Ascano,, M., Bodmer,, D., & Kuruvilla,, R. (2012). Endocytic trafficking of neurotrophins in neural development. Trends in Cell Biology, 22(5), 266–273. https://doi.org/10.1016/j.tcb.2012.02.005
Ayloo,, S., Lazarus,, J. E., Dodda,, A., Tokito,, M., Ostap,, E. M., & Holzbaur,, E. L. F. (2014). Dynactin functions as both a dynamic tether and brake during dynein‐driven motility. Nature Communications, 5, 4807. https://doi.org/10.1038/ncomms5807
Baleriola,, J., Walker,, C. A., Jean,, Y. Y., Crary,, J. F., Troy,, C. M., Nagy,, P. L., & Hengst,, U. (2014). Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell, 158(5), 1159–1172. https://doi.org/10.1016/j.cell.2014.07.001
Ballard,, C., Mobley,, W., Hardy,, J., Williams,, G., & Corbett,, A. (2016). Dementia in Down`s syndrome. Lancet Neurology, 15(6), 622–636. https://doi.org/10.1016/S1474-4422(16)00063-6
Barford,, K., Deppmann,, C., & Winckler,, B. (2017). The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Developmental Neurobiology, 77(4), 405–418. https://doi.org/10.1002/dneu.22427
Barford,, K., Keeler,, A., McMahon,, L., McDaniel,, K., Yap,, C. C., Deppmann,, C. D., & Winckler,, B. (2018). Transcytosis of TrkA leads to diversification of dendritic signaling endosomes. Scientific Reports, 8(1), 4715. https://doi.org/10.1038/s41598-018-23036-8
Barnat,, M., Enslen,, H., Propst,, F., Davis,, R. J., Soares,, S., & Nothias,, F. (2010). Distinct roles of c‐Jun N‐terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. The Journal of Neuroscience, 30(23), 7804–7816. https://doi.org/10.1523/JNEUROSCI.0372-10.2010
Baumbach,, J., Murthy,, A., McClintock,, M. A., Dix,, C. I., Zalyte,, R., Hoang,, H. T., & Bullock,, S. L. (2017). Lissencephaly‐1 is a context‐dependent regulator of the human dynein complex. eLife, 6, e21768. https://doi.org/10.7554/eLife.21768
Ben‐Zvi,, A., Manor,, O., Schachner,, M., Yaron,, A., Tessier‐Lavigne,, M., & Behar,, O. (2008). The Semaphorin receptor PlexinA3 mediates neuronal apoptosis during dorsal root ganglia development. The Journal of Neuroscience, 28(47), 12427–12432. https://doi.org/10.1523/JNEUROSCI.3573-08.2008
Besirli,, C. G., Wagner,, E. F., & Johnson,, E. M. (2005). The limited role of NH2‐terminal c‐Jun phosphorylation in neuronal apoptosis: Identification of the nuclear pore complex as a potential target of the JNK pathway. The Journal of Cell Biology, 170(3), 401–411. https://doi.org/10.1083/jcb.200501138
Bhabha,, G., Johnson,, G. T., Schroeder,, C. M., & Vale,, R. D. (2016). How dynein moves along microtubules. Trends in Biochemical Sciences, 41(1), 94–105. https://doi.org/10.1016/j.tibs.2015.11.004
Bodmer,, D., Ascaño,, M., & Kuruvilla,, R. (2011). Isoform‐specific dephosphorylation of dynamin1 by calcineurin couples neurotrophin receptor endocytosis to axonal growth. Neuron, 70(6), 1085–1099. https://doi.org/10.1016/j.neuron.2011.04.025
Bonanomi,, D., Chivatakarn,, O., Bai,, G., Abdesselem,, H., Lettieri,, K., Marquardt,, T., … Pfaff,, S. L. (2012). Ret is a multifunctional coreceptor that integrates diffusible‐ and contact‐axon guidance signals. Cell, 148(3), 568–582. https://doi.org/10.1016/j.cell.2012.01.024
Bothwell,, M. (2019). Recent advances in understanding context‐dependent mechanisms controlling neurotrophin signaling and function. [version 1; peer review: 3 approved]. F1000Research, 8, 1658. https://doi.org/10.12688/f1000research.19174.1
Brahic,, M., Bousset,, L., Bieri,, G., Melki,, R., & Gitler,, A. D. (2016). Axonal transport and secretion of fibrillar forms of α‐synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathologica, 131(4), 539–548. https://doi.org/10.1007/s00401-016-1538-0
