Aghajan,, Z. M., Schuette,, P., Fields,, T. A., Stern,, J., Aghajan,, Z. M., Schuette,, P., … Hasulak,, N. R. (2017). Theta oscillations in the human medial temporal lobe during real‐world ambulatory movement article theta oscillations in the human medial temporal lobe during real‐world ambulatory movement. Current Biology, 27(24), 3743‐3751.e3. https://doi.org/10.1016/j.cub.2017.10.062
Alonso,, A., & Köhler,, C. (1982). Evidence for separate projections of hippocampal pyramidal and non‐pyramidal neurons to different parts of the septum in the rat brain. Neuroscience Letters, 31(3), 209–214. https://doi.org/10.1016/0304-3940(82)90021-0
Alonso,, A., & Köhler,, C. (1984). A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. Journal of Comparative Neurology, 225(3), 327–343. https://doi.org/10.1002/cne.902250303
Amaral,, D. G., & Kurz,, J. (1985). An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. Journal of Comparative Neurology, 240(1), 37–59. https://doi.org/10.1002/cne.902400104
Andy,, O. J., & Stephan,, H. (1968). The septum in the human brain. Journal of Comparative Neurology, 133(3), 383–409. https://doi.org/10.1002/cne.901330308
Angevine,, J. B. (1965). Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Experimental Neurology. 11(Suppl 2), 1–70. Retrieved from http://europepmc.org/abstract/MED/5838955
Armstrong,, C., Krook‐Magnuson,, E., & Soltesz,, I. (2012). Neurogliaform and Ivy cells: A major family of nNOS expressing GABAergic neurons. Frontiers in Neural Circuits, 6, 23. https://doi.org/10.3389/fncir.2012.00023
Atoji,, Y., & Wild,, J. M. (2004). Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. Journal of Comparative Neurology, 475(3), 426–461. https://doi.org/10.1002/cne.20186
Baimbridge,, K. G., & Miller,, J. J. (1982). Immunohistochemical localization of calcium‐binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Research, 245(2), 223–229. https://doi.org/https://doi.org/10.1016/0006-8993(82)90804-6
Baisden,, R. H., Woodruff,, M. L., & Hoover,, D. B. (1984). Cholinergic and non‐cholinergic septo‐hippocampal projections: A double‐label horseradish peroxidase‐acetylcholinesterase study in the rabbit. Brain Research, 290(1), 146–151. https://doi.org/https://doi.org/10.1016/0006-8993(84)90745-5
Bandín,, S., Morona,, R., López,, J. M., Moreno,, N., & González,, A. (2014). Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis. Journal of Chemical Neuroanatomy, 57–58, 24–41. https://doi.org/https://doi.org/10.1016/j.jchemneu.2014.03.006
Barallobre,, M. J., Del Rio,, J. A., Alcantara,, S., Borrell,, V., Aguado,, F., Ruiz,, M., … Soriano,, E. (2000). Aberrant development of hippocampal circuits and altered neural activity in netrin 1‐deficient mice. Development, 127(22), 4797 LP – 4810 Retrieved from http://dev.biologists.org/content/127/22/4797.abstract
Barkovich,, A. J., & Norman,, D. (1989). Absence of the septum pellucidum: A useful sign in the diagnosis of congenital brain malformations. American Journal of Roentgenology, 152(2), 353–360. https://doi.org/10.2214/ajr.152.2.353
Bialowas,, J., & Frotscher,, M. (1987). Choline acetyltransferase‐immunoreactive neurons and terminals in the rat septal complex: A combined light and electron microscopic study. Journal of Comparative Neurology, 259(2), 298–307. https://doi.org/10.1002/cne.902590209
Bingman,, V. P., Salas,, C., & Rodriguez,, F. (2009). Evolution of the hippocampus. In M. D. Binder,, N. Hirokawa,, & U. Windhorst, (Eds.), Encyclopedia of neuroscience (pp. 1356–1360). Berlin and Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-540-29678-2_3158
Brady,, J. V., & Nauta,, W. J. H. (1953). Subcortical mechanisms in emotional behavior: Affective changes following septal forebrain lesions in the albino rat. Journal of Comparative and Physiological Psychology, 46, 339–346. https://doi.org/10.1037/h0059531
Brandner,, C., & Schenk,, F. (1998). Septal lesions impair the acquisition of a cued place navigation task: Attentional or memory deficit? Neurobiology of Learning and Memory, 69(2), 106–125. https://doi.org/https://doi.org/10.1006/nlme.1997.3814
