Abbott,, N. J., Ronnback,, L., & Hansson,, E. (2006). Astrocyte‐endothelial interactions at the blood‐brain barrier. Nature Reviews. Neuroscience, 7, 41–53.
Ackermann,, M., Houdek,, J. P., Gibney,, B. C., Ysasi,, A., Wagner,, W., Belle,, J., … Konerding,, M. A. (2014). Sprouting and intussusceptive angiogenesis in postpneumonectomy lung growth: Mechanisms of alveolar neovascularization. Angiogenesis, 17, 541–551.
Adams,, M. D., Winder,, A. T., Blinder,, P., & Drew,, P. J. (2018). The pial vasculature of the mouse develops according to a sensory‐independent program. Scientific Reports, 8, 9860.
Agre,, P., King,, L. S., Yasui,, M., Guggino,, W. B., Ottersen,, O. P., Fujiyoshi,, Y., … Nielsen,, S. (2002). Aquaporin water channels‐‐from atomic structure to clinical medicine. Journal of Physiology, 542, 3–16.
Amselgruber,, W. M., Schafer,, M., & Sinowatz,, F. (1999). Angiogenesis in the bovine corpus luteum: An immunocytochemical and ultrastructural study. Anatomia, Histologia, Embryologia, 28, 157–166.
Arcuri,, C., Mecca,, C., Bianchi,, R., Giambanco,, I., & Donato,, R. (2017). The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Frontiers in Molecular Neuroscience, 10, 191.
Armulik,, A., Abramsson,, A., & Betsholtz,, C. (2005). Endothelial/pericyte interactions. Circulation Research, 97, 512–523.
Armulik,, A., Genové,, G., Mäe,, M., Nisancioglu,, M. H., Wallgard,, E., Niaudet,, C., … Betsholtz,, C. (2010). Pericytes regulate the blood‐brain barrier. Nature, 468, 557–561.
Bär,, T., Miodoński,, A., & Budi Santoso,, A. W. (1986). Postnatal development of the vascular pattern in the rat telencephalic pia‐arachnoid. A SEM study. Anatomical Embryology, 174, 215–223.
Bautch,, V. L., & James,, J. M. (2009). Neurovascular development: The beginning of a beautiful friendship. Cell Adhesion %26 Migration, 3, 199–204.
Benjamin,, L. E., Hemo,, I., & Keshet,, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF‐B and VEGF. Development, 125, 1591–1598.
Ben‐Zvi,, A., Lacoste,, B., Kur,, E., Andreone,, B. J., Mayshar,, Y., Yan,, H., & Gu,, C. (2014). Mfsd2a is critical for the formation and function of the blood‐brain barrier. Nature, 509, 507–511.
Berthiaume,, A. A., Grant,, R. I., McDowell,, K. P., Underly,, R. G., Hartmann,, D. A., Levy,, M., … Shih,, A. Y. (2018). Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Reports, 22, 8–16.
Blinder,, P., Shih,, A. Y., Rafie,, C. A., & Kleinfeld,, D. (2010). Topological basis for the robust distribution of blood to rodent neocortex. Proceedings of the National Academy of Sciences of the United States of America, 107, 12670–12675.
Blinder,, P., Tsai,, P. S., Kaufhold,, J. P., Knutsen,, P. M., Suhl,, H., & Kleinfeld,, D. (2013). The cortical angiome: An interconnected vascular network with noncolumnar patterns of blood flow. Nature Neuroscience, 16, 889–897.
Bozoyan,, L., Khlghatyan,, J., & Saghatelyan,, A. (2012). Astrocytes control the development of the migration‐promoting vasculature scaffold in the postnatal brain via VEGF signaling. The Journal of Neuroscience, 32, 1687–1704.
Burri,, P. H., Hlushchuk,, R., & Djonov,, V. (2004). Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance. Developmental Dynamics, 231, 474–488.
