Acosta‐Salmón,, H., & Southgate,, P. C. (2006). Wound healing after excision of mantle tissue from the Akoya pearl oyster, Pinctada fucata. Comparative Biochemistry and Physiology A, 143(2), 264–268. https://doi.org/10.1016/j.cbpa.2005.12.006
Agata,, K., Saito,, Y., & Nakajima,, E. (2007). Unifying principles of regeneration I: Epimorphosis versus morphallaxis. Development, Growth %26 Differentiation, 49(2), 73–78. https://doi.org/10.1111/j.1440-169X.2007.00919.x
Aguilar,, C., & Gardiner,, D. M. (2015). DNA methylation dynamics regulate the formation of a regenerative wound epithelium during axolotl limb regeneration. PLoS One, 10(8), e0134791. https://doi.org/10.1371/journal.pone.0134791
Almuedo‐Castillo,, M., Crespo,, X., Seebeck,, F., Bartscherer,, K., Salò,, E., & Adell,, T. (2014). JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling. PLoS Genetics, 10(6), e1004400. https://doi.org/10.1371/journal.pgen.1004400
Amiel,, A. R., Johnston,, H. T., Nedoncelle,, K., Warner,, J. F., Ferreira,, S., & Röttinger,, E. (2015). Characterization of morphological and cellular events underlying oral regeneration in the sea anemone, Nematostella vectensis. International Journal of Molecular Sciences, 16(12), 28449–28471. https://doi.org/10.3390/ijms161226100
Andreoli,, A., Ruf,, M. T., Itin,, P., Pluschke,, G., & Schmid,, P. (2015). Phosphorylation of the ribosomal protein S6, a marker of mTOR (mammalian target of rapamycin) pathway activation, is strongly increased in hypertrophic scars and keloids. British Journal of Dermatology, 172(5), 1415–1417. https://doi.org/10.1111/bjd.13523
Auger,, H., Sasakura,, Y., Joly,, J.‐S., & Jeffery,, W. R. (2010). Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis. Developmental Biology, 339(2), 374–389. https://doi.org/10.1016/j.ydbio.2009.12.040
Barrientos,, S., Stojadinovic,, O., Golinko,, M. S., Brem,, H., & Tomic‐Canic,, M. (2008). Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 16(5), 585–601. https://doi.org/10.1111/j.1524-475X.2008.00410.x
Bely,, A. E., & Nyberg,, K. G. (2010). Evolution of animal regeneration: Re‐emergence of a field. Trends in Ecology %26 Evolution, 25(3), 161–170. https://doi.org/10.1016/j.tree.2009.08.005
Bergmann,, A., & Steller,, H. (2010). Apoptosis, stem cells, and tissue regeneration. Science Signaling, 3(145), re8. https://doi.org/10.1126/scisignal.3145re8
Björkblom,, B., Padzik,, A., Mohammad,, H., Westerlund,, N., Komulainen,, E., Hollos,, P., … Coffey,, E. T. (2012). c‐Jun N‐terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells. Molecular and Cellular Biology, 32(17), 3513–3526. https://doi.org/10.1128/MCB.00713-12
Blassberg,, R. A., Garza‐Garcia,, A., Janmohamed,, A., Gates,, P. B., & Brockes,, J. P. (2011). Functional convergence of signalling by GPI‐anchored and anchorless forms of a salamander protein implicated in limb regeneration. Journal of Cell Science, 124(1), 47–56. https://doi.org/10.1242/jcs.076331
Blum,, N., & Begemann,, G. (2012). Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development, 139(1), 107–116. https://doi.org/10.1242/dev.065391
Bode,, H. R. (2003). Head regeneration in Hydra. Developmental Dynamics, 226(2), 225–236. https://doi.org/10.1002/dvdy.10225
Bollnerl,, T., Howalt,, S., Thorndyke,, M. C., & Beesley,, P. W. (1995). Regeneration and post‐metamorphic development of the central nervous system in the protochordate Ciona intestinalis: A study with monoclonal antibodies. Cell and Tissue Research, 279(2), 421–432.
Borisenko,, I. E., Adamska,, M., Tokina,, D. B., & Ereskovsky,, A. V. (2015). Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ, 3, e1211. https://doi.org/10.7717/peerj.1211
Boser,, A., Drexler,, H. C. A., Reuter,, H., Schmitz,, H., Wu,, G., Schöler,, H. R., … Bartscherer,, K. (2013). SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells. Cell Reports, 5(4), 1142–1155. https://doi.org/10.1016/j.celrep.2013.10.035
Braden,, B. P., Taketa,, D. A., Pierce,, J. D., Kassmer,, S., Lewis,, D. D., & De Tomaso,, A. W. (2014). Vascular regeneration in a basal chordate is due to the presence of immobile, bi‐functional cells. PLoS One, 9(4), e95460. https://doi.org/10.1371/journal.pone.0095460
Bradshaw,, B., Thompson,, K., & Frank,, U. (2015). Distinct mechanisms underlie oral vs aboral regeneration in the cnidarian Hydractinia echinata. eLife, 4, e1211. https://doi.org/10.7554/eLife05506
Brockes,, J. P., & Kintner,, C. R. (1986). Glial growth factor and nerve‐dependent proliferation in the regeneration blastema of urodele amphibians. Cell, 45(2), 301–306. https://doi.org/10.1016/0092-8674(86)90394-6
Buono,, R., Vantaggiato,, C., Pisa,, V., Azzoni,, E., Bassi,, M. T., Brunelli,, S., … Clementi,, E. (2012). Nitric oxide sustains long‐term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP. Stem Cells, 30(2), 197–209. https://doi.org/10.1002/stem.783
Cai,, J., Zhang,, N., & Zheng,, Y. (2010). The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes and Development, 24(410), 2383–2388. https://doi.org/10.1101/gad.1978810
Calise,, S., Blescia,, S., Cencetti,, F., Bernacchioni,, C., Donati,, C., & Bruni,, P. (2012). Sphingosine 1‐phosphate stimulates proliferation and migration of satellite cells. Biochimica et Biophysica Acta, 1823(2), 439–450. https://doi.org/10.1016/j.bbamcr.2011.11.016
Candia Carnevali,, M. D. (2006). Regeneration in echinoderms: Repair, regrowth, cloning. Invertebrate Survival Journal, 3(1), 64–76.
Candia Carnevali,, M. D., Bonasoro,, F., Lucca,, E., & Thorndyke,, M. C. (1995). Pattern of cell proliferation in the early stages of arm regeneration in the feather star Antedon mediterranea. Journal of Experimental Zoology, 272(6), 464–474. https://doi.org/10.1002/jez.1402720608
Cannon,, J. T., Vellutini,, B. C., Smith,, J., Ronquist,, F., Jondelius,, U., & Hejnol,, A. (2016). Xenacoelomorpha is the sister group to Nephrozoa. Nature, 530(7588), 89–93. https://doi.org/10.1038/nature16520
Carlson,, B. M. (2007). Principles of regenerative biology. Burlington: Elsevier.