Brisch,, R., Henrik,, H. B., Dieter,, D., Renate,, K., Tru,, K., Winter,, J., … Bogerts,, B. (2011). A morphometric analysis of the septal nuclei in schizophrenia and affective disorders: Reduced neuronal density in the lateral septal nucleus in bipolar disorder. European Archives of Psychiatry and Clinical Neuroscience, 261(1), 47–58. https://doi.org/10.1007/s00406-010-0119-9
Burgess,, N., Maguire,, E. A., & O`Keefe,, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625–641. https://doi.org/https://doi.org/10.1016/S0896-6273(02)00830-9
Butler,, T., Harvey,, P., Deshpande,, A., Tanzi,, E., Li,, Y., Tsui,, W., … de Leon,, M. J. (2018). Basal forebrain septal nuclei are enlarged in healthy subjects prior to the development of Alzheimer`s disease. Neurobiology of Aging, 65, 201–205. https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2018.01.014
Butler,, T., Zaborszky,, L., Pirraglia,, E., Li,, J., Wang,, X. H., Li,, Y., … Thesen,, T. (2014). Comparison of human septal nuclei MRI measurements using automated segmentation and a new manual protocol based on histology. NeuroImage, 97, 245–251. https://doi.org/https://doi.org/10.1016/j.neuroimage.2014.04.026
Butler,, T., Zaborszky,, L., Wang,, X., Butler,, T., Wang,, X., Mcdonald,, C. R., … French,, J. (2013). Septal nuclei enlargement in human temporal lobe epilepsy without mesial temporal sclerosis. Neurology, 80(5), 487–491. https://doi.org/10.1212/WNL.0b013e31827f0ed7
Butt,, S. J. B., Fuccillo,, M., Nery,, S., Noctor,, S., Kriegstein,, A., Corbin,, J. G., & Fishell,, G. (2005). The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron, 48(4), 591–604. https://doi.org/https://doi.org/10.1016/j.neuron.2005.09.034
Cembrowski,, M. S., Bachman,, J. L., Wang,, L., Sugino,, K., Shields,, B. C., & Spruston,, N. (2016). Spatial gene‐expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron, 89(2), 351–368. https://doi.org/https://doi.org/10.1016/j.neuron.2015.12.013
Cembrowski,, M. S., Phillips,, M. G., DiLisio,, S. F., Shields,, B. C., Winnubst,, J., Chandrashekar,, J., … Spruston,, N. (2018). Dissociable structural and functional hippocampal outputs via distinct subiculum cell classes. Cell, 173(5), 1280.e18–1292.e18. https://doi.org/10.1016/j.cell.2018.03.031
Cembrowski,, M. S., Wang,, L., Sugino,, K., Shields,, B. C., & Spruston,, N. (2016). Hipposeq: A comprehensive RNA‐seq database of gene expression in hippocampal principal neurons. Neuroscience, 5, e14997. https://doi.org/10.7554/eLife.14997
Chee,, S.‐S. A., & Menard,, J. L. (2011). Lesions of the dorsal lateral septum do not affect neophagia in the novelty induced suppression of feeding paradigm but reduce defensive behaviours in the elevated plus maze and shock probe burying tests. Behavioural Brain Research, 220(2), 362–366. https://doi.org/https://doi.org/10.1016/j.bbr.2011.02.027
Chen,, Z.‐Y., Sun,, C., Reuhl,, K., Bergemann,, A., Henkemeyer,, M., & Zhou,, R. (2004). Abnormal hippocampal axon bundling in EphB receptor mutant mice. The Journal of Neuroscience, 24(10), 2366 LP–2374 LP. https://doi.org/10.1523/JNEUROSCI.4711-03.2004
Colom,, L. V., Castaneda,, M. T., Reyna,, T., Hernandez,, S., & Garrido‐sanabria,, E. (2005). Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse, 58(3), 151–164. https://doi.org/10.1002/syn.20184
Creps,, E. S. (1974). Time of neuron origin in preoptic and septal areas of the mouse: An autoradiographic study. Journal of Comparative Neurology, 157(2), 161–243. https://doi.org/10.1002/cne.901570205
Dong,, H.‐W., Swanson,, L. W., Chen,, L., Fanselow,, M. S., & Toga,, A. W. (2009). Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1. Proceedings of the National Academy of Sciences, 106(28), 11794–11799. https://doi.org/10.1073/pnas.0812608106
de la Prida,, L. M., Totterdell,, S., Gigg,, J., & Miles,, R. (2006). The subiculum comes of age. Hippocampus, 16(11), 916–923. https://doi.org/10.1002/hipo.20220
Degroot,, A., & Treit,, D. (2004). Anxiety is functionally segregated within the septo‐hippocampal system. Brain Research, 1001(1–2), 60–71. https://doi.org/10.1016/j.brainres.2003.10.065