Bussmann,, J., Wolfe,, S. A., & Siekmann,, A. F. (2011). Arterial‐venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development, 138, 1717–1726.
Butt,, A. M., Jones,, H. C., & Abbott,, N. J. (1990). Electrical resistance across the blood‐brain barrier in anaesthetized rats: A developmental study. The Journal of Physiology, 429, 47–62.
Cardoso,, F. L., Brites,, D., & Brito,, M. A. (2010). Looking at the blood‐brain barrier: Molecular anatomy and possible investigation approaches. Brain Research Reviews, 64, 328–363.
Carmeliet,, P., & Tessier‐Lavigne,, M. (2005). Common mechanisms of nerve and blood vessel wiring. Nature, 436, 193–200.
Chalothorn,, D., & Faber,, J. E. (2010). Formation and maturation of the native cerebral collateral circulation. Journal of Molecular and Cellular Cardiology, 49, 251–259.
Chalothorn,, D., Zhang,, H., Smith,, J. E., Edwards,, J. C., & Faber,, J. E. (2015). Chloride intracellular channel‐4 is a determinant of native collateral formation in skeletal muscle and brain. Circulation Research, 2009, 89–98.
Chen,, J., Luo,, Y., Hui,, H., Cai,, T., Huang,, H., Yang,, F., … Yan,, X. (2017). CD146 coordinates brain endothelial cell‐pericyte communication for blood‐brain barrier development. Proceedings of the National Academy of Sciences of the United States of America, 114, E7622–E7631.
Chen,, Q., Jiang,, L., Li,, C., Hu,, D., Bu,, J. W., Cai,, D., & Du,, J. L. (2012). Haemodynamics‐driven developmental pruning of brain vasculature in zebrafish. PLoS Biology, 10, e1001374–e1001374.
Clayton,, J. A., Chalothorn,, D., & Faber,, J. E. (2008). Vascular endothelial growth factor––A specifies formation of native collaterals and regulates collateral growth in ischemia. Circulation Research, 103, 1027–1036.
Cudmore,, R. H., Dougherty,, S. E., & Linden,, D. J. (2017). Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise. Journal of Cerebral Blood Flow %26 Metabolism, 37, 3725–3743.
Daneman,, R., Agalliu,, D., Zhou,, L., Kuhnert,, F., Kuo,, C. J., & Barres,, B. A. (2009). Wnt/beta‐catenin signaling is required for CNS, but not non‐CNS, angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106, 641–646.
Daneman,, R., Zhou,, L., Kebede,, A. A., & Barres,, B. A. (2010). Pericytes are required for blood‐brain barrier integrity during embryogenesis. Nature, 468, 562–566.
Devor,, A., Tian,, P., Nishimura,, N., Teng,, I. C., Hillman,, E. M., Narayanan,, S. N., … Dale,, A. M. (2007). Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level‐dependent signaling. Journal of Neuroscience, 27, 4452–4459.
Djonov,, V. G., Galli,, A. B., & Burri,, P. H. (2000). Intussusceptive arborization contributes to vascular tree formation in the chick chorio‐allantoic membrane. Anat Embryol (Berl), 202, 347–357.
Donahue,, S., & Pappas,, G. D. (1961). The fine structure of capillaries in the cerebral cortex of the rat at various stages of development. The American Journal of Anatomy, 108, 331–347.
Drew,, P. J., Shih,, A. Y., Driscoll,, J. D., Knutsen,, P. M., Davalos,, D., Blinder,, P., … Kleinfeld,, D. (2010). Chronic optical access through a polished and reinforced thinned skull. Nature Methods, 7, 981–984.
Durham,, J. T., Surks,, H. K., Dulmovits,, B. M., & Herman,, I. M. (2014). Pericyte contractility controls endothelial cell cycle progression and sprouting: Insights into angiogenic switch mechanics. American Journal of Physiology: Cell Physiology, 307, C878–C892.