Cavanagh,, B. L., Walker,, T., Norazit,, A., & Meedeniya,, A. C. B. (2011). Thymidine analogues for tracking DNA synthesis. Molecules, 16(9), 7980–7993. https://doi.org/10.3390/molecules16097980
Chekeni,, F. B., Elliott,, M. R., Sandilos,, J. K., Walk,, S. F., Kinchen,, J. M., Lazarowski,, E. R., … Bayliss,, D. A. (2010). Pannexin 1 channels mediate “find‐me” signal release and membrane permeability during apoptosis. Nature, 467(7317), 863–867. https://doi.org/10.1038/nature09413
Chera,, S., Ghila,, L., Dobretz,, K., Wenger,, Y., Bauer,, C., Buzgariu,, W., … Galliot,, B. (2009). Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Developmental Cell, 17(2), 279–289. https://doi.org/10.1016/j.devcel.2009.07.014
Chera,, S., Ghila,, L., Wenger,, Y., & Galliot,, B. (2011). Injury‐induced activation of the MAPK/CREB pathway triggers apoptosis‐induced compensatory proliferation in hydra head regeneration. Development, Growth %26 Differentiation, 53(2), 186–201. https://doi.org/10.1111/j.1440-169X.2011.01250.x
Chera,, S., Kaloulis,, K., & Galliot,, B. (2007). The cAMP response element binding protein (CREB) as an integrative HUB selector in metazoans: Clues from the hydra model system. Biosystems, 87(2–3), 191–203. https://doi.org/10.1016/j.biosystems.2006.09.014
Christov,, C., Chretien,, F., Abou‐Khalil,, R., Bassez,, G., Vallet,, G., Authier,, F.‐J., … Gherardi,, R. K. (2007). Muscle satellite cells and endothelial cells: Close neighbors and privileged partners. Molecular Biology of the Cell, 18(8), 2991–3001. https://doi.org/10.1091/mbc.E06
Colasanti,, M., Mazzone,, V., Mancinelli,, L., Leone,, S., & Venturini,, G. (2009). Nitric oxide involvement of nitric oxide in the head regeneration of Hydra vulgaris. Nitric Oxide, 21(3–4), 164–170. https://doi.org/10.1016/j.niox.2009.07.003
Csibi,, A., & Blenis,, J. (2012). Hippo YAP and mTOR pathways collaborate to regulate organ size. Nature Publishing Group, 14(12), 1244–1245. https://doi.org/10.1038/ncb2634
De Jong,, D. M., & Seaver,, E. C. (2016). A stable thoracic Hox code and epimorphosis characterize posterior regeneration in Capitella teleta. PLoS One, 11(2), e0149724. https://doi.org/10.1371/journal.pone.0149724
Elliott,, M. R., Chekeni,, F. B., Trampont,, P. C., Lazarowski,, E. R., Kadl,, A., Walk,, S. F., … Ravichandran,, K. S. (2009). Nucleotides released by apoptotic cells act as a find‐me signal to promote phagocytic clearance. Nature, 461(7261), 282–286. https://doi.org/10.1038/nature08296
Esteves,, F. F., Springhorn,, A., Kague,, E., Taylor,, E., Pyrowolakis,, G., Fisher,, S., & Bier,, E. (2014). BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms. PLoS Genetics, 10(9), e1004625. https://doi.org/10.1371/journal.pgen.1004625
Fan,, Y., Wang,, S., Hernandez,, J., Yenigun,, V. B., Hertlein,, G., Fogarty,, C. E., … Bergmann,, A. (2014). Genetic models of apoptosis‐induced proliferation decipher activation of JNK and identify a requirement of EGFR signaling for tissue regenerative responses in Drosophila. PLoS Genetics, 10(1), e1004131. https://doi.org/10.1371/journal.pgen.1004131
Farkas,, J. E., Freitas,, P. D., Bryant,, D. M., Whited,, J. L., & Monaghan,, J. R. (2016). Neuregulin‐1 signaling is essential for nerve‐dependent axolotl limb regeneration. Development, 143(15), 2724–2731. https://doi.org/10.1242/dev.133363
Feral,, J. (1988). Wound healing after arm amputation in Sepia officinalis (Cephalopoda: Sepioidea). Journal of Invertebrate Pathology, 52(3), 380–388.
Filippin,, L. I., Cuevas,, M. J., Lima,, E., Marroni,, N. P., Gonzalez‐Gallego,, J., & Xavier,, R. M. (2011). Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide, 24(1), 43–49. https://doi.org/10.1016/j.niox.2010.11.003
Finkel,, T. (2011). Signal transduction by reactive oxygen species. Journal of Cell Biology, 194(1), 7–15. https://doi.org/10.1083/jcb.201102095
Fouraschen,, S. M., De Ruiter,, P., Kwekkeboom,, J., De Bruin,, R. W., Kazemier,, G., Metselaar,, H. J., … De Jonge,, J. (2013). mTOR signaling in liver regeneration: Rapamycin combined with growth factor treatment. World Journal of Transplantation, 3(3), 36–47. https://doi.org/10.5500/wjt.v3.i3.36
Fraguas,, S., Barberán,, S., & Cebrià,, F. (2011). EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Developmental Biology, 354(1), 87–101. https://doi.org/10.1016/j.ydbio.2011.03.023
Fraguas,, S., Barberan,, S., Iglesias,, M., Rodriguez‐Esteban,, G., & Cebria,, F. (2014). egr‐4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development, 141(9), 1835–1847. https://doi.org/10.1242/dev.101345
Galliot,, B., & Chera,, S. (2010). The Hydra model: Disclosing an apoptosis‐driven generator of Wnt‐based regeneration. Trends in Cell Biology, 20(9), 514–523. https://doi.org/10.1016/j.tcb.2010.05.006
García‐ArraráS,, J. E., Estrada‐Rodgers,, L., Santiago,, R., Torres,, I. I., Díaz‐Miranda,, L., & Torres‐Avillán,, I. (1998). Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima selenka (Holothuroidea: Echinodermata). Journal of Experimental Zoology, 281(4), 288–304.