Ekstrom,, A. D., Caplan,, J. B., Ho,, E., Shattuck,, K., Fried,, I., & Kahana,, M. J. (2005). Human hippocampal theta activity during virtual navigation. Hippocampus, 889, 881–889. https://doi.org/10.1002/hipo.20109
Endepols,, H., Mühlenbrock‐Lenter,, S., Roth,, G., & Walkowiak,, W. (2006). The septal complex of the fire‐bellied toad Bombina orientalis: Chemoarchitecture. Journal of Chemical Neuroanatomy, 31(1), 59–76. https://doi.org/https://doi.org/10.1016/j.jchemneu.2005.09.001
Evans,, P. R., Lee,, S. E., Smith,, Y., & Hepler,, J. R. (2014). Postnatal developmental expression of regulator of G protein signaling 14 (RGS14) in the mouse brain. Journal of Comparative Neurology, 522(1), 186–203. https://doi.org/10.1002/cne.23395
Fanselow,, M. S., & Dong,, H.‐W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7–19. https://doi.org/https://doi.org/10.1016/j.neuron.2009.11.031
Fonnum,, F. (1970). Topographical and subcellular localization of choline acetyltransferase in rat hippocampal region. Journal of Neurochemistry, 17(7), 1029–1037. https://doi.org/10.1111/j.1471-4159.1970.tb02256.x
Font,, C., Lanuza,, E., Martinez‐marcos,, A., Hoogland,, P. V., & Martinez‐garcia,, F. (1998). Septal complex of the telencephalon of lizards: III. Efferent Connections and General Discussion, 548(July), 525–548.
Font,, C., Martínez‐Marcos,, A., Lanuza,, E., Hoogland,, P. V., & Martínez‐Garciá,, F. (1997). Septal complex of the telencephalon of the lizard Podarcis hispanica. II. Afferent Connections. Journal of Comparative Neurology, 383(4), 489–511. https://doi.org/10.1002/(SICI)1096-9861(19970714)383:4%3C489::AID-CNE7%3E3.0.CO;2-Z
Freund,, T. F., & Antal,, M. (1988). GABA‐containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336(6195), 170–173.
Fuentealba,, P., Begum,, R., Capogna,, M., Jinno,, S., Márton,, L. F., Csicsvari,, J., … Klausberger,, T. (2008). Ivy cells: A population of nitric‐oxide‐producing, slow‐spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron, 57(6), 917–929. https://doi.org/https://doi.org/10.1016/j.neuron.2008.01.034
Gallagher,, J. P., Zheng,, F., Hasuo,, H., & Shinnick‐Gallagher,, P. (1995). Activities of neurons within the rat dorsolateral septal nucleus (DLSN). Progress in Neurobiology, 45(5), 373–395. https://doi.org/https://doi.org/10.1016/0301-0082(95)98600-A
Gao,, P. P., Zhang,, J. H., Yokoyama,, M., Racey,, B., Dreyfus,, C. F., Black,, I. B., & Zhou,, R. (1996). Regulation of topographic projection in the brain: Elf‐1 in the hippocamposeptal system. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 11161–11166. https://doi.org/10.1073/pnas.93.20.11161
Gaspard,, N., Bouschet,, T., Hourez,, R., Dimidschstein,, J., Naeije,, G., Van Den Ameele,, J., … Vanderhaeghen,, P. (2008). An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature, 455, 351–357. https://doi.org/10.1038/nature07287
Geddes,, J. W., Monaghan,, D. T., Cotman,, C. W., Lott,, I. T., Kim,, R. C., & Chui,, H. C. (1985). Plasticity of hippocampal circuitry in Alzheimer`s disease. Science, 230(4730), 1179 LP – 1181. https://doi.org/10.1126/science.4071042
González,, A., & López,, J. M. (2002). A forerunner of septohippocampal cholinergic system is present in amphibians. Neuroscience Letters, 327(2), 111–114. https://doi.org/https://doi.org/10.1016/S0304-3940(02)00397-X
Grothe,, M., Heinsen,, H., & Teipel,, S. J. (2012). Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer`s disease. Biological Psychiatry, 71(9), 805–813. https://doi.org/https://doi.org/10.1016/j.biopsych.2011.06.019
Guillemot,, F. (2007). Cell fate specification in the mammalian telencephalon. Progress in Neurobiology, 83, 37–52. https://doi.org/10.1016/j.pneurobio.2007.02.009
Gulyás,, A. I., Hájos,, N., Katona,, I., & Freund,, T. F. (2003). Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. European Journal of Neuroscience, 17(9), 1861–1872. https://doi.org/10.1046/j.1460-9568.2003.02630.x