Duvernoy,, H. M., Delon,, S., & Vannson,, J. L. (1981). Cortical blood vessels of the human brain. Brain Research Bulletin, 7, 519–579.
Eilken,, H. M., Diéguez‐Hurtado,, R., Schmidt,, I., Nakayama,, M., Jeong,, H. W., Arf,, H., … Adams,, R. H. (2017). Pericytes regulate VEGF‐induced endothelial sprouting through VEGFR1. Nature Communications, 8, 1574.
Ek,, C. J., Wong,, A., Liddelow,, S. A., Johansson,, P. A., Dziegielewska,, K. M., & Saunders,, N. R. (2010). Efflux mechanisms at the developing brain barriers: ABC‐transporters in the fetal and postnatal rat. Toxicology Letters, 197, 51–59.
Esipova,, T. V., Barrett,, M. J. P., Erlebach,, E., Masunov,, A. E., Weber,, B., & Vinogradov,, S. A. (2019). Oxyphor 2P: A high‐performance probe for deep‐tissue longitudinal oxygen imaging. Cell Metabolism, S1550‐4131, 30759–30759.
Fantin,, A., Vieira,, J. M., Gestri,, G., Denti,, L., Schwarz,, Q., Prykhozhij,, S., … Ruhrberg,, C. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF‐mediated endothelial tip cell induction. Blood, 116, 829–840.
Fehér,, G., Schulte,, M. L., Weigle,, C. G., Kampine,, J. P., & Hudetz,, A. G. (1996). Postnatal remodeling of the leptomeningeal vascular network as assessed by intravital fluorescence video‐microscopy in the rat. Brain Research: Developmental Brain Research, 91, 209–217.
Forsythe,, J. A., Jiang,, B. H., Iyer,, N. V., Agani,, F., Leung,, S. W., Koos,, R. D., & Semenza,, G. L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia‐inducible factor 1. Molecular and Cellular Biology, 16, 4604–4613.
Fujimoto,, K. (1995). Pericyte‐endothelial gap junctions in developing rat cerebral capillaries: A fine structural study. Anatomical Record, 242, 562–565.
Ge,, W. P., Miyawaki,, A., Gage,, F. H., Jan,, Y. N., & Jan,, L. Y. (2012). Local generation of glia is a major astrocyte source in postnatal cortex. Nature, 484, 376–380.
Gerhardt,, H., Golding,, M., Fruttiger,, M., Ruhrberg,, C., Lundkvist,, A., Abramsson,, A., … Betsholtz,, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. Journal of Cell Biology, 161, 1163–1177.
Gould,, D. B., Phalan,, F. C., Breedveld,, G. J., van Mil,, S. E., Smith,, R. S., Schimenti,, J. C., … John,, S. W. (2005). Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science, 308, 1167–1171.
Grant,, R. I., Hartmann,, D. A., Underly,, R. G., Berthiaume,, A.‐A., Bhat,, N. R., & Shih,, A. Y. (2017). Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. Journal of Cerebral Blood Flow %26 Metabolism, 39, 411–425.
Hall,, C. N., Reynell,, C., Gesslein,, B., Hamilton,, N. B., Mishra,, A., Sutherland,, B. A., … Attwell,, D. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 508, 55–60.
Hamel,, E. (2006). Perivascular nerves and the regulation of cerebrovascular tone. Journal of Applied Physiology, 100, 1059–1064.
Harb,, R., Whiteus,, C., Freitas,, C., & Grutzendler,, J. (2012). In vivo imaging of cerebral microvascular plasticity from birth to death. Journal of Cerebral Blood Flow %26 Metabolism, 33, 146–156.
Harik,, S. I., Hall,, A. K., Richey,, P., Andersson,, L., Lundahl,, P., & Perry,, G. (1993). Ontogeny of the erythroid/HepG2‐type glucose transporter (GLUT‐1) in the rat nervous system. Brain Research. Developmental Brain Research, 72, 41–49.
