Allende,, M. L., Cook,, E. K., Larman,, B. C., Nugent,, A., Brady,, J. M., Golebiowski,, D., … Proia,, R. L. (2018). Cerebral organoids derived from Sandhoff disease‐induced pluripotent stem cells exhibit impaired neurodifferentiation. Journal of Lipid Research, 59(3), 550–563.
Bagley,, J. A., Reumann,, D., Bian,, S., Lévi‐Strauss,, J., & Knoblich,, J. A. (2017). Fused cerebral organoids model interactions between brain regions. Nature Methods, 14(7), 743–751.
Bayly,, P. V., Okamoto,, R. J., Xu,, G., Shi,, Y., & Taber,, L. A. (2013). A cortical folding model incorporating stress‐dependent growth explains gyral wavelengths and stress patterns in the developing brain. Physical Biology, 10(1), 016005.
Berninger,, B., Costa,, M. R., Koch,, U., Schroeder,, T., Sutor,, B., Grothe,, B., & Götz,, M. (2007). Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. The Journal of Neuroscience, 27(32), 8654–8664.
Bershteyn,, M., Nowakowski,, T. J., Pollen,, A. A., Di Lullo,, E., Nene,, A., Wynshaw‐Boris,, A., & Kriegstein,, A. R. (2017). Human iPSC‐derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell, 20(4), 435–449.
Betizeau,, M., Cortay,, V., Patti,, D., Pfister,, S., Gautier,, E., Bellemin‐Ménard,, A., … Dehay,, C. (2013). Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron, 80(2), 442–457.
Birey,, F., Andersen,, J., Makinson,, C. D., Islam,, S., Wei,, W., Huber,, N., … Paşca,, S. P. (2017). Assembly of functionally integrated human forebrain spheroids. Nature, 545(7652), 54–59.
Borrell,, V., & Reillo,, I. (2012). Emerging roles of neural stem cells in cerebral cortex development and evolution. Developmental Neurobiology, 72(7), 955–971.
Boyd,, J. L., Skove,, S. L., Rouanet,, J. P., Pilaz,, L.‐J., Bepler,, T., Gordân,, R., … Silver,, D. L. (2015). Human‐chimpanzee differences in a FZD8 enhancer alter cell‐cycle dynamics in the developing neocortex. Current Biology, 25(6), 772–779.
Budday,, S., Steinmann,, P., & Kuhl,, E. (2015). Physical biology of human brain development. Frontiers in Cellular Neuroscience, 9, 257.
Bystron,, I., Blakemore,, C., & Rakic,, P. (2008). Development of the human cerebral cortex: Boulder Committee revisited. Nature Reviews Neuroscience, 9(2), 110–122.
Bystron,, I., Rakic,, P., Molnár,, Z., & Blakemore,, C. (2006). The first neurons of the human cerebral cortex. Nature Neuroscience, 9(7), 880–886.
Camp,, J. G., Badsha,, F., Florio,, M., Kanton,, S., Gerber,, T., Wilsch‐Bräuninger,, M., … Treutlein,, B. (2015). Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15672–15677.
Cárdenas,, A., Villalba,, A., de Juan Romero,, C., Picó,, E., Kyrousi,, C., Tzika,, A. C., … Borrell,, V. (2018). Evolution of cortical neurogenesis in amniotes controlled by robo signaling levels. Cell, 174(3), 590–606.
Chambers,, S. M., Fasano,, C. A., Papapetrou,, E. P., Tomishima,, M., Sadelain,, M., & Studer,, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280.
Cheng,, Z., Ventura,, M., She,, X., Khaitovich,, P., Graves,, T., Osoegawa,, K., … Eichler,, E. E. (2005). A genome‐wide comparison of recent chimpanzee and human segmental duplications. Nature, 437(7055), 88–93.
