Allada,, R., Cirelli,, C., & Sehgal,, A. (2017). Molecular mechanisms of sleep homeostasis in flies and mammals. Cold Spring Harbor Perspectives in Biology, 9, a027730. https://doi.org/10.1101/cshperspect.a027730.
Allen,, N. J., Bennett,, M. L., Foo,, L. C., Wang,, G. X., Chakraborty,, C., Smith,, S. J., & Barres,, B. A. (2012). Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via Glu A1 AMPA receptors. Nature, 486, 410–414.
Awasaki,, T., Lai,, S. L., Ito,, K., & Lee,, T. (2008). Organization and postembryonic development of glial cells in the adult central brain of Drosophila. The Journal of Neuroscience, 28, 13742–13753.
Bjorness,, T. E., & Greene,, R. W. (2009). Adenosine and sleep. Current Neuropharmacology, 7, 238–245.
Bjorness,, T. E., Kelly,, C. L., Gao,, T., Poffenberger,, V., & Greene,, R. W. (2009). Control and function of the homeostatic sleep response by adenosine A1 receptors. The Journal of Neuroscience, 29, 1267–1276.
Borycz,, J., Borycz,, J. A., Loubani,, M., & Meinertzhagen,, I. A. (2002). tan and ebony genes regulate a novel pathway for transmitter metabolism at fly photoreceptor terminals. The Journal of Neuroscience, 22, 10549–10557.
Brancaccio,, M., Edwards,, M. D., Patton,, A. P., Smyllie,, N. J., Chesham,, J. E., Maywood,, E. S., & Hastings,, M. H. (2019). Cell‐autonomous clock of astrocytes drives circadian behavior in mammals. Science, 363, 187–192.
Brancaccio,, M., Patton,, A. P., Chesham,, J. E., Maywood,, E. S., & Hastings,, M. H. (2017). Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron, 93, 1420–1435.
Davis,, R. L. (1993). Mushroom bodies and Drosophila learning. Neuron, 11, 1–14.
Doherty,, J., Logan,, M. A., Tasdemir,, O. E., & Freeman,, M. R. (2009). Ensheathing glia function as phagocytes in the adult Drosophila brain. The Journal of Neuroscience, 29, 4768–4781.
Donlea,, J. M. (2017). Neuronal and molecular mechanisms of sleep homeostasis. Current Opinion in Insect Science, 24, 51–57.
Dubowy,, C., & Sehgal,, A. (2017). Circadian rhythms and sleep in Drosophila melanogaster. Genetics, 205, 1373–1397.
Ewer,, J., Frisch,, B., Hamblen‐Coyle,, M. J., Rosbash,, M., & Hall,, J. C. (1992). Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells influence on circadian behavioral rhythms. The Journal of Neuroscience, 12, 3321–3349.
Fisher,, S. P., Foster,, R. G., & Peirson,, S. N. (2013). The circadian control of sleep. Handbook of Experimental Pharmacology, 217, 157–183.
Fredholm,, B. B., Chen,, J. F., Masino,, S. A., & Vaugeois,, J. M. (2005). Actions of adenosine at its receptors in the CNS: Insights from knockouts and drugs. Annual Review of Pharmacology and Toxicology, 45, 385–412.
Freeman,, M. R. (2015). Drosophila central nervous system glia. Cold Spring Harbor Perspectives in Biology, 7, a020552. https://doi.org/10.1101/cshperspect.a020552.
Gerstner,, J., Perron,, I., Riedy,, S., Yoshikawa,, T., Kadotani,, H., Owada,, Y., … Frank,, M. (2017). Normal sleep requires the astrocyte brain‐type fatty acid binding protein FABP7. Science Advances, 3, e1602663.
Goodwin,, P. R., Meng,, A., Moore,, J., Hobin,, M., Fulga,, T. A., Van,, V. D., & Griffith,, L. C. (2018). Micro RNAs regulate sleep and sleep homeostasis in Drosophila. Cell Reports, 23, 3776–3786.
Halassa,, M. M., Florian,, C., Fellin,, T., Munoz,, J. R., Lee,, S. Y., Abel,, T., … Frank,, M. G. (2009). Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 61, 213–219.
Hastings,, M. H., Maywood,, E. S., & Brancaccio,, M. (2019). The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology, 8. https://doi.org/10.3390/biology8010013.
