Hendry, SH, Schwark, HD, Jones, EG, Yan, J. Numbers and proportions of GABA‐immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 1987, 7:1503–1519.
Markram, H, Toledo‐Rodriguez, M, Wang, Y, Gupta, A, Silberberg, G, Wu, C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004, 5:793–807.
Sherwood, CC, Raghanti, MA, Stimpson, CD, Spocter, MA, Uddin, M, Boddy, AM, Wildman, DE, Bonar, CJ, Lewandowski, AH, Phillips, KA, et al. Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes. Proc Biol Sci 2010, 277:1011–1020.
Tamamaki, N, Yanagawa, Y, Tomioka, R, Miyazaki, J, Obata, K, Kaneko, T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse. J Comp Neurol 2003, 467:60–79.
Maass, W, Natschlager, T, Markram, H. Fading memory and kernel properties of generic cortical microcircuit models. J Physiol Paris 2004, 98:315–330.
Ascoli, GA, Alonso‐Nanclares, L, Anderson, SA, Barrionuevo, G, Benavides‐Piccione, R, Burkhalter, A, Buzsaki, G, Cauli, B, Defelipe, J, Fairen, A, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 2008, 9:557–568.
DeFelipe, J, Lopez‐Cruz, PL, Benavides‐Piccione, R, Bielza, C, Larranaga, P, Anderson, S, Burkhalter, A, Cauli, B, Fairen, A, Feldmeyer, D, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 2013, 14:202–216.
Wonders, CP, Anderson, SA. The origin and specification of cortical interneurons. Nat Rev Neurosci 2006, 7:687–696.
Miyoshi, G, Butt, SJ, Takebayashi, H, Fishell, G. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2‐expressing precursors. J Neurosci 2007, 27:7786–7798.
Xu, Q, Cobos, I, De La Cruz, E, Rubenstein, JL, Anderson, SA. Origins of cortical interneuron subtypes. J Neurosci 2004, 24:2612–2622.
Schmolesky, M. The Primary Visual Cortex. In: Kolb, H, Fernandez, E, Nelson, R, eds. Webvision. Salt Lake City, UT: The Organization of the Retina and Visual System; 1995.
DeFelipe, J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin‐D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 1997, 14:1–19.
Rudy, B, Fishell, G, Lee, S, Hjerling‐Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 2011, 71:45–61.
Lee, S, Hjerling‐Leffler, J, Zagha, E, Fishell, G, Rudy, B. The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 2010, 30:16796–16808.
Somogyi, P, Tamas, G, Lujan, R, Buhl, EH. Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 1998, 26:113–135.
Gentet, LJ. Functional diversity of supragranular GABAergic neurons in the barrel cortex. Front Neural Circuits 2012, 6:52.
Ma, Y, Hu, H, Berrebi, AS, Mathers, PH, Agmon, A. Distinct subtypes of somatostatin‐containing neocortical interneurons revealed in transgenic mice. J Neurosci 2006, 26:5069–5082.
Wang, Y, Toledo‐Rodriguez, M, Gupta, A, Wu, C, Silberberg, G, Luo, J, Markram, H. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol 2004, 561:65–90.
Cruikshank, SJ, Lewis, TJ, Connors, BW. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 2007, 10:462–468.
Pfeffer, CK, Xue, M, He, M, Huang, ZJ, Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 2013, 16:1068–1076.
Karnani, MM, Jackson, J, Ayzenshtat, I, Tucciarone, J, Manoocheri, K, Snider, WG, Yuste, R. Cooperative subnetworks of molecularly similar interneurons in mouse neocortex. Neuron 2016, 90:86–100.
Adesnik, H, Bruns, W, Taniguchi, H, Huang, ZJ, Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 2012, 490:226–231.
Xu, H, Jeong, HY, Tremblay, R, Rudy, B. Neocortical somatostatin‐expressing GABAergic interneurons disinhibit the thalamorecipient layer 4. Neuron 2013, 77:155–167.
Jiang, X, Shen, S, Cadwell, CR, Berens, P, Sinz, F, Ecker, AS, Patel, S, Tolias, AS. Principles of connectivity among morphologically defined cell types in adult neocortex. Science 2015, 350:aac9462.