Costa,, M. R., & Müller,, U. (2015). Specification of excitatory neurons in the developing cerebral cortex: Progenitor diversity and environmental influences. Frontiers in Cellular Neuroscience, 8, 449.
Dang,, J., Tiwari,, S. K., Lichinchi,, G., Qin,, Y., Patil,, V. S., Eroshkin,, A. M., & Rana,, T. M. (2016). Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell, 19(2), 258–265.
de Juan Romero,, C., & Borrell,, V. (2015). Coevolution of radial glial cells and the cerebral cortex. Glia, 63, 1303–1319.
de Juan,, R. C., Bruder,, C., Tomasello,, U., Sanz‐Anquela,, J. M., & Borrell,, V. (2015). Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly. The EMBO Journal, 34(14), 1859–1874.
Dehay,, C., Kennedy,, H., & Kosik,, K. S. (2015). The outer subventricular zone and primate‐specific cortical complexification. Neuron, 85(4), 683–694.
del Toro,, D., Ruff,, T., Cederfjäll,, E., Villalba,, A., Seyit‐Bremer,, G., Borrell,, V., & Klein,, R. (2017). Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules. Cell, 169(4), 621–635.
Dennis,, M. Y., Nuttle,, X., Sudmant,, P. H., Antonacci,, F., Graves,, T. A., & Nefedov,, M. (2012). Evolution of human‐specific neural SRGAP2 genes by incomplete segmental duplication. Cell, 149(4), 912–922.
Di Lullo,, E., & Kriegstein,, A. R. (2017). The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience, 18(10), 573–584.
Edri,, R., Yaffe,, Y., Ziller,, M. J., Mutukula,, N., Volkman,, R., David,, E., … Elkabetz,, Y. (2015). Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors. Nature Communications, 6, 6500.
Eiraku,, M., Watanabe,, K., Matsuo‐Takasaki,, M., Kawada,, M., Yonemura,, S., Matsumura,, M., … Sasai,, Y. (2008). Self‐organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell, 3(5), 519–532.
Elkabetz,, Y., Panagiotakos,, G., AL Shamy,, G., Socci,, N. D., Tabar,, V., & Studer,, L. (2008). Human ES cell‐derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes %26 Development, 22(2), 152–165.
Encinas,, J. L., García‐Cabezas,, M. Á., Barkovich,, J., Fontecha,, C. G., Peiró,, J. L., Soto,, G. M. C., … Farmer,, D. L. (2011). Maldevelopment of the cerebral cortex in the surgically induced model of myelomeningocele: Implications for fetal neurosurgery. Journal of Pediatric Surgery, 46(4), 713–722.
Englund,, C., Fink,, A., Lau,, C., Pham,, D., Daza,, R. A., Bulfone,, A., … Hevner,, R. F. (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. The Journal of Neuroscience, 25(1), 247–251.
Fiddes,, I. T., Lodewijk,, G. A., Mooring,, M., Bosworth,, C. M., Ewing,, A. D., Mantalas,, G. L., … Haussier,, D. (2018). Human‐specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell, 173(6), 1356–1369.
Fietz,, S. A., Kelava,, I., Vogt,, J., Wilsch‐Brauninger,, M., Stenzel,, D., Fish,, J. L., … Huttner,, W. B. (2010). OSVZ progenitors of human and ferret neocortex are epithelial‐like and expand by integrin signaling. Nature Neuroscience, 13(6), 690–699.
Finlay,, B. L., & Darlington,, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268(5217), 1578–1584.
Florio,, M., Albert,, M., Taverna,, E., Namba,, T., Brandl,, H., Lewitus,, E., … Huttner,, W. B. (2015). Human‐specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science, 347(6229), 1465–1470.
Florio,, M., Heide,, M., Pinson,, A., Brandl,, H., Albert,, M., Winkler,, S., … Hiller,, M. (2018). Evolution and cell‐type specificity of human‐specific genes preferentially expressed in progenitors of fetal neocortex. eLife, 7, 32332.