Gasparini,, F., Burighel,, P., Manni,, L., & Zaniolo,, G. (2008). Vascular regeneration and angiogenic‐like sprouting mechanism in a compound ascidian is similar to vertebrates. Evolution %26 Development, 10(5), 591–605. https://doi.org/10.1111/j.1525-142X.2008.00274.x
Gauron,, C., Rampon,, C., Bouzaffour,, M., Ipendey,, E., Teillon,, J., Volovitch,, M., & Vriz,, S. (2013). Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Scientific Reports, 3, 2084. https://doi.org/10.1038/srep02084
Gemberling,, M., Karra,, R., Dickson,, A. L., & Poss,, K. D. (2015). Nrg1 is an injury‐induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife, 4, 1–17. https://doi.org/10.7554/eLife05871
Gong,, Y., & Koh,, D. R. (2010). Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model. Cell and Tissue Research, 339(2), 437–448. https://doi.org/10.1007/s00441-009-0908-5
González‐Estévez,, C., Felix,, D. A., Smith,, M. D., Paps,, J., Morley,, S. J., James,, V., … Aboobaker,, A. A. (2012). SMG‐1 and mTORC1 act antagonistically to regulate response to injury and growth in planarians. PLoS Genetics, 8(3), e1002619. https://doi.org/10.1371/journal.pgen.1002619
Govindasamy,, N., Murthy,, S., & Ghanekar,, Y. (2014). Slow‐cycling stem cells in hydra contribute to head regeneration. Biology Open, 3(12), 1236–1244. https://doi.org/10.1242/bio.201410512
Grassme,, K. S., Garza‐Garcia,, A., Delgado,, J. P., Godwin,, J. W., Kumar,, A., Gates,, P. B., … Brockes,, J. P. (2016). Mechanism of action of secreted newt anterior gradient protein. PLoS One, 11(4), e0154176. https://doi.org/10.1371/journal.pone.0154176
Guedelhoefer,, O. C., & Sánchez Alvarado,, A. (2012). Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development, 139(19), 3510–3520. https://doi.org/10.1242/dev.082099
Guimond,, J., Lévesque,, M., Michaud,, P., Berdugo,, J., Finnson,, K., Philip,, A., & Roy,, S. (2010). BMP‐2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs. BMC Developmental Biology, 10(1), 15. https://doi.org/10.1186/1471-213X-10-15
Han,, B., Tong,, J., Zhu,, M. J., Ma,, C., & Du,, M. (2008). Insulin‐like growth factor‐1 (IGF‐1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway. Molecular Reproduction and Development, 75(5), 810–817. https://doi.org/10.1002/mrd.20832
Han,, M., Yang,, X., Farrington,, J. E., & Muneoka,, K. (2003). Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development, 130(21), 5123–5132. https://doi.org/10.1242/dev.00710
Hasegawa,, T., Nakajima,, T., Ishida,, T., Kudo,, A., & Kawakami,, A. (2015). A diffusible signal derived from hematopoietic cells supports the survival and proliferation of regenerative cells during zebrafish fin fold regeneration. Developmental Biology, 399(1), 80–90. https://doi.org/10.1016/j.ydbio.2014.12.015
Hayashi,, S., Tamura,, K., & Yokoyama,, H. (2014). Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration. Developmental Biology, 388(1), 57–67. https://doi.org/10.1016/j.ydbio.2014.01.018
Hayashi,, S., Yokoyama,, H., & Tamura,, K. (2015). Roles of Hippo signaling pathway in size control of organ regeneration. Development, Growth %26 Differentiation, 57(4), 341–351. https://doi.org/10.1111/dgd.12212
Hendzel,, M. J., Wei,, Y., Mancini,, M. A., Van Hooser,, A., Ranalli,, T., Brinkley,, B. R., … Allis,, C. D. (1997). Mitosis‐specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 106(6), 348–360. https://doi.org/10.1007/s004120050256
Henry,, J. J., Thomas,, A. G., Hamilton,, P. W., Moore,, L., & Perry,, K. J. (2013). Cell signaling pathways in vertebrate lens regeneration. Current Topics in Microbiology and Immunology, 367(December 2012), 75–98. https://doi.org/10.1007/82-2012-289
Hernroth,, B., Farahani,, F., Brunborg,, G., Dupont,, S., Dejmek,, A., & Sköld,, H. N. (2010). Possibility of mixed progenitor cells in sea star arm regeneration. Journal of Experimental Zoology B, 314(6), 457–468. https://doi.org/10.1002/jez.b.21352
Hiemer,, S. E., & Varelas,, X. (2013). Stem cell regulation by the Hippo pathway. Biochimica et Biophysica Acta, 1830(2), 2323–2334. https://doi.org/10.1016/j.bbagen.2012.07.005
Hirose,, K., Shiomi,, T., Hozumi,, S., & Kikuchi,, Y. (2014). Mechanistic target of rapamycin complex 1 signaling regulates cell proliferation, cell survival, and differentiation in regenerating zebrafish fins. BMC Developmental Biology, 14, 42. https://doi.org/10.1186/s12861-014-0042-9
Huang,, Z., Hu,, J., Pan,, J., Wang,, Y., Hu,, G., Zhou,, J., … Xiong,, W.‐C. (2016). YAP stabilizes SMAD1 and promotes BMP2‐induced neocortical astrocytic differentiation. Development, 143(13), 2398–2409. https://doi.org/10.1242/dev.130658
Humphreys,, T., Sasaki,, A., Uenishi,, G., Taparra,, K., Arimoto,, A., & Tagawa,, K. (2010). Regeneration in the hemichordate Ptychodera flava. Zoological Science, 27(2), 91–95. https://doi.org/10.2108/zsj.27.91
Ikeda,, H., & Fujiwara,, K. (1993). Retinoic acid inhibits DNA and albumin synthesis stimulated by growth factors in adult rat hepatocytes in primary culture. Biochemical and Biophysical Research Communications, 191(2), 675–680.
Imperadore,, P., Shah,, S. B., Makarenkova,, H. P., & Fiorito,, G. (2017). Nerve degeneration and regeneration in the cephalopod mollusc Octopus vulgaris : The case of the pallial nerve. Scientific Reports, 7, 46564. https://doi.org/10.1038/srep46564
Jager,, M., Dayraud,, C., Mialot,, A., Quéinnec,, E., Le Guyader,, H., & Manuel,, M. (2013). Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro‐sensory system in an adult ctenophore. PLoS One, 8(12), e84363. https://doi.org/10.1371/journal.pone.0084363
Johansen,, K. M., & Johansen,, J. (2006). Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Research, 14(4), 393–404. https://doi.org/10.1007/s10577‐006‐1063‐4
Johnson,, K., Batteman,, J., DiTommaso,, T., Wong,, A. Y., & Whited,, J. L. (2018). Systemic cell cycle activation is induced following complex tissue injury in axolotl. Developmental Biology, 433(2), 461–472.
Jopling,, C., Sleep,, E., Raya,, M., Martí,, M., Raya,, A., & Belmonte,, J. C. I. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464(7288), 606–609. https://doi.org/10.1038/nature08899
Kalkhof,, S., Förster,, Y., Schmidt,, J., Schulz,, M. C., Baumann,, S., Weißflog,, A., … Von Bergen,, M. (2014). Proteomics and metabolomics for in situ monitoring of wound healing. BioMed Research International, 2014, 934848.