Olah, S, Fule, M, Komlosi, G, Varga, C, Baldi, R, Barzo, P, Tamas, G. Regulation of cortical microcircuits by unitary GABA‐mediated volume transmission. Nature 2009, 461:1278–1281.
Fino, E, Yuste, R. Dense inhibitory connectivity in neocortex. Neuron 2011, 69:1188–1203.
Packer, AM, Yuste, R. Dense, unspecific connectivity of neocortical parvalbumin‐positive interneurons: a canonical microcircuit for inhibition? J Neurosci 2011, 31:13260–13271.
Bock, DD, Lee, WC, Kerlin, AM, Andermann, ML, Hood, G, Wetzel, AW, Yurgenson, S, Soucy, ER, Kim, HS, Reid, RC. Network anatomy and in vivo physiology of visual cortical neurons. Nature 2011, 471:177–182.
Hofer, SB, Ko, H, Pichler, B, Vogelstein, J, Ros, H, Zeng, H, Lein, E, Lesica, NA, Mrsic‐Flogel, TD. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat Neurosci 2011, 14:1045–1052.
Yoshimura, Y, Callaway, EM. Fine‐scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci 2005, 8:1552–1559.
Otsuka, T, Kawaguchi, Y. Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. J Neurosci 2009, 29:10533–10540.
Armstrong, C, Wang, J, Yeun Lee, S, Broderick, J, Bezaire, MJ, Lee, SH, Soltesz, I. Target‐selectivity of parvalbumin‐positive interneurons in layer II of medial entorhinal cortex in normal and epileptic animals. Hippocampus 2016, 26:779–793.
Katzel, D, Zemelman, BV, Buetfering, C, Wolfel, M, Miesenbock, G. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat Neurosci 2011, 14:100–107.
Galarreta, M, Hestrin, S. Electrical synapses between GABA‐releasing interneurons. Nat Rev Neurosci 2001, 2:425–433.
Wang, XJ, Buzsaki, G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 1996, 16:6402–6413.
Galarreta, M, Erdelyi, F, Szabo, G, Hestrin, S. Electrical coupling among irregular‐spiking GABAergic interneurons expressing cannabinoid receptors. J Neurosci 2004, 24:9770–9778.
Blatow, M, Rozov, A, Katona, I, Hormuzdi, SG, Meyer, AH, Whittington, MA, Caputi, A, Monyer, H. A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 2003, 38:805–817.
Chu, Z, Galarreta, M, Hestrin, S. Synaptic interactions of late‐spiking neocortical neurons in layer 1. J Neurosci 2003, 23:96–102.
Deans, MR, Gibson, JR, Sellitto, C, Connors, BW, Paul, DL. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 2001, 31:477–485.
Beierlein, M, Gibson, JR, Connors, BWA. network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 2000, 3:904–910.
Cardin, JA, Carlen, M, Meletis, K, Knoblich, U, Zhang, F, Deisseroth, K, Tsai, LH, Moore, CI. Driving fast‐spiking cells induces gamma rhythm and controls sensory responses. Nature 2009, 459:663–667.
Simon, A, Olah, S, Molnar, G, Szabadics, J, Tamas, G. Gap‐junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J Neurosci 2005, 25:6278–6285.
Gibson, JR, Beierlein, M, Connors, BW. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 1999, 402:75–79.
Galarreta, M, Hestrin, SA. network of fast‐spiking cells in the neocortex connected by electrical synapses. Nature 1999, 402:72–75.
Yanez, IB, Munoz, A, Contreras, J, Gonzalez, J, Rodriguez‐Veiga, E, DeFelipe, J. Double bouquet cell in the human cerebral cortex and a comparison with other mammals. J Comp Neurol 2005, 486:344–360.
DeFelipe, J. Cortical interneurons: from Cajal to 2001. Changing views of Cajal`s. Neuron 2002, 136:215–238.
Beaulieu, C. Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 1993, 609:284–292.
Gabbott, PL, Dickie, BG, Vaid, RR, Headlam, AJ, Bacon, SJ. Local‐circuit neurons in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol 1997, 377:465–499.