Florio,, M., & Huttner,, W. B. (2014). Neural progenitors, neurogenesis and the evolution of the neocortex. Development, 141(11), 2182–2194.
Frederiksen,, K., & McKay,, R. D. (1988). Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. The Journal of Neuroscience, 8(4), 1144–1151.
Gabriel,, E., Wason,, A., Ramani,, A., Gooi,, L. M., Keller,, P., Pozniakovsky,, A., … Gopalakrishnan,, J. (2016). CPAP promotes timely cilium disassembly to maintain neural progenitor pool. The EMBO Journal, 35(8), 803–819.
Garcez,, P. P., Loiola,, E. C., Madeiro da Costa,, R., Higa,, L. M., Trindade,, P., Delvecchio,, R., … Rehen,, S. K. (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science, 352(6287), 816–818.
Gaspard,, N., Bouschet,, T., Hourez,, R., Dimidschstein,, J., Naeije,, G., van den Ameele,, J., … Vanderhaeghen,, P. (2008). An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature, 455(7211), 351–357.
Gonzalez,, C., Armijo,, E., Bravo‐Alegria,, J., Becerra‐Calixto,, A., Mays,, C. E., & Soto,, C. (2018). Modeling amyloid beta and tau pathology in human cerebral organoids. Molecular Psychiatry, 23(12), 2363–2374.
Götz,, M., & Huttner,, W. B. (2005). The cell biology of neurogenesis. Nature Reviews Molecular Cell Biology, 6(10), 777–788.
Götz,, M., Stoykova,, A., & Gruss,, P. (1998). Pax6 controls radial glia differentiation in the cerebral cortex. Neuron, 21(5), 1031–1044.
Greig,, L. C., Woodworth,, M. B., Galazo,, M. J., Padmanabhan,, H., & Macklis,, J. D. (2013). Molecular logic of neocortical projection neuron specification, development and diversity. Nature Reviews Neuroscience, 14(11), 755–769.
Hansen,, D. V., Lui,, J. H., Parker,, P. R., & Kriegstein,, A. R. (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, 464(7288), 554–561.
Haubensak,, W., Attardo,, A., Denk,, W., & Huttner,, W. B. (2004). Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3196–3201.
Huttner,, W. B., & Brand,, M. (1997). Asymmetric division and polarity of neuroepithelial cells. Current Opinion in Neurobiology, 7(1), 29–39.
Iacopetti,, P., Michelini,, M., Stuckmann,, I., Oback,, B., Aaku‐Saraste,, E., & Huttner,, W. B. (1999). Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron‐generating division. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4639–4644.
Iefremova,, V., Manikakis,, G., Krefft,, O., Jabali,, A., Weynans,, K., Wilkens,, R., … Ladewig,, J. (2017). An organoid‐based model of cortical development identifies non‐cell‐autonomous defects in Wnt signaling contributing to Miller‐Dieker syndrome. Cell Reports, 19(1), 50–59.
Jo,, J., Xiao,, Y., Sun,, A. X., Cukuroglu,, E., Tran,, H.‐D., Göke,, J., … Ng,, H. H. (2016). Midbrain‐like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin‐producing neurons. Cell Stem Cell, 19(2), 248–257.
Ju,, X.‐C., Hou,, Q.‐Q., Sheng,, A.‐L., Wu,, K.‐Y., Zhou,, Y., Jin,, Y., … Luo,, Y. G. (2016). The hominoid‐specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. eLife, 5, 18197.
Kadhim,, H. J., Gadisseux,, J. F., & Evrard,, P. (1988). Topographical and cytological evolution of the glial phase during prenatal development of the human brain: Histochemical and electron microscopic study. Journal of Neuropathology and Experimental Neurology, 47(2), 166–188.