Hayashi,, Y., Koyanagi,, S., Kusunose,, N., Okada,, R., Wu,, Z., Tozaki‐Saitoh,, H., … Nakanishi,, H. (2013). The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S. Scientific Reports, 3, 2744.
Haydon,, P. G. (2017). Astrocytes and the modulation of sleep. Current Opinion in Neurobiology, 44, 28–33.
Horvat,, A., & Vardjan,, N. (2019). Astroglial cAMP signalling in space and time. Neuroscience Letters, 689, 5–10.
Ivanov,, A. D., & Mothet,, J. P. (2019). The plastic d‐serine signaling pathway: Sliding from neurons to glia and vice‐versa. Neuroscience Letters, 689, 21–25.
Jackson,, F. R. (2011). Glial cell modulation of circadian rhythms. Glia, 59, 1341–1350.
Jackson,, F. R., Ng,, F. S., Sengupta,, S., You,, S., & Huang,, Y. (2015). Glial cell regulation of rhythmic behavior. Methods in Enzymology, 552, 45–73.
Joiner,, W. J., Crocker,, A., White,, B. H., & Sehgal,, A. (2006). Sleep in Drosophila is regulated by adult mushroom bodies. Nature, 441, 757–760.
Kremer,, M. C., Jung,, C., Batelli,, S., Rubin,, G. M., & Gaul,, U. (2017). The glia of the adult Drosophila nervous system. Glia, 65, 606–638.
Liang,, X., Holy,, T. E., & Taghert,, P. H. (2016). Synchronous Drosophila circadian pacemakers display nonsynchronous Ca(2)(+) rhythms in vivo. Science, 351, 976–981.
Ma,, Z., Stork,, T., Bergles,, D. E., & Freeman,, M. R. (2016). Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour. Nature, 539, 428–432.
Marpegan,, L., Swanstrom,, A. E., Chung,, K., Simon,, T., Haydon,, P. G., Khan,, S. K., … Beaule,, C. (2011). Circadian regulation of ATP release in astrocytes. The Journal of Neuroscience, 31, 8342–8350.
Melom,, J. E., & Littleton,, J. T. (2013). Mutation of a NCKX eliminates glial microdomain calcium oscillations and enhances seizure susceptibility. The Journal of Neuroscience, 33, 1169–1178.
Metaxakis,, A., Tain,, L. S., Gronke,, S., Hendrich,, O., Hinze,, Y., Birras,, U., & Partridge,, L. (2014). Lowered insulin signalling ameliorates age‐related sleep fragmentation in Drosophila. PLoS Biology, 12, e1001824.
Monti,, J. M., & Monti,, D. (2007). The involvement of dopamine in the modulation of sleep and waking. Sleep Medicine Reviews, 11, 113–133.
Ng,, F. S., & Jackson,, F. R. (2015). The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior. Frontiers in Cellular Neuroscience, 9, 256.
Ng,, F. S., Sengupta,, S., Huang,, Y., Yu,, A. M., You,, S., Roberts,, M. A., … Jackson,, F. R. (2016). TRAP‐seq profiling and RNAi‐based genetic screens identify conserved glial genes required for adult Drosophila behavior. Frontiers in Molecular Neuroscience, 9, 146.
Ng,, F. S., Tangredi,, M. M., & Jackson,, F. R. (2011). Glial cells physiologically modulate clock neurons and circadian behavior in a calcium‐dependent manner. Current Biology, 21, 625–634.
Otto,, N., Marelja,, Z., Schoofs,, A., Kranenburg,, H., Bittern,, J., Yildirim,, K., … Klambt,, C. (2018). The sulfite oxidase shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia. Nature Communications, 9, 3514.
Papouin,, T., Dunphy,, J., Tolman,, M., Foley,, J. C., & Haydon,, P. G. (2017). Astrocytic control of synaptic function. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372, 20160154.
Papouin,, T., Dunphy,, J. M., Tolman,, M., Dineley,, K. T., & Haydon,, P. G. (2017). Septal cholinergic neuromodulation tunes the astrocyte‐dependent gating of hippocampal NMDA receptors to wakefulness. Neuron, 94, 840–854.
Parpura,, V., & Zorec,, R. (2010). Gliotransmission: Exocytotic release from astrocytes. Brain Research Reviews, 63, 83–92.
Pitman,, J. L., McGill,, J. J., Keegan,, K. P., & Allada,, R. (2006). A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature, 441, 753–756.