Harris,, J. J., Reynell,, C., & Attwell,, D. (2011). The physiology of developmental changes in BOLD functional imaging signals. Developmental Cognitive Neuroscience, 1, 199–216.
Hartmann,, D. A., Hyacinth,, H. I., Liao,, F. F., & Shih,, A. Y. (2017). Does pathology of small venules contribute to cerebral microinfarcts and dementia? Journal of Neurochemistry, 144, 517–526.
Hartmann,, D. A., Underly,, R. G., Grant,, R. I., Watson,, A. N., Lindner,, V., & Shih,, A. Y. (2015). Pericyte structure and distribution in the cerebral cortex revealed by high‐resolution imaging of transgenic mice. Neurophotonics, 2, 041402.
Hartmann,, D. A., Underly,, R. G., Watson,, A. N., & Shih,, A. Y. (2015). A murine toolbox for imaging the neurovascular unit. Microcirculation, 22, 168–182.
Hellström,, M., Gerhardt,, H., Kalén,, M., Li,, X., Eriksson,, U., Wolburg,, H., & Betsholtz,, C. (2001). Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. The Journal of Cell Biology, 153, 543–553.
Hellström,, M., Kalén,, M., Lindahl,, P., Abramsson,, A., & Betsholtz,, C. (1999). Role of PDGF‐B and PDGFR‐beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126, 3047–3055.
Hill,, R. A., Damisah,, E. C., Chen,, F., Kwan,, A. C., & Grutzendler,, J. (2017). Targeted two‐photon chemical apoptotic ablation of defined cell types in vivo. Nature Communications, 8, 15837.
Hirschi,, K. K., Burt,, J. M., Hirschi,, K. D., & Dai,, C. (2003). Gap junction communication mediates transforming growth factor‐beta activation and endothelial‐induced mural cell differentiation. Circulation Research, 93, 429–437.
Iadecola,, C. (2017). The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron, 96, 17–42.
Iliff,, J. J., Wang,, M., Liao,, Y., Plogg,, B. A., Peng,, W., Gundersen,, G. A., … Nedergaard,, M. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine, 4, 147ra111.
Inestrosa,, N. C., & Varela‐Nallar,, L. (2015). Wnt signalling in neuronal differentiation and development. Cell and Tissue Research, 359, 215–223.
Jones,, E. G. (1970). On the mode of entry of blood vessels into the cerebral cortex. Journal of Anatomy, 106, 507–520.
Jung,, B., Arnold,, T. D., Raschperger,, E., Gaengel,, K., & Betsholtz,, C. (2017). Visualization of vascular mural cells in developing brain using genetically labeled transgenic reporter mice. Journal of Cerebral Blood Flow %26 Metabolism, 38, 456–468.
Karthik,, S., Djukic,, T., Kim,, J. D., Zuber,, B., Makanya,, A., Odriozola,, A., … Djonov,, V. (2018). Synergistic interaction of sprouting and intussusceptive angiogenesis during zebrafish caudal vein plexus development. Scientific Reports, 8, 9840.
Keep,, R. F., & Jones,, H. C. (1990). Cortical microvessels during brain development: A morphometric study in the rat. Microvascular Research, 40, 412–426.
Kim,, B. W., Choi,, M., Kim,, Y. S., Park,, H., Lee,, H. R., Yun,, C. O., … Son,, H. (2008). Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin. Cellular Signalling, 20, 714–725.
Kniesel,, U., Risau,, W., & Wolburg,, H. (1996). Development of blood‐brain barrier tight junctions in the rat cortex. Brain Research. Developmental Brain Research, 96, 229–240.
Knowland,, D., Arac,, A., Sekiguchi,, K. J., Hsu,, M., Lutz,, S. E., Perrino,, J., … Agalliu,, D. (2014). Stepwise recruitment of transcellular and paracellular pathways underlies blood‐brain barrier breakdown in stroke. Neuron, 82, 603–617.