Kadoshima,, T., Sakaguchi,, H., Nakano,, T., Soen,, M., Ando,, S., Eiraku,, M., & Sasai,, Z. (2013). Self‐organization of axial polarity, inside‐out layer pattern, and species‐specific progenitor dynamics in human ES cell‐derived neocortex. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20284–20289.
Karow,, M., Camp,, J. G., Falk,, S., Gerber,, T., Pataskar,, A., Gac‐Santel,, M., … Berninger,, B. (2018). Direct pericyte‐to‐neuron reprogramming via unfolding of a neural stem cell‐like program. Nature Neuroscience, 21(7), 932–940.
Karzbrun,, E., Kshirsagar,, A., Cohen,, S. R., Hanna,, J. H., & Reiner,, O. (2018). Human brain organoids on a chip reveal the physics of folding. Nature Physics, 14(5), 515–522.
Kelava,, I., Reillo,, I., Murayama,, A. Y., Kalinka,, A. T., Stenzel,, D., Tomancak,, P., … Borrell,, V. (2012). Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cerebral Cortex, 22(2), 469–481.
King,, M. C., & Wilson,, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science, 188(4184), 107–116.
Klaus,, J., Kanton,, S., Kyrousi,, C., Ayo‐Martin,, A. C., Di Giaimo,, R., Riesenberg,, S., … Cappello,, S. (2019). An altered neuronal navigation system in cerebral organoids from individuals with periventriculat heterotopia. Nature Medicine, 25(4), 561–568.
Kornack,, D. R., & Rakic,, P. (1998). Changes in cell‐cycle kinetics during the development and evolution of primate neocortex. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1242–1246.
Kriegstein,, A., Noctor,, S., & Martínez‐cerdeño,, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Neuroscience, 7, 883–890.
O`Neill,, A. C., Kyrousi,, C., Einsiedler,, M., Burtscher,, I., Drukker,, M., Markie,, D. M., … Cappello,, S. (2018). Mob2 insufficiency disrupts neuronal migration in the developing cortex. Frontiers in Cellular Neuroscience, 12, 57.
O`Neill,, A. C., Kyrousi,, C., Klaus,, J., Leventer,, R. J., Kirk,, E. P., Fry,, A., … Robertson,, S. P. (2018). A primate‐specific isoform of plekhg6 regulates neurogenesis and neuronal migration. Cell Reports, 25(10), 2729–2741.
Lancaster,, M. A., Corsini,, N. S., Wolfinger,, S., Gustafson,, E. H., Phillips,, A. W., Burkard,, T. R., … Knoblich,, J. A. (2017). Guided self‐organization and cortical plate formation in human brain organoids. Nature Biotechnology, 35(7), 659–666.
Lancaster,, M. A., & Knoblich,, J. A. (2014). Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 9(10), 2329–2340.
Lancaster,, M. A., Renner,, M., Martin,, C. A., Wenzel,, D., Bicknell,, L. S., Hurles,, M. E., … Knoblich,, J. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373–379.
Lee,, C.‐T., Chen,, J., Kindberg,, A. A., Bendriem,, R. M., Spivak,, C. E., Williams,, M. P., … Freed,, W. J. (2017). CYP3A5 mediates effects of cocaine on human neocorticogenesis: Studies using an in vitro 3D self‐organized hPSC model with a single cortex‐like unit. Neuropsychopharmacology, 42(3), 774–784.
Lee,, H., Shamy,, G. A., Elkabetz,, Y., Schofield,, C. M., Harrsion,, N. L., Panagiotakos,, G., … Studer,, L. (2007). Directed differentiation and transplantation of human embryonic stem cell‐derived motoneurons. Stem Cells, 25(8), 1931–1939.
Lewitus,, E., Kelava,, I., Kalinka,, A. T., Tomancak,, P., & Huttner,, W. B. (2014). An Adaptive Threshold in Mammalian Neocortical Evolution. PLoS Biology, 12(11), e1002000.