Kaneko,, N., Katsuyama,, Y., Kawamura,, K., & Fujiwara,, S. (2010). Regeneration of the gut requires retinoic acid in the budding ascidian Polyandrocarpa misakiensis. Development, Growth %26 Differentiation, 52(5), 457–468. https://doi.org/10.1111/j.1440-169X.2010.01184.x
Kang,, J., Karra,, R., Dickson,, A. L., Nachtrab,, G., & Goldman,, J. A. (2016). Modulation of tissue repair by regeneration enhancer elements. Nature, 532(7598), 201–206. https://doi.org/10.1038/nature17644
Katsuyama,, T., Comoglio,, F., Seimiya,, M., Cabuy,, E., & Paro,, R. (2015). During Drosophila disc regeneration, JAK/STAT coordinates cell proliferation with Dilp8‐mediated developmental delay. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 2327–2336. https://doi.org/10.1073/pnas.1423074112
Katsuyama,, T., & Paro,, R. (2012). Innate immune cells are dispensable for regenerative growth of imaginal discs. Mechanisms of Development, 130(2–3), 112–121. https://doi.org/10.1016/j.mod.2012.11.005
Kempen,, D. H. R., Creemers,, L. B., Alblas,, J., Lu,, L., Verbout,, A. J., Yaszemski,, M. J., & Dhert,, W. J. A. (2010). Growth factor interactions in bone regeneration. Tissue Engineering Part B, 16(6), 551–566. https://doi.org/10.1089/ten.teb.2010.0176
Kikuchi,, K., Holdway,, J. E., Major,, R. J., Blum,, N., Dahn,, R. D., Begemann,, G., & Poss,, K. D. (2011). Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Developmental Cell, 20(3), 397–404. https://doi.org/10.1016/j.devcel.2011.01.010
Kim,, J., Wu,, Q., Zhang,, Y., Wiens,, K. M., Huang,, Y., Rubin,, N., & Shimada,, H. (2010). PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17206–17210. https://doi.org/10.1073/pnas.0915016107
Koch,, S., & Claesson‐Welsh,, L. (2012). Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harbor Perspectives in Medecine, 2(7), 169–183. https://doi.org/10.1042/BJ20110301
Konstantinides,, N., & Averof,, M. (2014). A common cellular basis for muscle regeneration in arthropods and vertebrates. Science, 343(6172), 788–791. https://doi.org/10.1126/science.1243529
Krishnapati,, L. S., & Ghaskadbi,, S. (2013). Identification and characterization of VEGF and FGF from Hydra. International Journal of Developmental Biology, 57(11–12), 877–886. https://doi.org/10.1387/ijdb.130077sg
Kürn,, U., Rendulic,, S., Tiozzo,, S., & Lauzon,, R. J. (2011). Asexual propagation and regeneration in colonial ascidians. Biological Bulletin, 221(1), 43–61.
Kyritsis,, N., Kizil,, C., Zocher,, S., Kroehne,, V., Kaslin,, J., Freudenreich,, D., … Brand,, M. (2012). Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science, 338(6112), 1353–1356. https://doi.org/10.1126/science.1228773
Lacy,, P., & Stow,, J. L. (2017). Cytokine release from innate immune cells: Association with diverse membrane trafficking pathways. Blood, 118(1), 9–19. https://doi.org/10.1182/blood‐2010‐08‐265892
Laplante,, M., & Sabatini,, D. M. (2011). mTOR Signaling. Cold Spring Harbor Perspectives in Biology, 4(2), 1–16.
Laplante,, M., & Sabatini,, D. M. (2012). MTOR signaling in growth control and disease. Cell, 149(2), 274–293. https://doi.org/10.1016/j.cell.2012.03.017
Ledda‐Columbano,, G. M., Pibiri,, M., Molotzu,, F., Cossu,, C., Sanna,, L., Simbula,, G., & Perra,, A. (2004). Induction of hepatocyte proliferation by retinoic acid. Carcinogenesis, 25(11), 2061–2066. https://doi.org/10.1093/carcin/bgh221
Lee,, Y., Grill,, S., Sanchez,, A., Murphy‐Ryan,, M., & Poss,, K. D. (2005). Fgf signaling instructs position‐dependent growth rate during zebrafish fin regeneration. Development, 132(23), 5173–5183. https://doi.org/10.1242/dev.02101
Lehoczky,, J. A., Robert,, B., & Tabin,, C. J. (2011). Mouse digit tip regeneration is mediated by fate‐restricted progenitor cells. Proceedings of the National Academy of Sciences, 108(51), 20609–20614. https://doi.org/10.1073/pnas.1118017108
Lei,, K., Thi‐Kim Vu,, H., Mohan,, R. D., McKinney,, S. A., Seidel,, C. W., Alexander,, R., … Sánchez Alvarado,, A. (2016). Egf signaling directs neoblast repopulation by regulating asymmetric cell division in planarians. Developmental Cell, 38(4), 413–429. https://doi.org/10.1016/j.devcel.2016.07.012
Li,, F., Huang,, Q., Chen,, J., Peng,, Y., Roop,, D. R., Bedford,, J. S., & Li,, C. (2010). Apoptotic cells activate the “Phoenix Rising” pathway to promote wound healing and tissue regeneration. Science Signaling, 3(110).
Li,, F., Xu,, L., Gai,, X., Zhou,, Z., Wang,, L., Zhang,, H., … Liang,, C. (2013). The involvement of PDGF/VEGF related factor in regulation of immune and neuroendocrine in Chinese mitten crab Eriocheir sinensis. Fish %26 Shellfish Immunology, 35(4), 1240–1248. https://doi.org/10.1016/j.fsi.2013.07.042
Lin,, A. Y. T., & Pearson,, B. J. (2014). Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning. Development, 141(16), 1197–1208. https://doi.org/10.1242/dev.101915
Lin,, A. Y. T., & Pearson,, B. J. (2017). Yorkie is required to restrict the injury responses in planarians. PLoS Genetics, 13(7), 1–22.
