601–1610.
Denetclaw, WF Jr, Berdougo, E, Venters, SJ, Ordahl, CP. Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome. Development 2001, 128:1745–1755.
Atit, R, Sgaier, SK, Mohamed, OA, Taketo, MM, Dufort, D, Joyner, AL, Niswander, L, Conlon, RA. Beta‐catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006, 296:164–176.
Armand, O, Boutineau, A, Mauger, M, Pautou, AMP, Kieny, M. Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp 1983, 72:163–181.
Gros, J, Manceau, M, Thome, V, Marcelle, C. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 2005, 435:954–958.
Relaix, F, Rocancourt, D, Mansouri, A, Buckingham, M. A Pax3/Pax7‐dependent population of skeletal muscle progenitor cells. Nature 2005, 435:948–953.
Bober, E, Franz, T, Arnold, HH, Gruss, P, Tremblay, P. Pax‐3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 1994, 120:603–612.
Goulding, MD, Chalepakis, G, Deutsch, U, Erselius, JR, Gruss, P. Pax‐3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 1991, 10:1135–1147.
Fan, CM, Tessier‐Lavigne, M. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 1994, 79:1175–1186.
Schienda, J, Engleka, KA, Jun, S, Hansen, MS, Epstein, JA, Tabin, CJ, Kunkel, LM, Kardon, G. Somitic origin of limb muscle satellite and side population cells. Proc Nat Acad Sci U S A 2006, 103:945–950.
Feil, R, Wagner, J, Metzger, D, Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand‐binding domains. Biochem Biophys Res Commun 1997, 237:752–757.
Lepper, C, Fan, CM. Inducible lineage tracing of Pax7‐descendant cells reveals embryonic origin of adult satellite cells. Genesis 2010, 48:424–436. doi:10.1002/dvg.20630.
Buckingham, M. Skeletal muscle development and the role of the myogenic regulatory factors. Biochem Soc Trans 1996, 24:506–509.
Buckingham, M, Bajard, L, Chang, T, Daubas, P, Hadchouel, J, Meilhac, S, Montarras, D, Rocancourt, D, Relaix, F. The formation of skeletal muscle: from somite to limb. J Anat 2003, 202:59–68.
Lassar, AB, Paterson, BM, Weintraub, H. Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell 1986, 47:649–656. doi:0092‐8674(86)90507‐6.
Olson, EN. MyoD family: a paradigm for development? Genes Dev 1990, 4:1454–1461.
Kaul, A, Koster, M, Neuhaus, H, Braun, T. Myf‐5 revisited: loss of early myotome formation does not lead to a rib phenotype in homozygous Myf‐5 mutant mice. Cell 2000, 102:17–19. doi:S0092‐8674(00)00006‐4.
Rudnicki, MA, Braun, T, Hinuma, S, Jaenisch, R. Inactivation of MyoD in mice leads to up‐regulation of the myogenic HLH gene Myf‐5 and results in apparently normal muscle development. Cell 1992, 71:383–390. doi:0092‐8674(92)90508‐A.
Yoon, JK, Olson, EN, Arnold, HH, Wold, BJ. Different MRF4 knockout alleles differentially disrupt Myf‐5 expression: cis‐regulatory interactions at the MRF4/Myf‐5 locus. Dev Biol 1997, 188:349–362. doi:S0012‐1606(97)98670‐X.
Kassar‐Duchossoy, L, Gayraud‐Morel, B, Gomès, D, Rocancourt, D, Buckingham, M, Shinin, V, Tajbakhsh, S. Mrf4 determines skeletal muscle identity in Myf5:Myod double‐mutant mice. Nature 2004, 431:466–471. doi:10.1038/nature 02876nature02876.
Hasty, P, Bradley, A, Morris, JH, Edmondson, DG, Venuti, JM, Olson, EN, Klein, WH. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 1993, 364:501–506. doi:10.1038/364501a0.
Valdez, MR, Richardson, JA, Klein, WH, Olson, EN. Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4. Dev Biol 2000, 219:287–298.