Li,, R., Sun,, L., Fang,, A., Li,, P., Wu,, Q., & Wang,, X. (2017). Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle‐like (ASPM related primary) microcephaly disease. Protein %26 Cell, 8(11), 823–833.
Li,, Y., Muffat,, J., Omer,, A., Bosch,, I., Lancaster,, M. A., Sur,, M., … Jaenisch,, R. (2017). Induction of expansion and folding in human cerebral organoids. Cell Stem Cell, 20(3), 385–396.
Liu,, J., Liu,, W., Yang,, L., Wu,, Q., Zhang,, H., Fang,, A., … Wang,, X. (2017). The primate‐specific gene TMEM14B marks outer radial glia cells and promotes cortical expansion and folding. Cell Stem Cell, 21(5), 635–649.
Long,, K. R., Newland,, B., Florio,, M., Kalebic,, N., Langen,, B., Kolterer,, A., … Huttner,, W. B. (2018). Extracellular matrix components HAPLN1, lumican, and collagen I cause hyaluronic acid‐dependent folding of the developing human neocortex. Neuron, 99(4), 702–719.
Luo,, C., Lancaster,, M. A., Castanon,, R., Nery,, J. R., Knoblich,, J. A., & Ecker,, J. R. (2016). Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Reports, 17(12), 3369–3384.
Mariani,, J., Coppola,, G., Zhang,, P., Abyzov,, A., Provini,, L., Tomasini,, L., … Vaccarino,, F. M. (2015). FOXG1‐dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 162(2), 375–390.
Marin‐Padilla,, M. (1978). Dual origin of the mammalian neocortex and evolution of the cortical plate. Anatomy and Embryology, 152(2), 109–126.
Martínez‐Martínez,, M. Á., De Juan,, R. C., Fernández,, V., Cárdenas,, A., Götz,, M., & Borrell,, V. (2016). A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nature Communications, 7, 11812.
Masserdotti,, G., Gillotin,, S., Sutor,, B., Drechsel,, D., Irmler,, M., Jørgensen,, H. F., … Götz,, M. (2015). Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell, 17(1), 74–88.
Mellios,, N., Feldman,, D. A., Sheridan,, S. D., Ip,, J. P. K., Kwok,, S., Amoah,, S. K., … Ming,, G. L. (2018). Human cerebral organoids reveal deficits in neurogenesis and neuronal migration in MeCP2‐deficient neural progenitors. Molecular Psychiatry, 23(4), 791.
Migliore,, M., & Shepherd,, G. M. (2005). An integrated approach to classifying neuronal phenotypes. Nature Reviews Neuroscience, 6(10), 810–818.
Miyata,, T., Kawaguchi,, A., Saito,, K., Kawano,, M., Muto,, T., & Ogawa,, M. (2004). Asymmetric production of surface‐dividing and non‐surface‐dividing cortical progenitor cells. Development, 131(13), 3133–3145.
Miyata,, T., Kawaguchi,, D., Kawaguchi,, A., & Gotoh,, Y. (2010). Mechanisms that regulate the number of neurons during mouse neocortical development. Current Opinion in Neurobiology, 20(1), 22–28.
Molyneaux,, B. J., Arlotta,, P., Menezes,, J. R., & Macklis,, J. D. (2007). Neuronal subtype specification in the cerebral cortex. Nature Reviews Neuroscience, 8(6), 427–437.
Mora‐Bermúdez,, F., Badsha,, F., Kanton,, S., Camp,, J. G., Vernot,, B., Köhler,, K., … Huttner,, W. B. (2016). Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. eLife, 5, 18683.
Muguruma,, K., Nishiyama,, A., Kawakami,, H., Hashimoto,, K., & Sasai,, Y. (2015). Self‐organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Reports, 10(4), 537–550.
Narayanan,, R., Pham,, L., Kerimoglu,, C., Watanabe,, T., Castro Hernandez,, R., Sokpor,, G., … Tuoc,, T. (2018). Chromatin remodeling BAF155 subunit regulates the genesis of basal progenitors in developing cortex. iScience, 4, 109–126.