Kozberg,, M. G., Ma,, Y., Shaik,, M. A., Kim,, S. H., & Hillman,, E. M. (2016). Rapid postnatal expansion of neural networks occurs in an environment of altered neurovascular and neurometabolic coupling. Journal of Neuroscience, 36, 6704–6717.
Kubotera,, H., Ikeshima‐Kataoka,, H., Hatashita,, Y., Allegra Mascaro,, A. L., Pavone,, F. S., & Inoue,, T. (2019). Astrocytic endfeet re‐cover blood vessels after removal by laser ablation. Scientific Reports, 9, 1263.
Lacoste,, B., Comin,, C. H., Ben‐Zvi,, A., Kaeser,, P. S., Xu,, X., Costa Lda,, F., & Gu,, C. (2014). Sensory‐related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron, 83, 1117–1130.
Lange,, C., Turrero Garcia,, M., Decimo,, I., Bifari,, F., Eelen,, G., Quaegebeur,, A., … Carmeliet,, P. (2016). Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. The EMBO Journal, 35, 924–941.
Lauwers,, F., Cassot,, F., Lauwers‐Cances,, V., Puwanarajah,, P., & Duvernoy,, H. (2008). Morphometry of the human cerebral cortex microcirculation: General characteristics and space‐related profiles. NeuroImage, 39, 936–948.
Lee,, H. S., Han,, J., Bai,, H. J., & Kim,, K. W. (2009). Brain angiogenesis in developmental and pathological processes: Regulation, molecular and cellular communication at the neurovascular interface. The FEBS Journal, 276, 4622–4635.
Letourneur,, A., Chen,, V., Waterman,, G., & Drew,, P. J. (2014). A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice. Physiological Reports, 2, e12238.
Levy,, A. P., Levy,, N. S., Wegner,, S., & Goldberg,, M. A. (1995). Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. The Journal of Biological Chemistry, 270, 13333–13340.
Liebner,, S., Corada,, M., Bangsow,, T., Babbage,, J., Taddei,, A., Czupalla,, C. J., … Dejana,, E. (2008). Wnt/beta‐catenin signaling controls development of the blood‐brain barrier. Journal of Cell Biology, 183, 409–417.
Lindahl,, P., Johansson,, B. R., Levéen,, P., & Betsholtz,, C. (1997). Pericyte loss and microaneurysm formation in PDGF‐B‐deficient mice. Science, 277, 242–245.
Lindblom,, P., Gerhardt,, H., Liebner,, S., Abramsson,, A., Enge,, M., Hellstrom,, M., … Betsholtz,, C. (2003). Endothelial PDGF‐B retention is required for proper investment of pericytes in the microvessel wall. Genes and Development, 17, 1835–1840.
Longden,, T. A., Dabertrand,, F., Koide,, M., Gonzales,, A. L., Tykocki,, N. R., Brayden,, J. E., … Nelson,, M. T. (2017). Capillary K+‐sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nature Neuroscience, 20, 717–726.
Lou,, N., Takano,, T., Pei,, Y., Xavier,, A. L., Goldman,, S. A., & Nedergaard,, M. (2016). Purinergic receptor P2RY12‐dependent microglial closure of the injured blood‐brain barrier. Proceedings of the National Academy of Sciences, 113, 1074–1079.
Lunde,, L. K., Camassa,, L. M., Hoddevik,, E. H., Khan,, F. H., Ottersen,, O. P., Boldt,, H. B., & Amiry‐Moghaddam,, M. (2015). Postnatal development of the molecular complex underlying astrocyte polarization. Brain Structure %26 Function, 220, 2087–2101.
Ma,, S., Kwon,, H. J., & Huang,, Z. (2012). A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain. PLoS One, 7, e48001.
Maltepe,, E., Schmidt,, J. V., Baunoch,, D., Bradfield,, C. A., & Simon,, M. C. (1997). Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature, 386, 403–407.