Looso,, M., Preussner,, J., Sousounis,, K., Bruckskotten,, M., Michel,, C. S., Lignelli,, E., … Braun,, T. (2013). A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration. Genome Biology, 14(2), R16. https://doi.org/10.1186/gb-2013-14-2-r16
Love,, N. R., Chen,, Y., Ishibashi,, S., Kritsiligkou,, P., Lea,, R., Koh,, Y., … Amaya,, E. (2013). Amputation‐induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nature Cell Biology, 15(2), 222–228. https://doi.org/10.1038/ncb2659
Lu,, H., Huang,, D., Saederup,, N., Charo,, I. F., Ransohoff,, R. M., & Zhou,, L. (2011). Macrophages recruited via CCR2 produce insulin‐like growth factor‐1 to repair acute skeletal muscle injury. The FASEB Journal, 25(1), 358–369. https://doi.org/10.1096/fj.10-171579
Luttrell,, S. M., Gotting,, K., Ross,, E., Alvarado,, A. S., & Swalla,, B. J. (2016). Head regeneration in hemichordates is not a strict recapitulation of development. Developmental Dynamics, 245(12), 1159–1175. https://doi.org/10.1002/dvdy.24457
Makanae,, A., & Satoh,, A. (2012). Early regulation of axolotl limb regeneration. Anatomical Record, 295(10), 1566–1574. https://doi.org/10.1002/ar.22529
Mannini,, L., Deri,, P., Gremigni,, V., Rossi,, L., Salvetti,, A., & Batistoni,, R. (2008). Two msh/msx‐related genes, Djmsh1 and Djmsh2, contribute to the early blastema growth during planarian head regeneration. International Journal of Developmental Biology, 52(7), 943–952. https://doi.org/10.1387/ijdb.072476lm
Mao,, C. A., Glorioso,, J., & Scott,, N. (2014). Liver Regeneration. Translational Research, 163(4), 352–362. https://doi.org/10.1016/j.trsl.2014.01.005.Liver
Mashanov,, V. S., Zueva,, O. R., & García‐Arrarás,, J. E. (2014). Transcriptomic changes during regeneration of the central nervous system in an echinoderm. BMC Genomics, 15(1), 357. https://doi.org/10.1186/1471-2164-15-357
Mashanov,, V. S., Zueva,, O. R., Rojas‐Catagena,, C., & Garcia‐Arraras,, J. E. (2010). Visceral regeneration in a sea cucumber involves extensive expression of survivin and mortalin homologs in the mesothelium. BMC Developmental Biology, 10(1), 117. https://doi.org/10.1186/1471-213X-10-117
Mathew,, L. K., Sengupta,, S., Franzosa,, J. A., Perry,, J., La Du,, J., Andreasen,, E. A., & Tanguay,, R. L. (2009). Comparative expression profiling reveals an essential role for Raldh2 in epimorphic regeneration. Journal of Biological Chemistry, 284(48), 33642–33653. https://doi.org/10.1074/jbc.M109.011668
McCusker,, C. D., Athippozhy,, A., Diaz‐Castillo,, C., Fowlkes,, C., Gardiner,, D. M., & Voss,, S. R. (2015). Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC Developmental Biology, 15(1), 45. https://doi.org/10.1186/s12861-015-0095-4
Michalopoulos,, G. K. (2013). Principles of liver regeneration and growth homeostasis. Comprehensive Physiology, 3(1), 485–513. https://doi.org/10.1002/cphy.c120014
Miller,, K. J., Thaloor,, D., Matteson,, S., & Pavlath,, G. K. (2000). Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. American Journal of Physiology. Cell Physiology, 278(1), C174–C181. https://doi.org/10.1002/jcp.1041330319
Montero,, J. A., Sanchez‐Fernandez,, C., Lorda‐Diez,, C. I., Garcia‐Porrero,, J. A., & Hurle,, J. M. (2016). DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos. Scientific Reports, 6, 35478. https://doi.org/10.1038/srep35478
Mugoni,, V., Camporeale,, A., & Santoro,, M. M. (2014). Analysis of oxidative stress in zebrafish embryos. Journal of Visualized Experiments, 7(89). https://doi.org/10.3791/51328
Munch,, J., Gonzalez‐Rajal,, A., & de la Pompa,, J. L. (2013). Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration. Development, 140(7), 1402–1411. https://doi.org/10.1242/dev.087346
Natarajan,, N., Ramakrishnan,, P., Lakshmanan,, V., Palakodeti,, D., & Rangiah,, K. (2015). A quantitative metabolomics peek into planarian regeneration. Analyst, 140, 3445–3464. https://doi.org/10.1039/C4AN02037E
Newmark,, P. A., & Sánchez Alvarado,, A. (2000). Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Developmental Biology, 220(2), 142–153. https://doi.org/10.1006/dbio.2000.9645
Ohtake,, Y., Maruko,, A., Abe,, S., Fukumoto,, M., & Ohkubo,, Y. (2006). Effect of retinoic acid‐induced transglutaminase on cell growth in regenerating liver. Biomedical Research, 27(2), 75–80. https://doi.org/10.2220/biomedres.27.75
Otto,, A., Schmidt,, C., Luke,, G., Allen,, S., Valasek,, P., Muntoni,, F., … Patel,, K. (2008). Canonical Wnt signalling induces satellite‐cell proliferation during adult skeletal muscle regeneration. Journal of Cell Science, 121(17), 2939–2950. https://doi.org/10.1242/jcs.026534
Padrissa‐Altés,, S., Bachofner,, M., Bogorad,, R. L., Pohlmeier,, L., Rossolini,, T., Böhm,, F., … Werner,, S. (2015). Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut, 64(9), 1444–1453. https://doi.org/10.1136/gutjnl-2014-307874
Paranjpe,, S., Bowen,, W. C., Bell,, A. W., Nejak‐bowen,, K., Luo,, J., & Michalopoulos,, G. K. (2007). Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c‐met in regenerating rat livers by RNA interference. Hepatology, 45(6), 1471–1477. https://doi.org/10.1002/hep.21570.Cell
Park,, H. D., Ortemeyer,, A. B., & Blankenbaker,, D. P. (1970). Cell division during regeneration in Hydra. Nature, 227(5258), 617–619.
Passamaneck,, Y. J., & Martindale,, M. Q. (2012). Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis. BMC Developmental Biology, 12(1), 34. https://doi.org/10.1186/1471-213X-12-34
Peiris,, T. H., Ramirez,, D., Barghouth,, P. G., & Oviedo,, N. J. (2016). The Akt signaling pathway is required for tissue maintenance and regeneration in planarians. BMC Developmental Biology, 16(1), 7. https://doi.org/10.1186/s12861-016-0107-z
Pellettieri,, J., Fitzgerald,, P., Watanabe,, S., Mancuso,, J., Green,, D. R., & Sánchez Alvarado,, A. (2010). Cell death and tissue remodeling in planarian regeneration. Developmental Biology, 338(1), 76–85. https://doi.org/10.1016/j.ydbio.2009.09.015
Perea‐Atienza,, E., Botta,, M., Salvenmoser,, W., Gschwentner,, R., Egger,, B., Kristof,, A., … Achatz,, J. G. (2013). Posterior regeneration in Isodiametra pulchra (Acoela, Acoelomorpha). Frontiers in Zoology, 10(1), 64.
Petrie,, T. A., Strand,, N. S., Yang,, C.‐T., Rabinowitz,, J. S., & Moon,, R. T. (2015). Macrophages modulate adult zebrafish tail fin regeneration. Development, 142(2), 406–406. https://doi.org/10.1242/dev.120642
Pfefferli,, C., & Jaźwińska,, A. (2015). The art of fin regeneration in zebrafish. Regeneration, 2(2), 72–83. https://doi.org/10.1002/reg2.33
Phippard,, D. J., Weber‐hall,, S. J., Sharpe,, P. T., Naylor,, M. S., Jayatalake,, H., Maas,, R., … Dale,, T. C. (1996). Regulation of Msx‐1, Msx‐2, Bmp‐2 and Bmp‐4 during foetal and postnatal mammary gland development. Development, 122(9), 2729–2737.