Noctor,, S. C., Flint,, A. C., Weissman,, T. A., Dammerman,, R. S., & Kriegstein,, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409(6821), 714–720.
Noctor,, S. C., Martinez‐Cerdeno,, V., Ivic,, L., & Kriegstein,, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7(2), 136–144.
Nonaka‐Kinoshita,, M., Reillo,, I., Artegiani,, B., Martínez‐Martínez,, M. Á., Nelson,, M., Borrell,, V., & Calegari,, F. (2013). Regulation of cerebral cortex size and folding by expansion of basal progenitors. The EMBO Journal, 32(13), 1817–1828.
Nowakowski,, T. J., Bhaduri,, A., Pollen,, A. A., Alvarado,, B., Mostajo‐Radji,, M. A., Di Lullo,, E., … Kriegstein,, A. R. (2017). Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science, 358(6368), 1318–1323.
Nowakowski,, T. J., Pollen,, A. A., Sandoval‐Espinosa,, C., & Kriegstein,, A. R. (2016). Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron, 91(6), 1219–1227.
Ortega,, J. A., Memi,, F., Radonjic,, N., Filipovic,, R., Bagasrawala,, I., Zecevic,, N., & Jakovcevski,, I. (2018). The subventricular zone: A key player in human neocortical development. Neuroscience, 24(2), 156–170.
Otani,, T., Marchetto,, M. C., Gage,, F. H., Simons,, B. D., & Livesey,, F. J. (2016). 2D and 3D stem cell models of primate cortical development identify species‐specific differences in progenitor behavior contributing to brain size. Cell Stem Cell, 18(4), 467–480.
Parnavelas,, J. G. (2000). The origin and migration of cortical neurones: New vistas. Trends in Neurosciences, 23(3), 126–131.
Paşca,, A. M., Sloan,, S. A., Clarke,, L. E., Tian,, Y., Makinson,, C. D., Huber,, N., … Paşca,, S. P. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 12(7), 671–678.
Pilz,, G.‐A., Shitamukai,, A., Reillo,, I., Pacary,, E., Schwausch,, J., Stahl,, R., … Götz,, M. (2013). Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nature Communications, 4(1), 2125.
Pollen,, A. A., Nowakowski,, T. J., Chen,, J., Retallack,, H., Sandoval‐Espinosa,, C., Nicholas,, C. R., … Kriegstein,, A. R. (2015). Molecular identity of human outer radial glia during cortical development. Cell, 163(1), 55–67.
Qian,, X., Jacob,, F., Song,, M. M., Nguyen,, H. N., Song,, H., & Ming,, G. (2018). Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 13(3), 565–580.
Qian,, X., Nguyen,, H. N., Jacob,, F., Song,, H., & Ming,, G. (2017). Using brain organoids to understand Zika virus‐induced microcephaly. Development, 144(6), 952–957.
Qian,, X., Nguyen,, H. N., Song,, M. M., Hadiono,, C., Ogden,, S. C., Hammack,, C., … Ming,, G. L. (2016). Brain‐region‐specific organoids using mini‐bioreactors for modeling ZIKV exposure. Cell, 165(5), 1238–1254.
Quadrato,, G., Nguyen,, T., Macosko,, E. Z., Sherwood,, J. L., Min Yang,, S., Berger,, D. R., … Arlotta,, P. (2017). Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 545(7652), 48–53.
Raja,, W. K., Mungenast,, A. E., Lin,, Y.‐T., Ko,, T., Abdurrob,, F., Seo,, J., & Tsai,, L. H. (2016). Self‐organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate alzheimer`s disease phenotypes. PLoS One, 11(9), e0161969.
Rakic,, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. Journal of Comparative Neurology, 145(1), 61–83.
Rakic,, P. (1988). Specification of cerebral cortical areas. Science, 241(4862), 170–176.