Seale, P, Bjork, B, Yang, W, Kajimura, S, Chin, S, Kuang, S, Scimè, A, Devarakonda, S, Conroe, HM, Erdjument‐Bromage, H, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454:961–967. doi:nature07182.
Kuang, S, Kuroda, K, Le Grand, F, Rudnicki, MA. Asymmetric self‐renewal and commitment of satellite stem cells in muscle. Cell 2007, 129:999–1010.
Gensch, N, Borchardt, T, Schneider, A, Riethmacher, D, Braun, T. Different autonomous myogenic cell populations revealed by ablation of Myf5‐expressing cells during mouse embryogenesis. Development 2008, 135:1597–1604.
Kanisicak, O, Mendez, JJ, Yamamoto, S, Yamamoto, M, Goldhamer, DJ. Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev Biol 2009, 332:131–141. doi:S0012‐1606(09)00873‐2.
Hutcheson, DA, Zhao, J, Merrell, A, Haldar, M, Kardon, G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta‐catenin. Genes Dev 2009, 23:997–1013. doi:gad.1769009.
Nishijo, K, Hosoyama, T, Bjornson, CR, Schaffer, BS, Prajapati, SI, Bahadur, AN, Hansen, MS, Blandford, MC, McCleish, AT, Rubin, BP, et al. Biomarker system for studying muscle, stem cells, and cancer in vivo. FASEB J 2009, 23:2681–2690. Epub March 30, 2009.
Lepper, C, Conway, SJ, Fan, CM. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 2009, 460:627–631.
Montarras, D, Morgan, J, Collins, C, Relaix, F, Zaffran, S, Cumano, A, Partridge, T, Buckingham, M. Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005, 309:2064–2067.
Mitchell, KJ, Pannérec, A, Cadot, B, Parlakian, A, Besson, V, Gomes, ER, Marazzi, G, Sassoon, DA. Identification and characterization of a non‐satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 2010, 12:257–266. doi:ncb2025.
Kuang, S, Charge, SB, Seale, P, Huh, M, Rudnicki, MA. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 2006, 172:103–113.
Oustanina, S, Hause, G, Braun, T. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 2004, 23:3430–3439.
Relaix, F, Montarras, D, Zaffran, S, Gayraud‐Morel, B, Rocancourt, D, Tajbakhsh, S, Mansouri, A, Cumano, A, Buckingham, M. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 2006, 172:91–102.
Studitsky, AN. Free auto‐ and homografts of muscle tissue in experiments on animals. Ann N Y Acad Sci 1964, 120:789–801.
Luz, MA, Marques, MJ, Santo Neto, H. Impaired regeneration of dystrophin‐deficient muscle fibers is caused by exhaustion of myogenic cells. Braz J Med Biol Res 2002, 35:691–695. doi:S0100‐879X2002000600009.
Mauro, A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961, 9:493–495.
Stockdale, FE, Holtzer, H. DNA synthesis and myogenesis. Exp Cell Res 1961, 24:508–520.
Cooper, WG, Konigsberg, IR. Dynamics of myogenesis in vitro. Anatom Rec 1961, 140:195–205.
Snow, MH. An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rats. Cell Tissue Res 1978, 186:535–540.
Seale, P, Sabourin, LA, Girgis‐Gabardo, A, Mansouri, A, Gruss, P, Rudnicki, MA. Pax7 is required for the specification of myogenic satellite cells. Cell 2000, 102:777–786.
Chen, Y, Lin, G, Slack, JM. Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development 2006, 133:2303–2313. doi:dev.02397.
Collins, CA, Olsen, I, Zammit, PS, Heslop, L, Petrie, A, Partridge, TA, Morgan, JE. Stem cell function, self‐renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005, 122:289–301.
Sacco, A, Doyonnas, R, Kraft, P, Vitorovic, S, Blau, HM. Self‐renewal and expansion of single transplanted muscle stem cells. Nature 2008, 456:502–506.