Meinecke, DL, Peters, A. GABA immunoreactive neurons in rat visual cortex. J Comp Neurol 1987, 261:388–404.
Micheva, KD, Beaulieu, C. Postnatal development of GABA neurons in the rat somatosensory barrel cortex: a quantitative study. Eur J Neurosci 1995, 7:419–430.
Beaulieu, C, Kisvarday, Z, Somogyi, P, Cynader, M, Cowey, A. Quantitative distribution of GABA‐immunopositive and ‐immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb Cortex 1992, 2:295–309.
del Rio, MR, DeFelipe, J. Double bouquet cell axons in the human temporal neocortex: relationship to bundles of myelinated axons and colocalization of calretinin and calbindin D‐28k immunoreactivities. J Chem Neuroanat 1997, 13:243–251.
Gabbott, PL, Bacon, SJ. Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions. J Comp Neurol 1996, 364:609–636.
DeFelipe, J, Hendry, SH, Hashikawa, T, Molinari, M, Jones, EG. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 1990, 37:655–673.
del Rio, MR, DeFelipe, J. A light and electron microscopic study of calbindin D‐28k immunoreactive double bouquet cells in the human temporal cortex. Brain Res 1995, 690:133–140.
Peters, A, Sethares, C. The organization of double bouquet cells in monkey striate cortex. J Neurocytol 1997, 26:779–797.
Favorov, OV, Kelly, DG. Minicolumnar organization within somatosensory cortical segregates: II. Emergent functional properties. Cereb Cortex 1994, 4:428–442.
Kisvarday, ZF, Cowey, A, Somogyi, P. Synaptic relationships of a type of GABA‐immunoreactive neuron (clutch cell), spiny stellate cells and lateral geniculate nucleus afferents in layer IVC of the monkey striate cortex. Neuroscience 1986, 19:741–761.
Kisvarday, ZF, Martin, KA, Whitteridge, D, Somogyi, P. Synaptic connections of intracellularly filled clutch cells: a type of small basket cell in the visual cortex of the cat. J Comp Neurol 1985, 241:111–137.
DeFelipe, J. Chandelier cells and epilepsy. Brain 1999, 122:1807–1822.
Zeisel, A, Munoz‐Manchado, AB, Codeluppi, S, Lonnerberg, P, La Manno, G, Jureus, A, Marques, S, Munguba, H, He, L, Betsholtz, C, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single‐cell RNA‐seq. Science 2015, 347:1138–1142.
Tasic, B, Menon, V, Nguyen, TN, Kim, TK, Jarsky, T, Yao, Z, Levi, B, Gray, LT, Sorensen, SA, Dolbeare, T, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 2016, 19:335–346.
Parnavelas, JG, Barfield, JA, Franke, E, Luskin, MB. Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Cereb Cortex 1991, 1:463–468.
Luskin, MB, Parnavelas, JG, Barfield, JA. Neurons, astrocytes, and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: an ultrastructural analysis of clonally related cells. J Neurosci 1993, 13:1730–1750.
Tan, SS, Kalloniatis, M, Sturm, K, Tam, PP, Reese, BE, Faulkner‐Jones, B. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 1998, 21:295–304.
Anderson, SA, Kaznowski, CE, Horn, C, Rubenstein, JL, McConnell, SK. Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb Cortex 2002, 12:702–709.
Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 2009, 10:724–735.
Molnar, Z, Butt, SJ. Best‐laid schemes for interneuron origin of mice and men. Nat Neurosci 2013, 16:1512–1514.
Deacon, TW, Pakzaban, P, Isacson, O. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res 1994, 668:211–219.
Wichterle, H, Turnbull, DH, Nery, S, Fishell, G, Alvarez‐Buylla, A. utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 2001, 128:3759–3771.
Olsson, M, Bjorklund, A, Campbell, K. Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 1998, 84:867–876.
Olsson, M, Campbell, K, Wictorin, K, Bjorklund, A. Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence. Neuroscience 1995, 69:1169–1182.
Stenman, J, Toresson, H, Campbell, K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J Neurosci 2003, 23:167–174.
Marin, O, Rubenstein, JL. A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2001, 2:780–790.