Rakic,, P. (1995). A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends in Neurosciences, 18(9), 383–388.
Rakic,, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10(10), 724–735.
Rakic,, S., & Zecevic,, N. (2003). Emerging complexity of layer I in human cerebral cortex. Cerebral Cortex, 13(10), 1072–1083.
Reillo,, I., de Juan,, R. C., García‐Cabezas,, M. Á., & Borrell,, V. (2011). A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cerebral Cortex, 21(7), 1674–1694.
Renner,, M., Lancaster,, M. A., Bian,, S., Choi,, H., Ku,, T., Peer,, A., … Knoblich,, J. A. (2017). Self‐organized developmental patterning and differentiation in cerebral organoids. The EMBO Journal, 36(10), 1316–1329.
Sakaguchi,, H., Kadoshima,, T., Soen,, M., Narii,, N., Ishida,, Y., Ohgushi,, M., … Sasai,, Y. (2015). Generation of functional hippocampal neurons from self‐organizing human embryonic stem cell‐derived dorsomedial telencephalic tissue. Nature Communications, 6(1), 8896.
Seo,, J., Kritskiy,, O., Watson,, L. A., Barker,, S. J., Dey,, D., Raja,, W. K., … Tsai,, L. H. (2017). Inhibition of p25/Cdk5 attenuates tauopathy in mouse and iPSC models of frontotemporal dementia. The Journal of Neuroscience, 37(41), 9917–9924.
Shi,, Y., Kirwan,, P., Smith,, J., Robinson,, H. P., & Livesey,, F. J. (2012). Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nature Neuroscience, 15(3), 477–486.
Shitamukai,, A., Konno,, D., & Matsuzaki,, F. (2011). Oblique radial glial divisions in the developing mouse neocortex induce self‐renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. The Journal of Neuroscience, 31(10), 3683–3695.
Sidman,, R. L., & Rakic,, P. (1973). Neuronal migration, with special reference to developing human brain: A review. Brain Research, 62(1), 1–35.
Sloan,, S. A., Andersen,, J., Paşca,, A. M., Birey,, F., & Paşca,, S. P. (2018). Generation and assembly of human brain region–specific three‐dimensional cultures. Nature Protocols, 13(9), 2062–2085.
Smart,, I. H. M., Dehay,, C., Giroud,, P., Berland,, M., & Kennedy,, H. (2002). Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cerebral Cortex, 12(1), 37–53.
Sousa,, A. M. M., Meyer,, K. A., Santpere,, G., Gulden,, F. O., & Sestan,, N. (2017). Evolution of the human nervous system function, structure, and development. Cell, 170(2), 226–247.
Staerk,, J., Dawlaty,, M. M., Gao,, Q., Maetzel,, D., Hanna,, J., Sommer,, C. A., … Jaenisch,, R. (2010). Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell, 7(1), 20–24.
Stahl,, R., Walcher,, T., De Juan,, R. C., Pilz,, G. A., Cappello,, S., Irmler,, M., … Götz,, M. (2013). Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell, 153(3), 535–549.
Sultan,, K. T., Brown,, K. N., & Shi,, S.‐H. (2013). Production and organization of neocortical interneurons. Frontiers in Cellular Neuroscience, 7, 221.
Suzuki,, I. K., Gacquer,, D., Van Heurck,, R., Kumar,, D., Wojno,, M., Bilheu,, A., … Vanderhaeghen,, P. (2018). Human‐specific NOTCH2NL genes expand cortical neurogenesis through delta/notch regulation. Cell, 173(6), 1370–1384.
Takahashi,, K., Tanabe,, K., Ohnuki,, M., Narita,, M., Ichisaka,, T., Tomoda,, K., & Yamanaka,, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.
Taverna,, E., & Huttner,, W. B. (2010). Neural progenitor nuclei IN motion. Neuron, 67(6), 906–914.