Pirotte,, N., Stevens,, A.‐S., Fraguas,, S., Plusquin,, M., Van Roten,, A., Van Belleghem,, F., … Smeets,, K. (2015). Reactive oxygen species in planarian regeneration: An upstream necessity for correct patterning and brain formation. Oxidative Medicine and Cellular Longevity, 2015, 19. https://doi.org/10.1155/2015/392476
Poleo,, G., Brown,, C. W., & Laforest,, L. (2001). Cell proliferation and movement during early fin regeneration in zebrafish. Developmental Dynamics, 221(4), 380–390. https://doi.org/10.1002/dvdy.1152
Poss,, K. D., Shen,, J., Nechiporuk,, A., McMahon,, G., Thisse,, B., Thisse,, C., & Keating,, M. T. (2000). Roles for Fgf signaling during zebrafish fin regeneration. Developmental Biology, 222(2), 347–358. https://doi.org/10.1006/dbio.2000.9722
Purushothaman,, S., Saxena,, S., Meghah,, V., Swamy,, C. V. B., Ortega‐Martinez,, O., Dupont,, S., & Idris,, M. (2015). Transcriptomic and proteomic analyses of Amphiura filiformis arm tissue‐undergoing regeneration. Journal of Proteomics, 112, 113–124. https://doi.org/10.1016/j.jprot.2014.08.011
Qu,, Y., Misaghi,, S., Newton,, K., Gilmour,, L. L., Louie,, S., Cupp,, J. E., … Dixit,, V. M. (2011). Pannexin‐1 is required for ATP release during apoptosis but not for Inflammasome activation. Journal of Immunology, 186(11), 6553–6561. https://doi.org/10.4049/jimmunol.1100478
Reddy,, B. V. V. G., & Irvine,, K. D. (2011). Regulation of Drosophila glial cell proliferation by Merlin‐Hippo signaling. Development, 138(23), 5201–5212. https://doi.org/10.1242/dev.069385
Rink,, J. C., Vu,, H. T.‐K., & Alvarado,, A. S. (2011). The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling. Development, 138(17), 3769–3780. https://doi.org/10.1242/dev.066852
Rinkevich,, Y., Paz,, G., Rinkevich,, B., & Reshef,, R. (2007). Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biology, 5(4), e71. https://doi.org/10.1371/journal.pbio.0050071
Rodgers,, J. T., King,, K. Y., Brett,, J. O., Cromie,, M. J., Charville,, G. W., Maguire,, K. K., … Rando,, T. A. (2014). mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature, 509(7505), 393–396. https://doi.org/10.1038/nature13255
Rodgers,, J. T., Schroeder,, M. D., Ma,, C., & Rando,, T. A. (2017). HGFA is an injury‐regulated systemic factor that induces the transition of stem cells into GAlert. Cell Reports, 19(3), 479–486. https://doi.org/10.1016/j.celrep.2017.03.066
Rojas‐Muñoz,, A., Rajadhyksha,, S., Gilmour,, D., van Bebber,, F., Antos,, C., Rodríguez Esteban,, C., … Izpisúa Belmonte,, J. C. (2009). ErbB2 and ErbB3 regulate amputation‐induced proliferation and migration during vertebrate regeneration. Developmental Biology, 327(1), 177–190. https://doi.org/10.1016/j.ydbio.2008.12.012
Ronco,, M. T., Francés,, D., de Luján Alvarez,, M., Quiroga,, A., Monti,, J., Parody,, J. P., … Carnovale,, C. E. (2007). Vascular endothelial growth factor and nitric oxide in rat liver regeneration. Life Sciences, 81(9), 750–755. https://doi.org/10.1016/j.lfs.2007.07.009
Ruiz‐Trillo,, I., Riutort,, M., Littlewood,, D. T., Herniou,, E. A., & Baguñà,, J. (1999). Acoel flatworms: Earliest extant bilaterian metazoans, not members of Platyhelminthes. Science, 283(5409), 1919–1924.
Rychel,, A. L., & Swalla,, B. J. (2008). Anterior regeneration in the hemichordate Ptychodera flava. Developmental Dynamics, 237(11), 3222–3232. https://doi.org/10.1002/dvdy.21747
Ryoo,, H. D., Gorenc,, T., & Steller,, H. (2004). Apoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathways. Developmental Cell, 7(4), 491–501. https://doi.org/10.1016/j.devcel.2004.08.019
Sakurai,, T., Lee,, H., Kashima,, M., Saito,, Y., Hayashi,, T., Kudome‐Takamatsu,, T., … Shibata,, N. (2012). The planarian P2X homolog in the regulation of asexual reproduction. International Journal of Developmental Biology, 56(1–3), 173–182. https://doi.org/10.1387/ijdb.113439ts
Saló,, E., & Baguñà,, J. (1984). Regeneration and pattern formation in planarians. Journal of Embryology and Experimental Morphology, 83, 63–80.
San Miguel‐Ruiz,, J. E., & García‐Arrarás,, J. E. (2007). Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima. BMC Developmental Biology, 7(1), 115. https://doi.org/10.1186/1471-213X-7-115
Sassoli,, C., Frati,, A., Tani,, A., Anderloni,, G., Pierucci,, F., Matteini,, F., … Meacci,, E. (2014). Mesenchymal stromal cell secreted sphingosine 1‐phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS One, 9(9), e108662. https://doi.org/10.1371/journal.pone.0108662
Satoh,, A., Mitogawa,, K., & Makanae,, A. (2015). Regeneration inducers in limb regeneration. Development, Growth %26 Differentiation, 57(6), 421–429. https://doi.org/10.1111/dgd.12230
Schlegelmilch,, K., Mohseni,, M., Kirak,, O., Pruszak,, J., Rodriguez,, J. R., Zhou,, D., … Camargo,, F. D. (2011). Yap1 acts downstream of alpha‐catenin to control epidermal proliferation. Cell, 144(5), 782–795. https://doi.org/10.1016/j.cell.2011.02.031
Seki,, E., Kondo,, Y., Iimuro,, Y., Naka,, T., Son,, G., Kishimoto,, T., … Nakanishi,, K. (2008). Demonstration of cooperative contribution of MET‐ and EGFR‐mediated STAT3 phosphorylation to liver regeneration by exogenous suppressor of cytokine signalings. Journal of Hepatology, 48(2), 237–245. https://doi.org/10.1016/j.jhep.2007.08.020
Shaw,, T. J., Osborne,, M., Ponte,, G., Fiorito,, G., & Andrews,, P. L. R. (2016). Mechanisms of wound closure following acute arm injury in Octopus vulgaris. Zoological Letters, 2(1), 8. https://doi.org/10.1186/s40851-016-0044-5
Shibata,, E., Yokota,, Y., Horita,, N., Kudo,, A., Abe,, G., & Kawakami,, K. (2016). Fgf signalling controls diverse aspects of fin regeneration. Development, 143(16), 2920–2929. https://doi.org/10.1242/dev.140699
Simon,, H., Nelson,, C., Goff,, D., Laufer,, E. D., & Morgan,, B. A. (1995). Differential expression of myogenic regulatory genes and Msx‐1 during dedifferentiation and redifferentiation of regenerating amphibian limbs. Developmental Dynamics, 202(1), 1–12.