Letinic, K, Zoncu, R, Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 2002, 417:645–649.
Petanjek, Z, Berger, B, Esclapez, M. Origins of cortical GABAergic neurons in the cynomolgus monkey. Cereb Cortex 2009, 19:249–262.
Jakovcevski, I, Mayer, N, Zecevic, N. Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors. Cereb Cortex 2011, 21:1771–1782.
Radonjic, NV, Ayoub, AE, Memi, F, Yu, X, Maroof, A, Jakovcevski, I, Anderson, SA, Rakic, P, Zecevic, N. Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche. Cell Rep 2014, 9:2139–2151.
Hansen, DV, Lui, JH, Flandin, P, Yoshikawa, K, Rubenstein, JL, Alvarez‐Buylla, A, Kriegstein, AR. Non‐epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat Neurosci 2013, 16:1576–1587.
Ma, T, Wang, C, Wang, L, Zhou, X, Tian, M, Zhang, Q, Zhang, Y, Li, J, Liu, Z, Cai, Y, et al. Subcortical origins of human and monkey neocortical interneurons. Nat Neurosci 2013, 16:1588–1597.
Xu, Q, Tam, M, Anderson, SA. Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon. J Comp Neurol 2008, 506:16–29.
Miyoshi, G, Hjerling‐Leffler, J, Karayannis, T, Sousa, VH, Butt, SJ, Battiste, J, Johnson, JE, Machold, RP, Fishell, G. Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 2010, 30:1582–1594.
Gelman, D, Griveau, A, Dehorter, N, Teissier, A, Varela, C, Pla, R, Pierani, A, Marin, O. A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci 2011, 31:16570–16580.
Gelman, DM, Martini, FJ, Nobrega‐Pereira, S, Pierani, A, Kessaris, N, Marin, O. The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 2009, 29:9380–9389.
Anastasiades, PG, Butt, SJ. Decoding the transcriptional basis for GABAergic interneuron diversity in the mouse neocortex. Eur J Neurosci 2011, 34:1542–1552.
Gelman, DM, Marin, O, Rubenstein, JLR. The Generation of Cortical Interneurons. In: Noebels, JL, Avoli, M, Rogawski, MA, Olsen, RW, Delgado‐Escueta, AV, eds. Jasper`s Basic Mechanisms of the Epilepsies. 4th ed. Bethesda, MD: National Center for Biotechnology Information (US); 2012.
Hernandez‐Miranda, LR, Parnavelas, JG, Chiara, F. Molecules and mechanisms involved in the generation and migration of cortical interneurons. ASN Neuro 2010, 2:e00031.
Flandin, P, Zhao, Y, Vogt, D, Jeong, J, Long, J, Potter, G, Westphal, H, Rubenstein, JL. Lhx6 and Lhx8 coordinately induce neuronal expression of Shh that controls the generation of interneuron progenitors. Neuron 2011, 70:939–950.
Vogt, D, Hunt, RF, Mandal, S, Sandberg, M, Silberberg, SN, Nagasawa, T, Yang, Z, Baraban, SC, Rubenstein, JL. Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position. Neuron 2014, 82:350–364.
Long, JE, Cobos, I, Potter, GB, Rubenstein, JL. Dlx1%262 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. Cereb Cortex 2009, 19:i96–106.
Long, JE, Swan, C, Liang, WS, Cobos, I, Potter, GB, Rubenstein, JL. Dlx1%262 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways. J Comp Neurol 2009, 512:556–572.
Waclaw, RR, Wang, B, Pei, Z, Ehrman, LA, Campbell, K. Distinct temporal requirements for the homeobox gene Gsx2 in specifying striatal and olfactory bulb neuronal fates. Neuron 2009, 63:451–465.
Xu, Q, Guo, L, Moore, H, Waclaw, RR, Campbell, K, Anderson, SA. Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates. Neuron 2010, 65:328–340.
Lodato, S, Tomassy, GS, De Leonibus, E, Uzcategui, YG, Andolfi, G, Armentano, M, Touzot, A, Gaztelu, JM, Arlotta, P, Menendez de la Prida, L, et al. Loss of COUP‐TFI alters the balance between caudal ganglionic eminence‐ and medial ganglionic eminence‐derived cortical interneurons and results in resistance to epilepsy. J Neurosci 2011, 31:4650–4662.