Turrero García,, M., Chang,, Y., Arai,, Y., & Huttner,, W. B. (2016). S‐phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex. Journal of Comparative Neurology, 524(3), 456–470.
Vaid,, S., Camp,, J. G., Hersemann,, L., Oegema,, C. E., Heninger,, A.‐K., Winkler,, S., … Namba,, T. (2018). A novel population of Hopx‐dependent basal radial glial cells in the developing mouse neocortex. Development, 145(20). https://doi.org/10.1242/dev.169276
Van Essen,, D. C. (1997). A tension‐based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385(6614), 313–318.
Vierbuchen,, T., Ostermeier,, A., Pang,, Z. P., Kokubu,, Y., Südhof,, T. C., & Wernig,, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041.
Wang,, L., Hou,, S., & Han,, Y.‐G. (2016). Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nature Neuroscience, 19(7), 888–896.
Wang,, P., Mokhtari,, R., Pedrosa,, E., Kirschenbaum,, M., Bayrak,, C., Zheng,, D., & Lachman,, H. M. (2017). CRISPR/Cas9‐mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Molecular Autism, 8(1), 11.
Wang,, X., Tsai,, J. W., Lamonica,, B., & Kriegstein,, A. R. (2011). A new subtype of progenitor cell in the mouse embryonic neocortex. Nature Neuroscience, 14(5), 555–561.
Watanabe,, M., Buth,, J. E., Vishlaghi,, N., de la Torre‐Ubieta,, L., Taxidis,, J., Khakh,, B. S., … Novitch,, B. G. (2017). Self‐organized cerebral organoids with human‐specific features predict effective drugs to combat zika virus infection. Cell Reports, 21(2), 517–532.
Xiang,, Y., Tanaka,, Y., Patterson,, B., Kang,, Y.‐J., Govindaiah,, G., Roselaar,, N., … Park,, I. H. (2017). Fusion of regionally specified hPSC‐derived organoids models human brain development and interneuron migration. Cell Stem Cell, 21(3), 383–398.
Yan,, Y., Yang,, D., Zarnowska,, E. D., Du,, Z., Werbel,, B., Valliere,, C., … Zhang,, S. C. (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells, 23(6), 781–790.
Ye,, F., Kang,, E., Yu,, C., Qian,, X., Jacob,, F., Yu,, C., … Zhang,, M. (2017). DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron, 96(5), 1204.
Yu,, X.‐J., Zheng,, H.‐K., Wang,, J., Wang,, W., & Su,, B. (2006). Detecting lineage‐specific adaptive evolution of brain‐expressed genes in human using rhesus macaque as outgroup. Genomics, 88(6), 745–751.
Zecevic,, N. (2004). Specific characteristic of radial glia in the human fetal telencephalon. Glia, 48(1), 27–35.
Zecevic,, N., Chen,, Y., & Filipovic,, R. (2005). Contributions of cortical subventricular zone to the development of the human cerebral cortex. Journal of Comparative Neurology, 491(2), 109–122.
Zhang,, B., He,, Y., Xu,, Y., Mo,, F., Mi,, T., Shen,, Q. S., … Zhou,, G. (2018). Differential antiviral immunity to Japanese encephalitis virus in developing cortical organoids. Cell Death %26 Disease, 9(7), 719.
Zhang,, S. C., Wernig,, M., Duncan,, I. D., Brüstle,, O., & Thomson,, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19(12), 1129–1133.
Zhang,, Y., Pak,, C., Han,, Y., Ahlenius,, H., Zhang,, Z., Chanda,, S., … Südhof,, T. C. (2013). Rapid single‐step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785–798.
Zhou,, T., Benda,, C., Duzinger,, S., Huang,, Y., Li,, X., Li,, Y., … Esteban,, M. A. (2011). Generation of induced pluripotent stem cells from urine. Journal of the American Society of Nephrology, 22(7), 1221–1228.