Hagan,, J. J., Salamone,, J. D., Simpson,, J., Iversen,, S. D., & Morris,, R. G. M. (1988). Place navigation in rats is impaired by lesions of medial septum and diagonal band but not nucleus basalis magnocellularis. Behavioural Brain Research, 27(1), 9–20. https://doi.org/https://doi.org/10.1016/0166-4328(88)90105-2
Hasegawa,, H. (2004). Laminar patterning in the developing neocortex by temporally coordinated fibroblast growth factor signaling. Journal of Neuroscience, 24, 8711–8719. https://doi.org/10.1523/jneurosci.3070-04.2004
Hirata,, T., Li,, P., Lanuza,, G. M., Cocas,, L. A., Huntsman,, M. M., & Corbin,, J. G. (2009). Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala. Nature Neuroscience, 12, 141. Retrieved from–149. https://doi.org/10.1038/nn.2241
Hitti,, F. L., & Siegelbaum,, S. A. (2014). The hippocampal CA2 region is essential for social memory. Nature, 508, 88. Retrieved from–92. https://doi.org/10.1038/nature13028
Hoch,, R. V., Lindtner,, S., Price,, J. D., & Rubenstein,, J. L. R. (2015). OTX2 transcription factor controls regional patterning within the medial ganglionic eminence and regional identity of the septum. Cell Reports, 12(3), 482–494. https://doi.org/https://doi.org/10.1016/j.celrep.2015.06.043
Inoue,, T., Ota,, M., Ogawa,, M., Mikoshiba,, K., & Aruga,, J. (2007). Zic1 and Zic3 regulate medial forebrain development through expansion of neuronal progenitors. The Journal of Neuroscience, 27(20), 5461–5473. https://doi.org/10.1523/JNEUROSCI.4046-06.2007
Jakab,, R. L., & Leranth,, C. (1995). Septum. In G. Paxinos, (Ed.), The rat nervous system (2nd ed., pp. 405–442). San Diego, CA: Academic Press.
Jinno,, S., & Kosaka,, T. (2002). Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain: A retrograde labeling study. Brain Research, 945(2), 219–231. https://doi.org/https://doi.org/10.1016/S0006-8993(02)02804-4
Kitazawa,, A., Kubo,, K.‐I., Hayashi,, K., Matsunaga,, Y., Ishii,, K., & Nakajima,, K. (2014). Hippocampal pyramidal neurons switch from a multipolar migration mode to a novel “climbing” migration mode during development. Journal of Neuroscience, 34(4), 1115–1126. https://doi.org/10.1523/JNEUROSCI.2254-13.2014
Kozareva,, D. A., Cryan,, J. F., & Nolan,, Y. M. (2019). Born this way: Hippocampal neurogenesis across the lifespan. Aging Cell, 18(5), e13007. https://doi.org/10.1111/acel.13007
Landin‐Romero,, R., Amann,, B. L., Sarró,, S., Guerrero‐Pedraza,, A., Vicens,, V., Rodriguez‐Cano,, E., … Radua,, J. (2015). Midline brain abnormalities across psychotic and mood disorders. Schizophrenia Bulletin, 42(1), 229–238. https://doi.org/10.1093/schbul/sbv097
Lee,, S.‐H., Marchionni,, I., Bezaire,, M., Varga,, C., Danielson,, N., Lovett‐Barron,, M., … Soltesz,, I. (2014). Parvalbumin‐positive basket cells differentiate among hippocampal pyramidal cells. Neuron, 82(5), 1129–1144. https://doi.org/https://doi.org/10.1016/j.neuron.2014.03.034
Lega,, B. C., Jacobs,, J., & Kahana,, M. (2011). Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus, 22, 748–761. https://doi.org/10.1002/hipo.20937
Lein,, E. S., Hawrylycz,, M. J., Ao,, N., Ayres,, M., Bensinger,, A., Bernard,, A., … Jones,, A. R. (2006). Genome‐wide atlas of gene expression in the adult mouse brain. Nature, 445, 168–176. https://doi.org/10.1038/nature05453
Lein,, E. S., Zhao,, X., & Gage,, F. H. (2004). Defining a molecular atlas of the hippocampus using DNA microarrays and high‐throughput in situ hybridization. The Journal of Neuroscience, 24(15), 3879 LP–3889 LP. https://doi.org/10.1523/JNEUROSCI.4710-03.2004
Lein,, E. S., Callaway,, E. M., Albright,, T. D., & Gage,, F. H. (2005). Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3‐dimensional reconstruction. Journal of Comparative Neurology, 485(1), 1–10. https://doi.org/10.1002/cne.20426
Leonardo,, E. D., Richardson‐Jones,, J. W., Sibille,, E., Kottman,, A., & Hen,, R. (2006). Molecular heterogeneity along the dorsal–ventral axis of the murine hippocampal CA1 field: A microarray analysis of gene expression. Neuroscience, 137(1), 177–186. https://doi.org/https://doi.org/10.1016/j.neuroscience.2005.08.082