Singh,, B. N., Doyle,, M. J., Weaver,, C. V., Koyano‐nakagawa,, N., & Garry,, D. J. (2012). Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration. Developmental Biology, 371(1), 23–34. https://doi.org/10.1016/j.ydbio.2012.07.033
Sleep,, E., Boué,, S., Jopling,, C., Raya,, M., Raya,, A., & Izpisua Belmonte,, J. C. (2010). Transcriptomics approach to investigate zebrafish heart regeneration. Journal of Cardiovascular Medicine (Hagerstown, Md.), 11(5), 369–380. https://doi.org/10.2459/JCM.0b013e3283375900
Smith,, A., Avaron,, F., Guay,, D., Padhi,, B. K., & Akimenko,, M. A. (2006). Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function. Developmental Biology, 299(2), 438–454. https://doi.org/10.1016/j.ydbio.2006.08.016
Somorjai,, I. M. L., Somorjai,, R. L., Garcia‐Fernandez,, J., & Escriva,, H. (2012). Vertebrate‐like regeneration in the invertebrate chordate amphioxus. Proceedings of the National Academy of Sciences, 109(2), 517–522. https://doi.org/10.1073/pnas.1100045109
Son,, Y., Kim,, S., Chung,, H.‐T., & Pae,, H.‐O. (2013). Reactive oxygen species in the activation of MAP kinases. Methods in Enzymology, 528, 27–48. https://doi.org/10.1016/B978‐0‐12‐405881‐1.00002‐1
Sonnemann,, K. J., & Bement,, W. M. (2011). Wound repair: Toward understanding and integration of single cell and multicellular wound responses. Annual Review of Cell and Developmental Biology, 27(1), 237–263. https://doi.org/10.1146/annurev-cellbio-092910-154251
Spallotta,, F., Cencioni,, C., Straino,, S., Nanni,, S., Rosati,, J., Artuso,, S., … Gaetano,, C. (2013). A nitric oxide‐dependent cross‐talk between class I and III histone deacetylases accelerates skin repair. Journal of Biological Chemistry, 288(16), 11004–11012. https://doi.org/10.1074/jbc.M112.441816
Sprenger,, J. U., & Nikolaev,, V. O. (2013). Biophysical techniques for detection of cAMP and cGMP in living cells. International Journal of Molecular Sciences, 14(4), 8025–8046. https://doi.org/10.3390/ijms14048025
Srivastava,, M., Mazza‐Curll,, K. L., Van Wolfswinkel,, J. C., & Reddien,, P. W. (2014). Whole‐body acoel regeneration is controlled by Wnt and Bmp‐Admp signaling. Current Biology, 24(10), 1107–1113. https://doi.org/10.1016/j.cub.2014.03.042
Stoick‐cooper,, C. L., Weidinger,, G., Riehle,, K. J., Hubbert,, C., Major,, M. B., Fausto,, N., & Moon,, R. T. (2007). Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development, 134(3), 479–489. https://doi.org/10.1242/dev.001123
Strom,, T. B., Lin,, C. P., Celso,, C. L., & Scadden,, D. T. (2013). Tracking single cells in live animals using a photoconvertible near‐infrared cell membrane label. PLoS One, 8(8), e69257. https://doi.org/10.1371/journal.pone.0069257
Su,, T., Bondar,, T., Zhou,, X., Zhang,, C., He,, H., & Medzhitov,, R. (2015). Two‐signal requirement for growth‐promoting function of yap in hepatocytes. eLife, 2015(4), 1–21. https://doi.org/10.7554/eLife02948
Sun,, L., Huan,, P., Wang,, H., Liu,, F., & Liu,, B. (2014). An EGFR gene of the Pacific oyster Crassostrea gigas functions in wound healing and promotes cell proliferation. Molecular Biology Reports, 41(5), 2757–2765. https://doi.org/10.1007/s11033-014-3130-9
Suzuki,, N., & Mittler,, R. (2012). Reactive oxygen species‐dependent wound responses in animals and plants. Free Radical Biology and Medicine, 53(12), 2269–2276. https://doi.org/10.1016/j.freeradbiomed.2012.10.538
Tackett,, B. C., Sun,, H., Mei,, Y., Maynard,, J. P., Cheruvu,, S., Mani,, A., … Thevananther,, S. (2014). P2Y2 purinergic receptor activation is essential for efficient hepatocyte proliferation in response to partial hepatectomy. American Journal of Physiology. Gastrointestinal and Liver Physiology, 307(11), G1073–G1087. https://doi.org/10.1152/ajpgi.00092.2014
Tahara,, N., Brush,, M., & Kawakami,, Y. (2016). Cell migration during heart regeneration in zebrafish. Developmental Dynamics, 245(7), 774–787. https://doi.org/10.1002/DVDY.24411
Tasaki,, J., Uchiyama‐tasaki,, C., & Rouhana,, L. (2010). Cytoskeleton methods and protocols. Cytoskeleton, 586, 323–338. https://doi.org/10.1007/978-1-60761-376-3
Tatsumi,, R., Anderson,, J. E., Nevoret,, C. J., Halevy,, O., & Allen,, R. E. (1998). HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Developmental Biology, 194(1), 114–128. https://doi.org/10.1006/dbio.1997.8803
Tejada‐Romero,, B., Carter,, J.‐M., Mihaylova,, Y., Neumann,, B., & Aboobaker,, A. A. (2015). JNK signalling is necessary for a Wnt‐ and stem cell‐dependent regeneration programme. Development, 142(14), 2413–2424. https://doi.org/10.1242/dev.115139
Ten Broek,, R. W., Grefte,, S., & Von Den Hoff,, J. W. (2010). Regulatory factors and cell populations involved in skeletal muscle regeneration. Journal of Cellular Physiology, 224(1), 7–16. https://doi.org/10.1002/jcp.22127
Thorndyke,, M. C., Chen,, W. C., Beesley,, P. W., & Patruno,, M. (2001). Molecular approach to echinoderm regeneration. Microscopy Research and Technique, 55(6), 474–485. https://doi.org/10.1002/jemt.1192
Tiozzo,, S., Brown,, F. D., & De Tomaso,, A. W. (2008). Regeneration and stem cells in ascidians. In T. C. Bosch, (Ed.), Stem Cells (pp. 95–112). Dordrecht: Springer.
Tressler,, J., Maddox,, F., Goodwin,, E., Zhang,, Z., & Tublitz,, N. J. (2014). Arm regeneration in two species of cuttlefish Sepia officinalis and Sepia pharaonis. Invertebrate Neuroscience, 14(1), 37–49. https://doi.org/10.1007/s10158-013-0159-8
Tríbulo,, C., Aybar,, M. J., Nguyen,, V. H., Mullins,, M. C., & Mayor,, R. (2003). Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development, 130(6), 6441–6452. https://doi.org/10.1242/dev.00878
Tseng,, A., Adams,, D. S., Qiu,, D., Koustubhan,, P., & Levin,, M. (2007). Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Developmental Biology, 301(1), 62–69. https://doi.org/10.1016/j.ydbio.2006.10.048
Tu,, K. C., Pearson,, B. J., & Sanchez Alvarado,, A. (2012). TORC1 is required to balance cell proliferation and cell death in planarians. Developmental Biology, 365(2), 458–469. https://doi.org/10.1016/j.ydbio.2012.03.010
Tucker,, A. S., Khamis,, A. A. L., & Sharpe,, P. T. (1998). Interactions between Bmp‐4 and Msx‐1 act to restrict gene expression to odontogenic mesenchyme. Developmental Dynamics, 212(4), 533–539.