Bredesen,, D. E., Mehlen,, P., & Rabizadeh,, S. (2005). Receptors that mediate cellular dependence. Cell Death and Differentiation, 12(8), 1031–1043. https://doi.org/10.1038/sj.cdd.4401680
Bronfman,, F. C., Lazo,, O. M., Flores,, C., & Escudero,, C. A. (2014). Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function. Handbook of Experimental Pharmacology, 220, 33–65. https://doi.org/10.1007/978-3-642-45106-5_3
Bueker,, E. D. (1948). Implantation of tumors in the hind limb field of the embryonic chick and the developmental response of the lumbosacral nervous system. The Anatomical Record, 102(3), 369–389. https://doi.org/10.1002/ar.1091020309
Butler,, S. J., & Bronner,, M. E. (2015). From classical to current: Analyzing peripheral nervous system and spinal cord lineage and fate. Developmental Biology, 398(2), 135–146. https://doi.org/10.1016/j.ydbio.2014.09.033
Cavalli,, V., Kujala,, P., Klumperman,, J., & Goldstein,, L. S. B. (2005). Sunday driver links axonal transport to damage signaling. The Journal of Cell Biology, 168(5), 775–787. https://doi.org/10.1083/jcb.200410136
Chao,, M. V. (2003). Neurotrophins and their receptors: A convergence point for many signalling pathways. Nature Reviews. Neuroscience, 4(4), 299–309. https://doi.org/10.1038/nrn1078
Chen,, M., Maloney,, J. A., Kallop,, D. Y., Atwal,, J. K., Tam,, S. J., Baer,, K., … Watts,, R. J. (2012). Spatially coordinated kinase signaling regulates local axon degeneration. The Journal of Neuroscience, 32(39), 13439–13453. https://doi.org/10.1523/JNEUROSCI.2039-12.2012
Chen,, X.‐Q., & Mobley,, W. C. (2019). Alzheimer disease pathogenesis: Insights from molecular and cellular biology studies of oligomeric aβ and tau species. Frontiers in Neuroscience, 13, 659. https://doi.org/10.3389/fnins.2019.00659
Chen,, X.‐Q., Sawa,, M., & Mobley,, W. C. (2018). Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in down syndrome. Free Radical Biology %26 Medicine, 114, 52–61. https://doi.org/10.1016/j.freeradbiomed.2017.10.341
Cheng,, I., Jin,, L., Rose,, L. C., & Deppmann,, C. D. (2018). Temporally restricted death and the role of p75NTR as a survival receptor in the developing sensory nervous system. Developmental Neurobiology, 78(7), 701–717. https://doi.org/10.1002/dneu.22591
Chowdhury,, S., Ketcham,, S. A., Schroer,, T. A., & Lander,, G. C. (2015). Structural organization of the dynein‐dynactin complex bound to microtubules. Nature Structural %26 Molecular Biology, 22(4), 345–347. https://doi.org/10.1038/nsmb.2996
Coffey,, E. T., Hongisto,, V., Dickens,, M., Davis,, R. J., & Courtney,, M. J. (2000). Dual roles for c‐Jun N‐terminal kinase in developmental and stress responses in cerebellar granule neurons. The Journal of Neuroscience, 20(20), 7602–7613.
Coffey,, E. T., Smiciene,, G., Hongisto,, V., Cao,, J., Brecht,, S., Herdegen,, T., & Courtney,, M. J. (2002). C‐Jun N‐terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c‐Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. The Journal of Neuroscience, 22(11), 4335–4345.
Cohen,, S. (1960). Purification of a nerve‐growth promoting protein from the mouse salivary gland and its neuro‐cytotoxic antiserum. Proceedings of the National Academy of Sciences of the United States of America, 46(3), 302–311. https://doi.org/10.1073/pnas.46.3.302
Cohen,, S., & Levi‐Montalcini,, R. (1956). A nerve growth‐stimulating factor isolated from snake venom. Proceedings of the National Academy of Sciences of the United States of America, 42(9), 571–574.
Cohen,, S., Levi‐Montalcini,, R., & Hamburger,, V. (1954). A nerve growth‐stimulating factor isolated from sarcom as 37 and 180. Proceedings of the National Academy of Sciences of the United States of America, 40(10), 1014–1018.