Leroy,, F., Park,, J., Asok,, A., Brann,, D. H., Meira,, T., Boyle,, L. M., … Siegelbaum,, S. A. (2018). A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature, 564, 213–218. https://doi.org/10.1038/s41586-018-0772-0
Lewis,, P. R., Shute,, C. C. D., & Silver,, A. (1967). Confirmation from choline acetylase analyses of a massive cholinergic innervation to the rat hippocampus. The Journal of Physiology, 191(1), 215–224. https://doi.org/10.1113/jphysiol.1967.sp008246
Linke,, R., Pabst,, T., & Frotscher,, M. (1995). Development of the hippocamposeptal projection in the rat. Journal of Comparative Neurology, 351(4), 602–616. https://doi.org/10.1002/cne.903510409
Magno,, L., Barry,, C., Schmidt‐Hieber,, C., Theodotou,, P., Häusser,, M., & Kessaris,, N. (2017). NKX2‐1 is required in the embryonic septum for cholinergic system development, learning, and memory. Cell Reports, 20(7), 1572–1584. https://doi.org/https://doi.org/10.1016/j.celrep.2017.07.053
Maguire,, E. A., Intraub,, H., & Mullally,, S. L. (2015). Scenes, spaces, and memory traces: What does the hippocampus do? The Neuroscientist, 22(5), 432–439. https://doi.org/10.1177/1073858415600389
Markello,, R. D., Spreng,, R. N., Luh,, W., Anderson,, A. K., & Rosa,, E. D. (2018). NeuroImage segregation of the human basal forebrain using resting state functional MRI. NeuroImage, 173(October 2017), 287–297. https://doi.org/10.1016/j.neuroimage.2018.02.042
McEwen,, B. B. (2004). De Wied and colleagues IV: Research into mechanisms of action by which vasopressin and oxytocin influence memory processing. In The roles of vasopressin and oxytocin in memory processing (Vol. 50, pp. 177–225). New Haven, CT: Elsevier. https://doi.org/https://doi.org/10.1016/S1054-3589(04)50005-4
Menard,, J., & Treit,, D. (1996). Lateral and medial septal lesions reduce anxiety in the plus‐maze and probe‐burying tests. Physiology %26 Behavior, 60(3), 845–853. https://doi.org/https://doi.org/10.1016/0031-9384(96)00138-2
Mizuseki,, K., Diba,, K., Pastalkova,, E., & Buzsáki,, G. (2011). Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nature Neuroscience, 14, 1174. Retrieved from–1181. https://doi.org/10.1038/nn.2894
Montagnese,, C. M., Székely,, A. D., Ádám,, Á., & Csillag,, A. (2004). Efferent connections of septal nuclei of the domestic chick (Gallus domesticus): An anterograde pathway tracing study with a bearing on functional circuits. Journal of Comparative Neurology, 469(3), 437–456. https://doi.org/10.1002/cne.11018
Northcutt,, R. G., & Ronan,, M. (1992). Afferent and efferent connections of the bullfrog medial pallium. Brain, Behavior and Evolution, 40(1), 1–16. https://doi.org/10.1159/000113898
Northcutt,, R. G., & Wicht,, H. (1997). Afferent and efferent connections of the lateral and medial pallia of the silver lamprey. Brain, Behavior and Evolution, 49(1), 1–19. https://doi.org/10.1159/000112978
O`Keefe,, J., & Dostrovsky,, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely‐moving rat. Brain Research, 34(1), 171–175 https://doi.org/https://doi.org/10.1016/0006-8993(71)90358‐1
Olucha,, F., Martinez‐Garcia,, F., Poch,, L., Schwerdtfeger,, W. K., & Lopez‐Garcia,, C. (1988). Projections from the medial cortex in the brain of lizards: Correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining. Journal of Comparative Neurology, 276(4), 469–480. https://doi.org/10.1002/cne.902760402
Pascual,, M., Pozas,, E., & Soriano,, E. (2005). Role of Class 3 semaphorins in the development and maturation of the septohippocampal pathway. Hippocampus, 202, 184–202. https://doi.org/10.1002/hipo.20040
Pascual,, M., Pozas,, E., Tessier‐lavigne,, M., & Soriano,, E. (2004). Coordinated functions of Netrin‐1 and Class 3 secreted semaphorins in the guidance of reciprocal septohippocampal connections. Molecular and Cellular Neuroscience, 26, 24–33. https://doi.org/10.1016/j.mcn.2003.12.008
Pleasure,, S. J., Anderson,, S., Hevner,, R., Bagri,, A., Marin,, O., Lowenstein,, D. H., … Francisco,, S. (2000). Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron, 28, 727–740.