Marshall,, C. A., Suzuki,, S. O., & Goldman,, J. E. (2003). Gliogenic and neurogenic progenitors of the subventricular zone: Who are they, where did they come from, and where are they going? Glia, 43, 52–61.
Menezes,, M. J., McClenahan,, F. K., Leiton,, C. V., Aranmolate,, A., Shan,, X., & Colognato,, H. (2014). The extracellular matrix protein laminin alpha2 regulates the maturation and function of the blood‐brain barrier. The Journal of Neuroscience, 34, 15260–15280.
Mink,, J. W., Blumenschine,, R. J., & Adams,, D. B. (1981). Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis. American Journal of Physiology, 241, R203–R212.
Nayak,, D., Roth,, T. L., & McGavern,, D. B. (2014). Microglia development and function. Annual Review of Immunology, 32, 367–402.
Nguyen,, J., Nishimura,, N., Iadecola,, C., & Schaffer,, C. B. (2007). Single venule occlusions induced by photodisruption using femtosecond laser pulses cause decreased blood flow in rat cortex. In Society for Neurocience. Society for Neuroscience: San Diego.
Nishimura,, N., Schaffer,, C. B., Friedman,, B., Lyden,, P. D., & Kleinfeld,, D. (2007). Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 365–370.
Norman,, M. G., & O`Kusky,, J. R. (1986). The growth and development of microvasculature in human cerebral cortex. Journal of Neuropathology and Experimental Neurology, 45, 222–232.
Obermeier,, B., Daneman,, R., & Ransohoff,, R. M. (2013). Development, maintenance and disruption of the blood‐brain barrier. Nature Medicine, 19, 1584–1596.
Ogunshola,, O. O., Stewart,, W. B., Mihalcik,, V., Solli,, T., Madri,, J. A., & Ment,, L. R. (2000). Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Research. Developmental Brain Research, 119, 139–153.
O`Herron,, P., Chhatbar,, P. R., Levy,, M., Shen,, Z., Schramm,, A. E., Lu,, Z., & Kara,, P. (2016). Neural correlates of single‐vessel haemodynamic responses in vivo. Nature, 534, 378–382.
Orlidge,, A., & D`Amore,, P. A. (1987). Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. Journal of Cell Biology, 105, 1455–1462.
Payne,, L. B., Zhao,, H., James,, C. C., Darden,, J., McGuire,, D., Taylor,, S., … Chappell,, J. C. (2019). The Pericyte microenvironment during vascular development. Microcirculation (Epub ahead of print).
Ranade,, S. S., Qiu,, Z., Woo,, S. H., Hur,, S. S., Murthy,, S. E., Cahalan,, S. M., … Patapoutian,, A. (2014). Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proceedings of the National Academy of Sciences of the United States of America, 111, 10347–10352.
Red‐Horse,, K., & Siekmann,, A. F. (2019). Veins and arteries build hierarchical branching patterns differently: Bottom‐up versus top‐down. BioEssays, 41, e1800198.
Red‐Horse,, K., Ueno,, H., Weissman,, I. L., & Krasnow,, M. A. (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature, 464, 549–553.
Reynolds,, L. P., Grazul‐Bilska,, A. T., & Redmer,, D. A. (2000). Angiogenesis in the corpus luteum. Endocrine, 12, 1–9.
Risser,, L., Plouraboue,, F., Cloetens,, P., & Fonta,, C. (2009). A 3D‐investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level. International Journal of Developmental Neuroscience, 27, 185–196.
Roggendorf,, W., & Cervos‐Navarro,, J. (1977). Ultrastructure of arterioles in the cat brain. Cell and Tissue Research, 178, 495–515.
Rowan,, R. A., & Maxwell,, D. S. (1981). Patterns of vascular sprouting in the postnatal development of the cerebral cortex of the rat. The American Journal of Anatomy, 160, 247–255.