Ma, T, Zhang, Q, Cai, Y, You, Y, Rubenstein, JL, Yang, Z. A subpopulation of dorsal lateral/caudal ganglionic eminence‐derived neocortical interneurons expresses the transcription factor Sp8. Cereb Cortex 2012, 22:2120–2130.
Cai, Y, Zhang, Q, Wang, C, Zhang, Y, Ma, T, Zhou, X, Tian, M, Rubenstein, JL, Yang, Z. Nuclear receptor COUP‐TFII‐expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons. J Comp Neurol 2013, 521:479–497.
Miyoshi, G, Young, A, Petros, T, Karayannis, T, McKenzie Chang, M, Lavado, A, Iwano, T, Nakajima, M, Taniguchi, H, Huang, ZJ, et al. Prox1 regulates the subtype‐specific development of caudal ganglionic eminence‐derived GABAergic cortical interneurons. J Neurosci 2015, 35:12869–12889.
Rubin, AN, Kessaris, N. PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. PLoS One 2013, 8:e77339.
Touzot, A, Ruiz‐Reig, N, Vitalis, T, Studer, M. Molecular control of two novel migratory paths for CGE‐derived interneurons in the developing mouse brain. Development 2016, 143:1753–1765.
Bandler, RC, Mayer, C, Fishell, G. Cortical interneuron specification: the juncture of genes, time and geometry. Curr Opin Neurobiol 2017, 42:17–24.
Flames, N, Pla, R, Gelman, DM, Rubenstein, JL, Puelles, L, Marin, O. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci 2007, 27:9682–9695.
Fogarty, M, Grist, M, Gelman, D, Marin, O, Pachnis, V, Kessaris, N. Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 2007, 27:10935–10946.
Sousa, VH, Miyoshi, G, Hjerling‐Leffler, J, Karayannis, T, Fishell, G. Characterization of Nkx6‐2‐derived neocortical interneuron lineages. Cereb Cortex 2009, 19:i1–10.
Inan, M, Welagen, J, Anderson, SA. Spatial and temporal bias in the mitotic origins of somatostatin‐ and parvalbumin‐expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb Cortex 2012, 22:820–827.
Wonders, CP, Taylor, L, Welagen, J, Mbata, IC, Xiang, JZ, Anderson, SA. A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev Biol 2008, 314:127–136.
Taniguchi, H, Lu, J, Huang, ZJ. The spatial and temporal origin of chandelier cells in mouse neocortex. Science 2013, 339:70–74.
He, M, Tucciarone, J, Lee, S, Nigro, MJ, Kim, Y, Levine, JM, Kelly, SM, Krugikov, I, Wu, P, Chen, Y, et al. Strategies and tools for combinatorial targeting of GABAergic neurons in mouse cerebral cortex. Neuron 2016, 91:1228–1243.
Silberberg, SN, Taher, L, Lindtner, S, Sandberg, M, Nord, AS, Vogt, D, McKinsey, GL, Hoch, R, Pattabiraman, K, Zhang, D, et al. Subpallial enhancer transgenic lines: a data and tool resource to study transcriptional regulation of GABAergic cell fate. Neuron 2016, 92:59–74.
Chen, YJ, Friedman, BA, Ha, C, Durinck, S, Liu, J, Rubenstein, JL, Seshagiri, S, Modrusan, Z. Single‐cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types. Sci Rep 2017, 7:45656.
Cavanagh, ME, Parnavelas, JG. Development of vasoactive‐intestinal‐polypeptide‐immunoreactive neurons in the rat occipital cortex: a combined immunohistochemical‐autoradiographic study. J Comp Neurol 1989, 284:637–645.
Butt, SJ, Fuccillo, M, Nery, S, Noctor, S, Kriegstein, A, Corbin, JG, Fishell, G. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 2005, 48:591–604.
Nery, S, Fishell, G, Corbin, JG. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 2002, 5:1279–1287.