Price,, C. J., Cauli,, B., Kovacs,, E. R., Kulik,, A., Lambolez,, B., Shigemoto,, R., & Capogna,, M. (2005). Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. The Journal of Neuroscience, 25(29), 6775 LP – 6786. https://doi.org/10.1523/JNEUROSCI.1135-05.2005
Rakic,, P., & Yakovlev,, P. I. (1968). Development of the corpus callosum and cavum septi in man. Journal of Comparative Neurology, 132(1), 45–72. https://doi.org/10.1002/cne.901320103
Rashidy‐Pour,, A., Motamedi,, F., Semnanian,, S., Zarrindast,, M. R., Fatollahi,, Y., & Behzadi,, G. (1996). Effects of reversible inactivation of the medial septal area on long‐term potentiation and recurrent inhibition of hippocampal population spikes in rats. Brain Research, 734(1), 43–48. https://doi.org/https://doi.org/10.1016/0006-8993(96)00491-X
Risold,, P. Y. (2004a). Chapter 20—The Septal region. In E. Paxinos, (Ed.), The rat nervous system (3rd ed., pp. 605–632). Burlington, VT: Academic Press.
Risold,, P. Y. (2004b). The septal region. The Rat Nervous System, 605–632. https://doi.org/10.1016/B978-012547638-6/50021-3
Risold,, P. Y., & Swanson,, L. W. (1997a). Chemoarchitecture of the rat lateral septal nucleus. Brain Research Reviews, 24(2), 91–113. https://doi.org/10.1016/S0165-0173(97)00008-8
Risold,, P. Y., & Swanson,, L. W. (1997b). Connections of the rat lateral septal complex. Brain Research Reviews, 24(2–3), 115–195. https://doi.org/10.1016/S0165-0173(97)00009-X
Roy,, A., Gonzalez‐Gomez,, M., Pierani,, A., Meyer,, G., & Tole,, S. (2014). Lhx2 regulates the development of the forebrain hem system. Cerebral Cortex, 24(5), 1361–1372. https://doi.org/10.1093/cercor/bhs421
San Antonio,, A., Liban,, K., Ikrar,, T., Tsyganovskiy,, E., & Xu,, X. (2014). Distinct physiological and developmental properties of hippocampal CA2 subfield revealed by using anti‐Purkinje cell protein 4 (PCP4) immunostaining. Journal of Comparative Neurology, 522(6), 1333–1354. https://doi.org/10.1002/cne.23486
Scoville,, W. B., & Milner,, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11–21. https://doi.org/10.1136/jnnp.20.1.11
Seuntjens,, E., Nityanandam,, A., Miquelajauregui,, A., Debruyn,, J., Stryjewska,, A., Goebbels,, S., … Tarabykin,, V. (2009). Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nature Neuroscience, 12, 1373–1380. https://doi.org/10.1038/nn.2409
Sheehan,, T. P., Chambers,, R. A., & Russell,, D. S. (2004). Regulation of affect by the lateral septum: Implications for neuropsychiatry. Brain Research Reviews, 46(1), 71–117. https://doi.org/https://doi.org/10.1016/j.brainresrev.2004.04.009
Shen,, Q., Wang,, Y., Dimos,, J. T., Fasano,, C. A., Phoenix,, T. N., Lemischka,, I. R., … Temple,, S. (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neuroscience, 9(6), 743–751. https://doi.org/10.1038/nn1694
Shiflett,, M. W., Gould,, K. L., Smulders,, T. V., & DeVoogd,, T. J. (2002). Septum volume and food‐storing behavior are related in parids. Journal of Neurobiology, 51(3), 215–222. https://doi.org/10.1002/neu.10054
Slomianka,, L., Amrein,, I., Knuesel,, I., Sørensen,, J. C., & Wolfer,, D. P. (2011). Hippocampal pyramidal cells: The reemergence of cortical lamination. Brain Structure %26 Function, 216(4), 301–317. https://doi.org/10.1007/s00429-011-0322-0
Soltesz,, I., & Losonczy,, A. (2018). CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nature Neuroscience, 21(4), 484–493. https://doi.org/10.1038/s41593-018-0118-0
Sotty,, F., Danik,, M., Manseau,, F., Laplante,, F., Quirion,, R., & Williams,, S. (2003). Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: Novel implications for hippocampal rhythmicity. The Journal of Physiology, 551, 927–943. https://doi.org/10.1113/jphysiol.2003.046847
Spiegel,, E. A., Miller,, H. R., & Oppenheimer,, M. J. (1940). Forebrain and rage reactions. Journal of Neurophysiology, 3(6), 538–548. https://doi.org/10.1152/jn.1940.3.6.538
Stewart,, M., & Fox,, S. E. (1991). Hippocampal theta activity in monkeys. Brain Research, 538(1), 59–63. https://doi.org/https://doi.org/10.1016/0006-8993(91)90376-7
Stewart,, M., & Fox,, S. E. (1990). Do septal neurons pace the hippocampal theta rhythm? Trends in Neurosciences, 13(5), 163–169.