Cosker,, K. E., Pazyra‐Murphy,, M. F., Fenstermacher,, S. J., & Segal,, R. A. (2013). Target‐derived neurotrophins coordinate transcription and transport of bclw to prevent axonal degeneration. The Journal of Neuroscience, 33(12), 5195–5207. https://doi.org/10.1523/JNEUROSCI.3862-12.2013
Cosker,, K. E., Fenstermacher,, S. J., Pazyra‐Murphy,, M. F., Elliott,, H. L., & Segal,, R. A. (2016). The RNA‐binding protein SFPQ orchestrates an RNA regulon to promote axon viability. Nature Neuroscience, 19(5), 690–696. https://doi.org/10.1038/nn.4280
De Vos,, K. J., & Hafezparast,, M. (2017). Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiology of Disease, 105, 283–299. https://doi.org/10.1016/j.nbd.2017.02.004
Dechant,, G., & Barde,, Y.‐A. (2002). The neurotrophin receptor p75(NTR): Novel functions and implications for diseases of the nervous system. Nature Neuroscience, 5(11), 1131–1136. https://doi.org/10.1038/nn1102-1131
Deinhardt,, K., Kim,, T., Spellman,, D. S., Mains,, R. E., Eipper,, B. A., Neubert,, T. A., … Hempstead,, B. L. (2011). Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Science Signaling, 4(202), ra82. https://doi.org/10.1126/scisignal.2002060
Deinhardt,, K., Salinas,, S., Verastegui,, C., Watson,, R., Worth,, D., Hanrahan,, S., … Schiavo,, G. (2006). Rab5 and Rab7 Control endocytic sorting along the axonal retrograde transport pathway. Neuron, 52(2), 293–305. https://doi.org/10.1016/j.neuron.2006.08.018
Deinhardt,, K., Reversi,, A., Berninghausen,, O., Hopkins,, C. R., & Schiavo,, G. (2007). Neurotrophins redirect p75NTR from a clathrin‐independent to a clathrin‐dependent endocytic pathway coupled to axonal transport. Traffic, 8(12), 1736–1749. https://doi.org/10.1111/j.1600-0854.2007.00645.x
Delcroix,, J.‐D., Valletta,, J. S., Wu,, C., Hunt,, S. J., Kowal,, A. S., & Mobley,, W. C. (2003). NGF signaling in sensory neurons. Neuron, 39(1), 69–84. https://doi.org/10.1016/s0896-6273(03)00397-0
Deppmann,, C. D., Alvania,, R. S., & Taparowsky,, E. J. (2006). Cross‐species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks. Molecular Biology and Evolution, 23(8), 1480–1492. https://doi.org/10.1093/molbev/msl022
Deppmann,, C. D., Mihalas,, S., Sharma,, N., Lonze,, B. E., Niebur,, E., & Ginty,, D. D. (2008). A model for neuronal competition during development. Science, 320(5874), 369–373. https://doi.org/10.1126/science.1152677
Dickinson,, R. E., Fegan,, K. S., Ren,, X., Hillier,, S. G., & Duncan,, W. C. (2011). Glucocorticoid regulation of SLIT/ROBO tumour suppressor genes in the ovarian surface epithelium and ovarian cancer cells. PLoS One, 6(11), e27792. https://doi.org/10.1371/journal.pone.0027792
Doran,, E., Keator,, D., Head,, E., Phelan,, M. J., Kim,, R., Totoiu,, M., … Lott,, I. T. (2017). Down syndrome, partial trisomy 21, and absence of Alzheimer`s disease: The role of APP. Journal of Alzheimer`s Disease, 56(2), 459–470. https://doi.org/10.3233/JAD-160836
Ehlers,, M. D., Kaplan,, D. R., Price,, D. L., & Koliatsos,, V. E. (1995). NGF‐stimulated retrograde transport of trkA in the mammalian nervous system. The Journal of Cell Biology, 130(1), 149–156. https://doi.org/10.1083/jcb.130.1.149
Eilers,, A., Whitfield,, J., Shah,, B., Spadoni,, C., Desmond,, H., & Ham,, J. (2001). Direct inhibition of c‐Jun N‐terminal kinase in sympathetic neurones prevents c‐Jun promoter activation and NGF withdrawal‐induced death. Journal of Neurochemistry, 76(5), 1439–1454. https://doi.org/10.1046/j.1471-4159.2001.00150.x
Enomoto,, H., Crawford,, P. A., Gorodinsky,, A., Heuckeroth,, R. O., Johnson,, E. M., & Milbrandt,, J. (2001). RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development, 128(20), 3963–3974.