Cerletti, M, Jurga, S, Witczak, CA, Hirshman, MF, Shadrach, JL, Goodyear, LJ, Wagers, AJ. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 2008, 134:37–47.
Osawa, M, Hanada, K, Hamada, H, Nakauchi, H. Long‐term lymphohematopoietic reconstitution by a single CD34‐low/negative hematopoietic stem cell. Science 1996, 273:242–245.
Péault, B, Rudnicki, M, Torrente, Y, Cossu, G, Tremblay, JP, Partridge, T, Gussoni, E, Kunkel, LM, Huard, J. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 2007, 15:867–877.
Hayashi, S, McMahon, AP. Efficient recombination in diverse tissues by a tamoxifen‐inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 2002, 244:305–318.
Megeney, LA, Kablar, B, Garrett, K, Anderson, JE, Rudnicki, MA. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 1996, 10:1173–1183.
Cornelison, DD, Olwin, BB, Rudnicki, MA, Wold, BJ. MyoD(‐/‐) satellite cells in single‐fiber culture are differentiation defective and MRF4 deficient. Dev Biol 2000, 224:122–137. doi:10.1006/dbio.2000. 9682S0012‐1606(00)99682‐9.
Ustanina, S, Carvajal, J, Rigby, P, Braun, T. The myogenic factor Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification. Stem Cells 2007, 25:2006–2016. doi:10.1634/stemcells.
Gayraud‐Morel, B, Chrétien, F, Flamant, P, Gomès, D, Zammit, PS, Tajbakhsh, S. A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol 2007, 312:13–28. doi:10.1016/j.ydbio.2007.08.059.
Meadows, E, Cho, JH, Flynn, JM, Klein, WH. Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev Biol 2008, 322:406–414. doi:S0012‐1606(08)01074‐9.
Moresi, V, Williams, AH, Meadows, E, Flynn, JM, Potthoff, MJ, McAnally, J, Shelton, JM, Backs, J, Klein, WH, Richardson, JA, et al. Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 2010, 143:35–45. doi:10.1016/j.cell.2010.09.004.
Rong, PM, Teillet, MA, Ziller, C, Le Douarin, NM. The neural tube/notochord complex is necessary for vertebral but not limb and body wall striated muscle differentiation. Development 1992, 115:657–672.
Kuratani, S, Martin, JF, Wawersik, S, Lilly, B, Eichele, G, Olson, EN. The expression pattern of the chick homeobox gene gMHox suggests a role in patterning of the limbs and face and in compartmentalization of somites. Dev Biol 1994, 161:357–369. doi:10.1006/ dbio.1994.1037S0012‐1606(84)71037‐2.
Cossu, G, Kelly, R, Tajbakhsh, S, Di Donna, S, Vivarelli, E, Buckingham, M. Activation of different myogenic pathways: myf‐5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm. Development 1996, 122:429–437.
Fan, CM, Lee, CS, Tessier‐Lavigne, M. A role for WNT proteins in induction of dermomyotome. Dev Biol 1997, 191:160–165.
Tajbakhsh, S, Borello, U, Vivarelli, E, Kelly, R, Papkoff, J, Duprez, D, Buckingham, M, Cossu, G. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 1998, 125:4155–4162.
Chen, AE, Ginty, DD, Fan, CM. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 2005, 433:317–322. doi:nature03126.
Ikeya, M, Takada, S. Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 1998, 125:4969–4976.
Brunelli, S, Relaix, F, Baesso, S, Buckingham, M, Cossu, G. Beta catenin‐independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Dev Biol 2007, 304:604–614. doi:S0012‐1606(07)00020‐6.
Dunty, WC Jr, Biris, KK, Chalamalasetty, RB, Taketo, MM, Lewandoski, M, Yamaguchi, TP. Wnt3a/beta‐catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 2008, 135:85–94. doi:dev.009266.