Breunig, JJ, Haydar, TF, Rakic, P. Neural stem cells: historical perspective and future prospects. Neuron 2011, 70:614–625.
Malatesta, P, Hack, MA, Hartfuss, E, Kettenmann, H, Klinkert, W, Kirchhoff, F, Gotz, M. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 2003, 37:751–764.
Malatesta, P, Hartfuss, E, Gotz, M. Isolation of radial glial cells by fluorescent‐activated cell sorting reveals a neuronal lineage. Development 2000, 127:5253–5263.
Noctor, SC, Flint, AC, Weissman, TA, Dammerman, RS, Kriegstein, AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001, 409:714–720.
Noctor, SC, Martinez‐Cerdeno, V, Ivic, L, Kriegstein, AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004, 7:136–144.
Anthony, TE, Klein, C, Fishell, G, Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 2004, 41:881–890.
Kowalczyk, T, Pontious, A, Englund, C, Daza, RA, Bedogni, F, Hodge, R, Attardo, A, Bell, C, Huttner, WB, Hevner, RF. Intermediate neuronal progenitors (basal progenitors) produce pyramidal‐projection neurons for all layers of cerebral cortex. Cereb Cortex 2009, 19:2439–2450.
Angevine, JB Jr, Sidman, RL. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 1961, 192:766–768.
Brown, KN, Chen, S, Han, Z, CH, L, Tan, X, Zhang, XJ, Ding, L, Lopez‐Cruz, A, Saur, D, Anderson, SA, et al. Clonal production and organization of inhibitory interneurons in the neocortex. Science 2011, 334:480–486.
Marquardt, T. Transcriptional control of neuronal diversification in the retina. Prog Retin Eye Res 2003, 22:567–577.
Jessell, TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 2000, 1:20–29.
Desai, AR, McConnell, SK. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 2000, 127:2863–2872.
Frantz, GD, McConnell, SK. Restriction of late cerebral cortical progenitors to an upper‐layer fate. Neuron 1996, 17:55–61.
McConnell, SK, Kaznowski, CE. Cell cycle dependence of laminar determination in developing neocortex. Science 1991, 254:282–285.
Luskin, MB, Pearlman, AL, Sanes, JR. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1988, 1:635–647.
Walsh, C, Cepko, CL. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 1993, 362:632–635.
Franco, SJ, Gil‐Sanz, C, Martinez‐Garay, I, Espinosa, A, Harkins‐Perry, SR, Ramos, C, Muller, U. Fate‐restricted neural progenitors in the mammalian cerebral cortex. Science 2012, 337:746–749.
Guo, C, Eckler, MJ, McKenna, WL, McKinsey, GL, Rubenstein, JL, Chen, B. Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 2013, 80:1167–1174.
Gao, P, Postiglione, MP, Krieger, TG, Hernandez, L, Wang, C, Han, Z, Streicher, C, Papusheva, E, Insolera, R, Chugh, K, et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 2014, 159:775–788.
He, S, Li, Z, Ge, S, YC, Y, Shi, SH. Inside‐out radial migration facilitates lineage‐dependent neocortical microcircuit assembly. Neuron 2015, 86:1159–1166.
YC, Y, He, S, Chen, S, Fu, Y, Brown, KN, Yao, XH, Ma, J, Gao, KP, Sosinsky, GE, Huang, K, et al. Preferential electrical coupling regulates neocortical lineage‐dependent microcircuit assembly. Nature 2012, 486:113–117.
Li, Y, Lu, H, Cheng, PL, Ge, S, Xu, H, Shi, SH, Dan, Y. Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature 2012, 486:118–121.
YC, Y, Bultje, RS, Wang, X, Shi, SH. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 2009, 458:501–504.
Tan, X, Liu, WA, Zhang, XJ, Shi, W, Ren, SQ, Li, Z, Brown, KN, Shi, SH. Vascular influence on ventral telencephalic progenitors and neocortical interneuron production. Dev Cell 2016, 36:624–638.
Lavdas, AA, Grigoriou, M, Pachnis, V, Parnavelas, JG. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 1999, 19:7881–7888.