Escudero,, C. A., Cabeza,, C., Moya‐Alvarado,, G., Maloney,, M. T., Flores,, C. M., Wu,, C., … Bronfman,, F. C. (2019). C‐Jun N‐terminal kinase (JNK)‐dependent internalization and Rab5‐dependent endocytic sorting mediate long‐distance retrograde neuronal death induced by axonal BDNF‐p75 signaling. Scientific Reports, 9(1), 6070. https://doi.org/10.1038/s41598-019-42420-6
Escudero,, C. A., Lazo,, O. M., Galleguillos,, C., Parraguez,, J. I., Lopez‐Verrilli,, M. A., Cabeza,, C., … Bronfman,, F. C. (2014). The p75 neurotrophin receptor evades the endolysosomal route in neuronal cells, favouring multivesicular bodies specialised for exosomal release. Journal of Cell Science, 127(Pt 9), 1966–1979. https://doi.org/10.1242/jcs.141754
Estus,, S., Zaks,, W. J., Freeman,, R. S., Gruda,, M., Bravo,, R., & Johnson,, E. M. (1994). Altered gene expression in neurons during programmed cell death: Identification of c‐Jun as necessary for neuronal apoptosis. The Journal of Cell Biology, 127(6 Pt 1), 1717–1727. https://doi.org/10.1083/jcb.127.6.1717
Finci,, L., Zhang,, Y., Meijers,, R., & Wang,, J. H. (2015). Signaling mechanism of the netrin‐1 receptor DCC in axon guidance. Progress in Biophysics and Molecular Biology, 118(3), 153–160. https://doi.org/10.1016/j.pbiomolbio.2015.04.001
Fournier,, A. E., Nakamura,, F., Kawamoto,, S., Goshima,, Y., Kalb,, R. G., & Strittmatter,, S. M. (2000). Semaphorin3A Enhances endocytosis at sites of receptor‐F‐Actin colocalization during growth cone collapse. The Journal of Cell Biology, 149(2), 411–422. https://doi.org/10.1083/jcb.149.2.411
Frade,, J. M., Rodríguez‐Tébar,, A., & Barde,, Y. A. (1996). Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature, 383(6596), 166–168. https://doi.org/10.1038/383166a0
Fu,, H., Hardy,, J., & Duff,, K. E. (2018). Selective vulnerability in neurodegenerative diseases. Nature Neuroscience, 21(10), 1350–1358. https://doi.org/10.1038/s41593-018-0221-2
Gagliardini,, V., & Fankhauser,, C. (1999). Semaphorin III can induce death in sensory neurons. Molecular and Cellular Neurosciences, 14(4–5), 301–316. https://doi.org/10.1006/mcne.1999.0787
Gentry,, J. J., Barker,, P. A., & Carter,, B. D. (2004). The p75 neurotrophin receptor: Multiple interactors and numerous functions. Progress in Brain Research, 146, 25–39. https://doi.org/10.1016/S0079-6123(03)46002-0
Gerdts,, J., Summers,, D. W., Sasaki,, Y., DiAntonio,, A., & Milbrandt,, J. (2013). Sarm1‐mediated axon degeneration requires both SAM and TIR interactions. The Journal of Neuroscience, 33(33), 13569–13580. https://doi.org/10.1523/JNEUROSCI.1197-13.2013
Ghosh,, A. S., Wang,, B., Pozniak,, C. D., Chen,, M., Watts,, R. J., & Lewcock,, J. W. (2011). DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity. The Journal of Cell Biology, 194(5), 751–764. https://doi.org/10.1083/jcb.201103153
Ginty,, D. D., & Segal,, R. A. (2002). Retrograde neurotrophin signaling: Trk‐ing along the axon. Current Opinion in Neurobiology, 12(3), 268–274. https://doi.org/10.1016/S0959-4388(02)00326-4
Glebova,, N. O., & Ginty,, D. D. (2005). Growth and survival signals controlling sympathetic nervous system development. Annual Review of Neuroscience, 28, 191–222. https://doi.org/10.1146/annurev.neuro.28.061604.135659
Grimes,, M. L., Zhou,, J., Beattie,, E. C., Yuen,, E. C., Hall,, D. E., Valletta,, J. S., … Mobley,, W. C. (1996). Endocytosis of activated TrkA: Evidence that nerve growth factor induces formation of signaling endosomes. The Journal of Neuroscience, 16(24), 7950–7964.