Prolo,, L. M., Takahashi,, J. S., & Herzog,, E. D. (2005). Circadian rhythm generation and entrainment in astrocytes. The Journal of Neuroscience, 25, 404–408.
Renn,, S. C. P., Park,, J. H., Rosbash,, M., Hall,, J. C., & Taghert,, P. H. (1999). A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell, 99, 791–802.
Schmitt,, L. I., Sims,, R. E., Dale,, N., & Haydon,, P. G. (2012). Wakefulness affects synaptic and network activity by increasing extracellular astrocyte‐derived adenosine. The Journal of Neuroscience, 32, 4417–4425.
Sengupta,, S., Crowe,, L. B., You,, S., Roberts,, M. A., & Jackson,, F. R. (2019). A secreted Ig‐domain protein required in both astrocytes and neurons for regulation of Drosophila night sleep. Current Biology, 29, 2547–2554.
Shoham,, S., Davenne,, D., Cady,, A. B., Dinarello,, C. A., & Krueger,, J. M. (1987). Recombinant tumor necrosis factor and interleukin 1 enhance slow‐wave sleep. The American Journal of Physiology, 253, R142–R149.
Stahl,, B. A., Peco,, E., Davla,, S., Murakami,, K., Caicedo Moreno,, N. A., van Meyel,, D. J., & Keene,, A. C. (2018). The taurine transporter Eaat2 functions in ensheathing glia to modulate sleep and metabolic rate. Current Biology, 28, 3700–3708.
Stellwagen,, D., & Malenka,, R. C. (2006). Synaptic scaling mediated by glial TNF‐alpha. Nature, 440, 1054–1059.
Suh,, J., & Jackson,, F. R. (2007). Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron, 55, 435–447.
Thakkar,, M. M., Winston,, S., & McCarley,, R. W. (2003). A1 receptor and adenosinergic homeostatic regulation of sleep‐wakefulness: Effects of antisense to the A1 receptor in the cholinergic basal forebrain. The Journal of Neuroscience, 23, 4278–4287.
Toda,, H., Williams,, J. A., Gulledge,, M., & Sehgal,, A. (2019). A sleep‐inducing gene, nemuri, links sleep and immune function in Drosophila. Science, 363, 509–515.
Tomita,, J., Ban,, G., & Kume,, K. (2017). Genes and neural circuits for sleep of the fruit fly. Neuroscience Research, 118, 82–91. https://doi.org/10.1016/j.neures.2017.04.010.
Tso,, C. F., Simon,, T., Greenlaw,, A. C., Puri,, T., Mieda,, M., & Herzog,, E. D. (2017). Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Current Biology, 27, 1–7.
Vanderheyden,, W. M., Goodman,, A. G., Taylor,, R. H., Frank,, M. G., Van Dongen,, H. P. A., & Gerstner,, J. R. (2018). Astrocyte expression of the Drosophila TNF‐alpha homologue, Eiger, regulates sleep in flies. PLoS Genetics, 14, e1007724.
Womac,, A. D., Burkeen,, J. F., Neuendorff,, N., Earnest,, D. J., & Zoran,, M. J. (2009). Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. The European Journal of Neuroscience, 30, 869–876.
Wu,, M. N., Ho,, K., Crocker,, A., Yue,, Z., Koh,, K., & Sehgal,, A. (2009). The effects of caffeine onsleep in Drosophila require PKA activity, but not the adenosine receptor. The Journal of Neuroscience, 29, 11029‐11037.
You,, S., Fulga,, T. A., Van,, V. D., & Jackson,, F. R. (2018). Regulation of circadian behavior by Astroglial MicroRNAs in Drosophila. Genetics, 208, 1195–1207.
Young,, M. W. (2018). Time travels: A 40‐year journey from Drosophila`s clock mutants to human circadian disorders (Nobel lecture). Angewandte Chemie (International Ed. in English), 57, 11532–11539.
Zerr,, D. M., Hall,, J. C., Rosbash,, M., & Siwicki,, K. K. (1990). Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. The Journal of Neuroscience, 10, 2749–2762.
Zhang,, S. L., Yue,, Z., Arnold,, D. M., Artiushin,, G., & Sehgal,, A. (2018). A circadian clock in the blood‐brain barrier regulates xenobiotic efflux. Cell, 173, 130–139.
Zhang,, Y. V., Ormerod,, K. G., & Littleton,, J. T. (2017). Astrocyte Ca2+ influx negatively regulates neuronal activity. eNeuro, 4, 340–16.