Rungta,, R. L., Chaigneau,, E., Osmanski,, B. F., & Charpak,, S. (2018). Vascular compartmentalization of functional Hyperemia from the synapse to the pia. Neuron, 99, 362–375.
Ryan,, H. E., Lo,, J., & Johnson,, R. S. (1998). HIF‐1 alpha is required for solid tumor formation and embryonic vascularization. The EMBO Journal, 17, 3005–3015.
Rymo,, S. F., Gerhardt,, H., Wolfhagen Sand,, F., Lang,, R., Uv,, A., & Betsholtz,, C. (2011). A two‐way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One, 6, e15846.
Saunders,, N. R., Dreifuss,, J. J., Dziegielewska,, K. M., Johansson,, P. A., Habgood,, M. D., Mollgard,, K., & Bauer,, H. C. (2014). The rights and wrongs of blood‐brain barrier permeability studies: A walk through 100 years of history. Frontiers in Neuroscience, 8, 404.
Saunders,, N. R., Liddelow,, S. A., & Dziegielewska,, K. M. (2012). Barrier mechanisms in the developing brain. Frontiers in Pharmacology, 3, 46.
Schaffer,, C. B., Friedman,, B., Nishimura,, N., Schroeder,, L. F., Tsai,, P. S., Ebner,, F. F., … Kleinfeld,, D. (2006). Two‐photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. Public Library of Science Biology, 4, 258–270.
Semple,, B. D., Blomgren,, K., Gimlin,, K., Ferriero,, D. M., & Noble‐Haeusslein,, L. J. (2013). Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology, 106‐107, 1–16.
Seregi,, A., Keller,, M., & Hertting,, G. (1987). Are cerebral prostanoids of astroglial origin? Studies on the prostanoid forming system in developing rat brain and primary cultures of rat astrocytes. Brain Research, 404, 113–120.
Shih,, A. Y., Blinder,, P., Tsai,, P. S., Friedman,, B., Stanley,, G., Lyden,, P. D., & Kleinfeld,, D. (2013). The smallest stroke: Occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nature Neuroscience, 16, 55–63.
Shih,, A. Y., Friedman,, B., Drew,, P. J., Tsai,, P. S., Lyden,, P. D., & Kleinfeld,, D. (2009). Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. Journal of Cerebral Blood Flow %26 Metabolism, 29, 738–751.
Skalak,, T. C., & Price,, R. J. (1996). The role of mechanical stresses in microvascular remodeling. Microcirculation, 3, 143–165.
Soriano,, P. (1994). Abnormal kidney development and hematological disorders in PDGF beta‐receptor mutant mice. Genes and Development, 8, 1888–1896.
Stichel,, C. C., Muller,, C. M., & Zilles,, K. (1991). Distribution of glial fibrillary acidic protein and vimentin immunoreactivity during rat visual cortex development. Journal of Neurocytology, 20, 97–108.
Sweeney,, M. D., Ayyadurai,, S., & Zlokovic,, B. V. (2016). Pericytes of the neurovascular unit: Key functions and signaling pathways. Nature Neuroscience, 19, 771–783.
Tammela,, T., Zarkada,, G., Nurmi,, H., Jakobsson,, L., Heinolainen,, K., Tvorogov,, D., … Alitalo,, K. (2011). VEGFR‐3 controls tip to stalk conversion at vessel fusion sites by reinforcing notch signalling. Nature Cell Biology, 13, 1202–1213.
Tata,, M., Ruhrberg,, C., & Fantin,, A. (2015). Vascularisation of the central nervous system. Mechanisms of Development, 138(Pt 1), 26–36.
Thyboll,, J., Kortesmaa,, J., Cao,, R., Soininen,, R., Wang,, L., Iivanainen,, A., … Tryggvason,, K. (2002). Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Molecular and Cellular Biology, 22, 1194–1202.