Tumaneng,, K., Schlegelmilch,, K., Russell,, R. C., Yimlamai,, D., Basnet,, H., Mahadevan,, N., … Guan,, K. (2012). YAP mediates crosstalk between the Hippo and PI(3) K—TOR pathways by suppressing PTEN via miR‐29. Nature Cell Biology, 14(12), 1322–1331. https://doi.org/10.1038/ncb2615
Uva,, G. D., Aharonov,, A., Lauriola,, M., Kain,, D., Yahalom‐ronen,, Y., Carvalho,, S., … Harvey,, R. P. (2015). ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nature Cell Biology, 17(5), 627–640. https://doi.org/10.1038/ncb3149
Verdoodt,, F., Bert,, W., Couvreur,, M., De Mulder,, K., & Willems,, M. (2012). Proliferative response of the stem cell system during regeneration of the rostrum in Macrostomum lignano (Platyhelminthes). Cell and Tissue Research, 347(2), 397–406. https://doi.org/10.1007/s00441-011-1299-y
Vorontsova,, M. A., & Liosner,, L. D. (1961). Asexual propagation and regeneration. New York, NY: Pergamon Press.
Vriz,, S., Reiter,, S., & Galliot,, B. (2014). Cell death. A program to regenerate. Current Topics in Developmental Biology, 108, 121–151. https://doi.org/10.1016/B978-0-12-391498-9.00002-4
Wadugu,, B., & Kuhn,, B. (2012). The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. AJP: Heart and Circulatory Physiology, 302(11), H2139–H2147. https://doi.org/10.1152/ajpheart.00063.2012
Wagner,, I., Wang,, H., Weissert,, P. M., Drechsel,, D. N., Tanaka,, E. M., Wagner,, I., … Gentzel,, M. (2017). Serum proteases potentiate BMP‐induced cell cycle re‐entry of dedifferentiating muscle cells during Newt limb regeneration. Developmental Cell, 40(6), 608–617.e6. https://doi.org/10.1016/j.devcel.2017.03.002
Wang,, L., Marchionni,, M. A., & Tassava,, R. A. (2000). Cloning and neuronal expression of a type III newt neuregulin and rescue of denervated, nerve‐dependent newt limb blastemas by rhGGF2. Journal of Neurobiology, 43(2), 150–158.
Wang,, Y., Yu,, A., & Yu,, F. X. (2017). The Hippo pathway in tissue homeostasis and regeneration. Protein %26 Cell, 8(5), 1–11. https://doi.org/10.1007/s13238-017-0371-0
Wenemoser,, D., & Reddien,, P. W. (2010). Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology, 344(2), 979–991. https://doi.org/10.1016/j.ydbio.2010.06.017
Werner,, S., & Grose,, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiological Reviews, 83(3), 835–870.
Wu,, C., Huang,, T., Chen,, B., & Chiou,, L. (2015). Long‐duration muscle dedifferentiation during limb regeneration in axolotls. PLoS One, 10(2), e0116068. https://doi.org/10.1371/journal.pone.0116068
Wurtzel,, O., Cote,, L. E., Poirier,, A., Satija,, R., Regev,, A., & Reddien,, P. W. (2015). A generic and cell‐type‐specific wound response precedes regeneration in planarians. Developmental Cell, 35(5), 632–645. https://doi.org/10.1016/j.devcel.2015.11.004
Yin,, J., Xu,, K., Zhang,, J., Kumar,, A., & Yu,, F.‐S. X. (2007). Wound‐induced ATP release and EGF receptor activation in epithelial cells. Journal of Cell Science, 120(Pt. 5), 815–825. https://doi.org/10.1242/jcs.03389
You,, N. A. N., Zheng,, L. U., Liu,, W., Zhong,, X., Wang,, W., & Li,, J. (2014). Proliferation inhibition and differentiation induction of hepatic cancer stem cells by knockdown of BC047440: A potential therapeutic target of stem cell treatment for hepatocellular carcinoma. Oncology Reports, 31(4), 1911–1920. https://doi.org/10.3892/or.2014.3043
Zattara,, E. E., & Bely,, A. E. (2013). Investment choices in post‐embryonic development: Quantifying interactions among growth, regeneration, and asexual reproduction in the annelid Pristina leidyi. Journal of Experimental Zoology B, 320(8), 471–488. https://doi.org/10.1002/jez.b.22523
Zelinka,, C. P., Volkov,, L., Goodman,, Z. A., Todd,, L., Palazzo,, I., Bishop,, W. A., & Fischer,, A. J. (2016). mTor signaling is required for the formation of proliferating Müller glia‐derived progenitor cells in the chick retina. Development, 143(11), 1859–1873. https://doi.org/10.1242/dev.133215
Zhang,, D. X., Li,, C. H., Zhang,, A. Q., Jiang,, S., Lai,, Y. H., Ge,, X. L., … Dong,, J. H. (2015). mTOR‐dependent suppression of remnant liver regeneration in liver failure after massive liver resection in rats. Digestive Diseases and Sciences, 60(9), 2718–2729. https://doi.org/10.1007/s10620-015-3676-y
Zhang,, H., Wang,, X., Lyu,, K., Gao,, S., Wang,, G., Fan,, C., … Yan,, J. (2015). Time point‐based integrative analyses of deep‐transcriptome identify four signal pathways in blastemal regeneration of zebrafish lower jaw. Stem Cells, 33(3), 806–818. https://doi.org/10.1002/stem.1899
Zhang,, P., Liang,, X., Shan,, T., Jiang,, Q., & Deng,, C. (2015). mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration. Biochemical and Biophysical Research Communications, 463(1–2), 1–7. https://doi.org/10.1016/j.bbrc.2015.05.032
Zhao,, J., Izumi,, T., Nunomura,, K., Satoh,, S., & Watanabe,, S. (2007). MARCKS‐like protein, a membrane protein identified for its expression in developing neural retina, plays a role in regulating retinal cell proliferation. Biochemical Journal, 408(1), 51–59. https://doi.org/10.1042/BJ20070826
Zhao,, L., Borikova,, A. L., Ben‐Yair,, R., Guner‐Ataman,, B., MacRae,, C. A., Lee,, R. T., … Burns,, C. E. (2014). Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proceedings of the National Academy of Sciences, 111(4), 1403–1408. https://doi.org/10.1073/pnas.1311705111
Zheng,, X., Peng,, R., Jiang,, X., Wang,, Y., & Xu,, S. (2017). Fluorescence resonance energy transfer‐based DNA nanoprism with a split aptamer for ATP sensing in living cells. Analytical Chemistry, 89, 10941–10947. https://doi.org/10.1021/acs.analchem.7b02763
Zondag,, L. E., Rutherford,, K., Gemmell,, N. J., & Wilson,, M. J. (2016). Uncovering the pathways underlying whole body regeneration in a chordate model, Botrylloides leachi using de novo transcriptome analysis. BMC Genomics, 17(1), 114. https://doi.org/10.1186/s12864-016-2435-6