Guadagno,, N. A., & Progida,, C. (2019). Rab gtpases: Switching to human diseases. Cell, 8(8), E909. https://doi.org/10.3390/cells8080909
Gutierrez,, P. A., Ackermann,, B. E., Vershinin,, M., & McKenney,, R. J. (2017). Differential effects of the dynein‐regulatory factor Lissencephaly‐1 on processive dynein‐dynactin motility. The Journal of Biological Chemistry, 292(29), 12245–12255. https://doi.org/10.1074/jbc.M117.790048
Gowrishankar,, S., Yuan,, P., Wu,, Y., Schrag,, M., Paradise,, S., Grutzendler,, J., … Ferguson,, S. M,. (2015). Massive accumulation of luminal protease‐deficient axonal lysosomes at Alzheimer`s disease amyloid plaques. Proceedings of the National Academy of Sciences, 112(28), E3699–E3708. https://doi.org/10.1073/pnas.1510329112
Hallböök,, F., Wilson,, K., Thorndyke,, M., & Olinski,, R. P. (2006). Formation and evolution of the chordate neurotrophin and Trk receptor genes. Brain, Behavior and Evolution, 68(3), 133–144. https://doi.org/10.1159/000094083
Ham,, J., Babij,, C., Whitfield,, J., Pfarr,, C. M., Lallemand,, D., Yaniv,, M., & Rubin,, L. L. (1995). A c‐Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron, 14(5), 927–939. https://doi.org/10.1016/0896-6273(95)90331-3
Hamasaki,, T., Goto,, S., Nishikawa,, S., & Ushio,, Y. (2001). A role of netrin‐1 in the formation of the subcortical structure striatum: Repulsive action on the migration of late‐born striatal neurons. The Journal of Neuroscience, 21(12), 4272–4280.
Hamburger,, V. (1939). Motor and sensory hyperplasia following limb‐bud transplantations in Chick embryos. Physiological Zoology, 12(3), 268–284. https://doi.org/10.1086/physzool.12.3.30151503
Hamburger,, V., & Levi‐Montalcini,, R. (1949). Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. The Journal of Experimental Zoology, 111(3), 457–501. https://doi.org/10.1002/jez.1401110308
Harding,, T. C., Xue,, L., Bienemann,, A., Haywood,, D., Dickens,, M., Tolkovsky,, A. M., & Uney,, J. B. (2001). Inhibition of JNK by overexpression of the JNL binding domain of JIP‐1 prevents apoptosis in sympathetic neurons. The Journal of Biological Chemistry, 276(7), 4531–4534. https://doi.org/10.1074/jbc.C000815200
Harrington,, A. W., St Hillaire,, C., Zweifel,, L. S., Glebova,, N. O., Philippidou,, P., Halegoua,, S., & Ginty,, D. D. (2011). Recruitment of Actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell, 146(3), 421–434. https://doi.org/10.1016/j.cell.2011.07.008
Harris,, C. A., & Johnson,, E. M. (2001). BH3‐only Bcl‐2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. The Journal of Biological Chemistry, 276(41), 37754–37760. https://doi.org/10.1074/jbc.M104073200
Haupt,, C., Kloos,, K., Faus‐Kessler,, T., & Huber,, A. B. (2010). Semaphorin 3A‐Neuropilin‐1 signaling regulates peripheral axon fasciculation and pathfinding but not developmental cell death patterns. The European Journal of Neuroscience, 31(7), 1164–1172. https://doi.org/10.1111/j.1460-9568.2010.07154.x
Heerssen,, H. M., Pazyra,, M. F., & Segal,, R. A. (2004). Dynein motors transport activated Trks to promote survival of target‐dependent neurons. Nature Neuroscience, 7(6), 596–604. https://doi.org/10.1038/nn1242
Hibbert,, A. P., Kramer,, B. M. R., Miller,, F. D., & Kaplan,, D. R. (2006). The localization, trafficking and retrograde transport of BDNF bound to p75NTR in sympathetic neurons. Molecular and Cellular Neurosciences, 32(4), 387–402. https://doi.org/10.1016/j.mcn.2006.06.001