Brack, AS, Murphy‐Seiler, F, Hanifi, J, Deka, J, Eyckerman, S, Keller, C, Aguet, M, Rando, TA. BCL9 is an essential component of canonical Wnt signaling that mediates the differentiation of myogenic progenitors during muscle regeneration. Dev Biol 2009, 335:93–105. doi:S0012‐1606(09)01137‐3.
Polesskaya, A, Seale, P, Rudnicki, MA. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 2003, 113:841–852. doi:S0092867403004379.
Zhao, P, Hoffman, EP. Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 2004, 229:380–392. doi:10.1002/dvdy.10457.
Floss, T, Arnold, HH, Braun, T. A role for FGF‐6 in skeletal muscle regeneration. Genes Dev 1997, 11:2040–2051.
Zhao, P, Caretti, G, Mitchell, S, McKeehan, WL, Boskey, AL, Pachman, LM, Sartorelli, V, Hoffman, EP. Fgfr4 is required for effective muscle regeneration in vivo. Delineation of a MyoD‐Tead2‐Fgfr4 transcriptional pathway. J Biol Chem 2006, 281:429–438. doi:10.1074/jbc.M507440200.
Le Grand, F, Jones, AE, Seale, V, Scime, A, Rudnicki, MA. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 2009, 4:535–547. doi:S1934‐5909(09)00148‐9.
Otto, A, Schmidt, C, Luke, G, Allen, S, Valasek, P, Muntoni, F, Lawrence‐Watt, D, Patel, K. Canonical Wnt signalling induces satellite‐cell proliferation during adult skeletal muscle regeneration. J Cell Sci 2008, 121:2939–2950. doi:jcs.026534.
Brack, AS, Conboy, MJ, Roy, S, Lee, M, Kuo, CJ, Keller, C, Rando, TA. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 2007, 317:807–810.
Pansters, NA, van der Velden, JL, Kelders, MC, Laeremans, H, Schols, AM, Langen, RC. Segregation of myoblast fusion and muscle‐specific gene expression by distinct ligand‐dependent inactivation of GSK‐3beta. Cell Mol Life Sci 2011, 68:523–535. doi:10.1007/s00018‐010‐0467‐7.
Conboy, IM, Conboy, MJ, Wagers, AJ, Girma, ER, Weissman, IL, Rando, TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005, 433:760–764. doi:nature03260.
Carlson, ME, Hsu, M, Conboy, IM. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 2008, 454:528–532. doi:nature07034.
Carlson, ME, Conboy, MJ, Hsu, M, Barchas, L, Jeong, J, Agrawal, A, Mikels, AJ, Agrawal, S, Schaffer, DV, Conboy, IM. Relative roles of TGF‐beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 2009, 8:676–689. doi:ACE517.
Schuster‐Gossler, K, Cordes, R, Gossler, A. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Nat Acad Sci U S A 2007, 104:537–542. doi:0608281104.
Vasyutina, E, Lenhard, DC, Wende, H, Erdmann, B, Epstein, JA, Birchmeier, C. RBP‐J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proc Nat Acad Sci U S A 2007, 104:4443–4448. doi:0610647104.
Spana, EP, Doe, CQ. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 1996, 17:21–26. doi:S0896‐6273(00)80277‐9.
Jory, A, Le Roux, I, Gayraud‐Morel, B, Rocheteau, P, Cohen‐Tannoudji, M, Cumano, A, Tajbakhsh, S. Numb promotes an increase in skeletal muscle progenitor cells in the embryonic somite. Stem Cells 2009, 27:2769–2780. doi:10.1002/stem.220.
Conboy, IM, Rando, TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 2002, 3:397–409. doi:S153458070200254X.
Shinin, V, Gayraud‐Morel, B, Gomès, D, Tajbakhsh, S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 2006, 8:677–687.
Kitamoto, T, Hanaoka, K. Notch3 mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 2010, 28:2205–2216. doi:10.1002/stem.547.
Meadows, E, Flynn, JM, Klein, WH. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice. PLoS One 2011, 6:e16184. doi:10.1371/journal.pone.0016184.