Tran,, C. H. T., Peringod,, G., & Gordon,, G. R. (2018). Astrocytes integrate behavioral state and vascular signals during functional hyperemia. Neuron, 100, 1133–1148.
Tsai,, P. S., Kaufhold,, J., Blinder,, P., Friedman,, B., Drew,, P., Karten,, H. J., … Kleinfeld,, D. (2009). Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels. Journal of Neuroscience, 18, 14553–14570.
Walchli,, T., Mateos,, J. M., Weinman,, O., Babic,, D., Regli,, L., Hoerstrup,, S. P., … Vogel,, J. (2015). Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nature Protocols, 10, 53–74.
Wälchli,, T., Pernet,, V., Weinmann,, O., Shiu,, J. Y., Guzik‐Kornacka,, A., Decrey,, G., … Schwab,, M. E. (2013). Nogo‐A is a negative regulator of CNS angiogenesis. Proceedings of the National Academy of Sciences, 110, E1943–E1952.
Walchli,, T., Ulmann‐Schuler,, A., Hintermuller,, C., Meyer,, E., Stampanoni,, M., Carmeliet,, P., … Hoerstrup,, S. P. (2017). Nogo‐A regulates vascular network architecture in the postnatal brain. Journal of Cerebral Blood Flow %26 Metabolism, 37, 614–631.
Wang,, D. B., Blocher,, N. C., Spence,, M. E., Rovainen,, C. M., & Woolsey,, T. A. (1992). Development and remodeling of cerebral blood vessels and their flow in postnatal mice observed with in vivo videomicroscopy. Journal of Cerebral Blood Flow %26 Metabolism, 12, 935–946.
Weber,, B., Keller,, A. L., Reichold,, J., & Logothetis,, N. K. (2008). The microvascular system of the striate and extrastriate visual cortex of the macaque. Cerebral Cortex, 18, 2318–2330.
Whiteus,, C., Freitas,, C., & Grutzendler,, J. (2014). Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature, 505, 407–411.
Xu,, C., Hasan,, S. S., Schmidt,, I., Rocha,, S. F., Pitulescu,, M. E., Bussmann,, J., … Siekmann,, A. F. (2014). Arteries are formed by vein‐derived endothelial tip cells. Nature Communications, 5, 5758.
Xu,, J., & Ling,, E. A. (1994). Studies of the ultrastructure and permeability of the blood‐brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers. Journal of Anatomy, 184(Pt 2), 227–237.
Yao,, Y., Chen,, Z. L., Norris,, E. H., & Strickland,, S. (2014). Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nature Communications, 5, 3413.
Yoshida,, Y., Yamada,, M., Wakabayashi,, K., & Ikuta,, F. (1988). Endothelial fenestrae in the rat fetal cerebrum. Brain Research. Developmental Brain Research, 44, 211–219.
Zehendner,, C. M., Tsohataridis,, S., Luhmann,, H. J., & Yang,, J. W. (2013). Developmental switch in neurovascular coupling in the immature rodent barrel cortex. PLoS One, 8, e80749.
Zeller,, K., Vogel,, J., & Kuschinsky,, W. (1996). Postnatal distribution of Glut1 glucose transporter and relative capillary density in blood‐brain barrier structures and circumventricular organs during development. Brain Research. Developmental Brain Research, 91, 200–208.
Zhang,, H., Prabhakar,, P., Sealock,, R., & Faber,, J. E. (2010). Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. Journal of Cerebral Blood Flow %26 Metabolism, 30, 923–934.
Zhou,, Y., Wang,, Y., Tischfield,, M., Williams,, J., Smallwood,, P. M., Rattner,, A., … Nathans,, J. (2014). Canonical WNT signaling components in vascular development and barrier formation. Journal of Clinical Investigation, 124, 3825–3846.
Zusso,, M., Methot,, L., Lo,, R., Greenhalgh,, A. D., David,, S., & Stifani,, S. (2012). Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. The Journal of Neuroscience, 32, 11285–11298.