Leventhal, C, Rafii, S, Rafii, D, Shahar, A, Goldman, SA. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 1999, 13:450–464.
Palmer, TD, Willhoite, AR, Gage, FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000, 425:479–494.
Shen, Q, Goderie, SK, Jin, L, Karanth, N, Sun, Y, Abramova, N, Vincent, P, Pumiglia, K, Temple, S. Endothelial cells stimulate self‐renewal and expand neurogenesis of neural stem cells. Science 2004, 304:1338–1340.
Tavazoie, M, Van der Veken, L, Silva‐Vargas, V, Louissaint, M, Colonna, L, Zaidi, B, Garcia‐Verdugo, JM, Doetsch, F. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008, 3:279–288.
Fietz, SA, Lachmann, R, Brandl, H, Kircher, M, Samusik, N, Schroder, R, Lakshmanaperumal, N, Henry, I, Vogt, J, Riehn, A, et al. Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self‐renewal. Proc Natl Acad Sci U S A 2012, 109:11836–11841.
Goldman, SA, Chen, Z. Perivascular instruction of cell genesis and fate in the adult brain. Nat Neurosci 2011, 14:1382–1389.
Pollen, AA, Nowakowski, TJ, Chen, J, Retallack, H, Sandoval‐Espinosa, C, Nicholas, CR, Shuga, J, Liu, SJ, Oldham, MC, Diaz, A, et al. Molecular identity of human outer radial glia during cortical development. Cell 2015, 163:55–67.
Noctor, SC, Martinez‐Cerdeno, V, Kriegstein, AR. Neural stem and progenitor cells in cortical development. Novartis Found Symp 2007, 288:59, 96–73; discussion 73‐58, 58.
Noctor, SC, Martinez‐Cerdeno, V, Kriegstein, AR. Contribution of intermediate progenitor cells to cortical histogenesis. Arch Neurol 2007, 64:639–642.
Glickstein, SB, Monaghan, JA, Koeller, HB, Jones, TK, Ross, ME. Cyclin D2 is critical for intermediate progenitor cell proliferation in the embryonic cortex. J Neurosci 2009, 29:9614–9624.
Glickstein, SB, Moore, H, Slowinska, B, Racchumi, J, Suh, M, Chuhma, N, Ross, ME. Selective cortical interneuron and GABA deficits in cyclin D2‐ mice. Development 2007, 134:4083–4093.
Petros, TJ, Bultje, RS, Ross, ME, Fishell, G, Anderson, SA. Apical versus basal neurogenesis directs cortical interneuron subclass fate. Cell Rep 2015, 13:1090–1095.
Sultan, KT, Brown, KN, Shi, SH. Production and organization of neocortical interneurons. Front Cell Neurosci 2013, 7:221.
Sultan, KT, Shi, W, Shi, SH. Clonal origins of neocortical interneurons. Curr Opin Neurobiol 2014, 26:125–131.
Ciceri, G, Dehorter, N, Sols, I, Huang, ZJ, Maravall, M, Marin, O. Lineage‐specific laminar organization of cortical GABAergic interneurons. Nat Neurosci 2013, 16:1199–1210.
Harwell, CC, Fuentealba, LC, Gonzalez‐Cerrillo, A, Parker, PR, Gertz, CC, Mazzola, E, Garcia, MT, Alvarez‐Buylla, A, Cepko, CL, Kriegstein, AR. Wide dispersion and diversity of clonally related inhibitory interneurons. Neuron 2015, 87:999–1007.
Mayer, C, Jaglin, XH, Cobbs, LV, Bandler, RC, Streicher, C, Cepko, CL, Hippenmeyer, S, Fishell, G. Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries. Neuron 2015, 87:989–998.
Sultan, KT, Han, Z, Zhang, XJ, Xianyu, A, Li, Z, Huang, K, Shi, SH. Clonally related GABAergic interneurons do not randomly disperse but frequently form local clusters in the forebrain. Neuron 2016, 92:31–44.
Zhang, XJ, Li, Z, Han, Z, Sultan, KT, Huang, K, Shi, SH. Precise inhibitory microcircuit assembly of developmentally related neocortical interneurons in clusters. Nat Commun 2017, 8:16091.