Storm‐Mathisen,, J. (1970). Quantitative histochemistry of acetyl‐cholinesterase in rat hippogampal region correlated to histochemical staining. Journal of Neurochemistry, 17(6), 739–750. https://doi.org/10.1111/j.1471-4159.1970.tb03344.x
Striedter,, G. F. (2016). Evolution of the hippocampus in reptiles and birds. Journal of Comparative Neurology, 524(3), 496–517. https://doi.org/10.1002/cne.23803
Sun,, Y., Nguyen,, A. Q., Nguyen,, J. P., Le,, L., Saur,, D., Choi,, J., … Xu,, X. (2014). Cell‐type‐specific circuit connectivity of hippocampal CA1 revealed through Cre‐dependent rabies tracing. Cell Reports, 7(1), 269–280. https://doi.org/10.1016/j.celrep.2014.02.030
Supèr,, H., & Soriano,, E. (1994). The organization of the embronic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI. Journal of Comparative Neurology, 344(1), 101–120. https://doi.org/10.1002/cne.903440108
Swanson,, L. W., & Cowan,, W. M. (1979). The connections of the septal region in the rat. Journal of Comparative Neurology, 186(4), 621–655. https://doi.org/10.1002/cne.901860408
Székely,, A. D., & Krebs,, J. R. (1996). Efferent connectivity of the hippocampal formation of the zebra finch (Taenopygia guttata): An anterograde pathway tracing study using Phaseolus vulgaris leucoagglutinin. Journal of Comparative Neurology, 368(2), 198–214. https://doi.org/10.1002/(SICI)1096-9861(19960429)368:2%3C198::AID-CNE3%3E3.0.CO;2-Z
Taglialatela,, P., Soria,, J. M., Caironi,, V., Moiana,, A., & Bertuzzi,, S. (2004). Compromised generation of GABAergic interneurons in the brains of Vax1 ‐/‐ mice. Development, 131, 4239–4249. https://doi.org/10.1242/dev.01299
Tamamaki,, N., & Nojyo,, Y. (1995). Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats. Journal of Comparative Neurology, 353(3), 379–390. https://doi.org/10.1002/cne.903530306
Telley,, L., Agirman,, G., Prados,, J., Amberg,, N., Fièvre,, S., Oberst,, P., … Jabaudon,, D. (2019). Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science, 364(6440), eaav2522. https://doi.org/10.1126/science.aav2522
Telley,, L., Govindan,, S., Prados,, J., Stevant,, I., Nef,, S., Dermitzakis,, E., … Jabaudon,, D. (2016). Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science, 351(6280), 1443–1446. https://doi.org/10.1126/science.aad8361
Tole,, S., Christian,, C., & Grove,, E. A. (1997). Early specification and autonomous development of cortical elds in the mouse hippocampus. Developmental Biology, 4970, 4959–4970.
Tole,, S., & Grove,, E. A. (2001). Detailed field pattern is intrinsic to the embryonic mouse hippocampus early in neurogenesis. Journal of Neuroscience, 21(5), 1580–1589. https://doi.org/10.1523/JNEUROSCI.21-05-01580.2001
Toth,, K., Borhegyi,, Z., & Freund,, T. F. (1993). Postsynaptic targets of GABAergic hippocampal neurons in the medial septum‐diagonal band of broca complex. The Journal of Neuroscience, 13(9), 3712 LP–3724 LP. https://doi.org/10.1523/JNEUROSCI.13-09-03712.1993
Trent,, N. L., & Menard,, J. L. (2010). The ventral hippocampus and the lateral septum work in tandem to regulate rats` open‐arm exploration in the elevated plus‐maze. Physiology %26 Behavior, 101(1), 141–152. https://doi.org/https://doi.org/10.1016/j.physbeh.2010.04.035
Tricoire,, L., Pelkey,, K. A., Daw,, M. I., Sousa,, V. H., Miyoshi,, G., Jeffries,, B., … Umr,, C. (2010). Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells. The Journal of Neuroscience 30(6), 2165–2176. https://doi.org/10.1523/JNEUROSCI.5123-09.2010
Tricoire,, L., Pelkey,, K. A., Erkkila,, B. E., Jeffries,, B. W., Yuan,, X., & Mcbain,, C. J. (2011). A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. The Journal of Neuroscience, 31(30), 10948–10970.
Trzesniak,, C., Oliveira,, I. R., Kempton,, M. J., Galvão‐de Almeida,, A., Chagas,, M. H. N., Ferrari,, M. C. F., … Crippa,, J. A. S. (2011). Are cavum septum pellucidum abnormalities more common in schizophrenia spectrum disorders? A systematic review and meta‐analysis. Schizophrenia Research, 125(1), 1–12. https://doi.org/https://doi.org/10.1016/j.schres.2010.09.016
Tsanov,, M. (2017). Speed and oscillations: Medial septum integration of attention and navigation. Frontiers in Systems Neuroscience, 11, 67. Retrieved from https://www.frontiersin.org/article/10.3389/fnsys.2017.00067.
Unal,, G., Joshi,, A., Viney,, T. J., Kis,, V., & Somogyi,, P. (2015). Synaptic targets of medial septal projections in the hippocampus and extrahippocampal cortices of the mouse. Journal of Neuroscience, 35(48), 15812–15826. https://doi.org/10.1523/JNEUROSCI.2639-15.2015
Watanabe,, K., Irie,, K., Hanashima,, C., Takebayashi,, H., & Sato,, N. (2018). Diencephalic progenitors contribute to the posterior septum through rostral migration along the hippocampal axonal pathway. Scientific Reports, 8(1), 11728. https://doi.org/10.1038/s41598-018-30020-9
Wei,, B., Huang,, Z., He,, S., Sun,, C., You,, Y., Liu,, F., & Yang,, Z. (2012). The onion skin‐like organization of the septum arises from multiple embryonic origins to form multiple adult neuronal fates. Neuroscience, 222, 110–123. https://doi.org/10.1016/j.neuroscience.2012.07.016
Winson,, J. (1978). Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science, 201(4351), 160 LP–163 LP. https://doi.org/10.1126/science.663646
Wong,, F. K., Bercsenyi,, K., Sreenivasan,, V., Portalés,, A., Fernández‐Otero,, M., & Marín,, O. (2018). Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature, 557(7707), 668–673. https://doi.org/10.1038/s41586-018-0139-6
Wullimann,, M. F., & Rink,, E. (2002). The teleostean forebrain: A comparative and developmental view based on early proliferation, Pax6 activity and catecholaminergic organization. Brain Research Bulletin, 57(3), 363–370. https://doi.org/https://doi.org/10.1016/S0361-9230(01)00666-9
Xu,, H., Han,, Z., Gao,, P., He,, S., Li,, Z., Shi,, W., … Brown,, K. N. (2014). Distinct lineage‐dependent structural and functional Organization of the Hippocampus. Cell, 157(7), 1552–1564. https://doi.org/10.1016/j.cell.2014.03.067
Yu,, Y.‐C., Bultje,, R. S., Wang,, X., & Shi,, S.‐H. (2009). Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature, 458, 501. Retrieved from–504. https://doi.org/10.1038/nature07722
Yue,, Y., Chen,, Z., Gale,, N. W., Blair‐flynn,, J., Hu,, T., Yue,, X., … Zhou,, R. (2002). Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10777–10782.
Zeidman,, P., & Maguire,, E. A. (2016). Anterior hippocampus: The anatomy of perception, imagination and episodic memory. Nature Reviews. Neuroscience, 17(3), 173–182. https://doi.org/10.1038/nrn.2015.24
Zeisel,, A., Muñoz‐Manchado,, A. B., Codeluppi,, S., Lönnerberg,, P., La Manno,, G., Juréus,, A., … Linnarsson,, S. (2015). Cell types in the mouse cortex and hippocampus revealed by single‐cell RNA‐seq. Science, 347(6226), 1138 LP–1142 LP. https://doi.org/10.1126/science.aaa1934
Zhao,, C., Eisinger,, B., & Gammie,, S. C. (2013). Characterization of GABAergic neurons in the mouse lateral septum: A double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One, 8(8), 1–24. https://doi.org/10.1371/journal.pone.0073750