Hibi,, M., Lin,, A., Smeal,, T., Minden,, A., & Karin,, M. (1993). Identification of an oncoprotein‐ and UV‐responsive protein kinase that binds and potentiates the c‐Jun activation domain. Genes %26 Development, 7(11), 2135–2148. https://doi.org/10.1101/gad.7.11.2135
Hohn,, A., Leibrock,, J., Bailey,, K., & Barde,, Y. A. (1990). Identification and characterization of a novel member of the nerve growth factor/brain‐derived neurotrophic factor family. Nature, 344(6264), 339–341. https://doi.org/10.1038/344339a0
Holland,, S. M., Collura,, K. M., Ketschek,, A., Noma,, K., Ferguson,, T. A., Jin,, Y., … Thomas,, G. M. (2016). Palmitoylation controls DLK localization, interactions and activity to ensure effective axonal injury signaling. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 763–768. https://doi.org/10.1073/pnas.1514123113
Honma,, Y., Kawano,, M., Kohsaka,, S., & Ogawa,, M. (2010). Axonal projections of mechanoreceptive dorsal root ganglion neurons depend on ret. Development, 137(14), 2319–2328. https://doi.org/10.1242/dev.046995
Hu,, Y., Lee,, X., Shao,, Z., Apicco,, D., Huang,, G., Gong,, B. J., … Mi,, S. (2013). A DR6/p75(NTR) complex is responsible for β‐amyloid‐induced cortical neuron death. Cell Death %26 Disease, 4, e579. https://doi.org/10.1038/cddis.2013.110
Huang,, E. J., & Reichardt,, L. F. (2003). Trk receptors: Roles in neuronal signal transduction. Annual Review of Biochemistry, 72, 609–642. https://doi.org/10.1146/annurev.biochem.72.121801.161629
Huntwork‐Rodriguez,, S., Wang,, B., Watkins,, T., Ghosh,, A. S., Pozniak,, C. D., Bustos,, D., … Lewcock,, J. W. (2013). JNK‐mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. The Journal of Cell Biology, 202(5), 747–763. https://doi.org/10.1083/jcb.201303066
Ip,, N. Y., Ibáñez,, C. F., Nye,, S. H., McClain,, J., Jones,, P. F., Gies,, D. R., … Squinto,, S. P. (1992). Mammalian neurotrophin‐4: Structure, chromosomal localization, tissue distribution, and receptor specificity. Proceedings of the National Academy of Sciences of the United States of America, 89(7), 3060–3064. https://doi.org/10.1073/pnas.89.7.3060
Ito,, K., & Enomoto,, H. (2016). Retrograde transport of neurotrophic factor signaling: Implications in neuronal development and pathogenesis. Journal of Biochemistry, 160(2), 77–85. https://doi.org/10.1093/jb/mvw037
Ivanisevic,, L., Zheng,, W., Woo,, S. B., Neet,, K. E., & Saragovi,, H. U. (2007). TrkA receptor “hot spots” for binding of NT‐3 as a heterologous ligand. The Journal of Biological Chemistry, 282(23), 16754–16763. https://doi.org/10.1074/jbc.M701996200
Jha,, R., Roostalu,, J., Cade,, N. I., Trokter,, M., & Surrey,, T. (2017). Combinatorial regulation of the balance between dynein microtubule end accumulation and initiation of directed motility. The EMBO Journal, 36(22), 3387–3404. https://doi.org/10.15252/embj.201797077
Jian,, C., Zou,, D., Luo,, C., Liu,, X., Meng,, L., Huang,, J., … Wu,, Y. (2016). Cognitive deficits are ameliorated by reduction in amyloid β accumulation in Tg2576/p75(NTR+/‐) mice. Life Sciences, 155, 167–173. https://doi.org/10.1016/j.lfs.2016.05.011
Jones,, K. R., & Reichardt,, L. F. (1990). Molecular cloning of a human gene that is a member of the nerve growth factor family. Proceedings of the National Academy of Sciences of the United States of America, 87(20), 8060–8064. https://doi.org/10.1073/pnas.87.20.8060
Kar,, A. N., Lee,, S. J., & Twiss,, J. L. (2017). Expanding axonal transcriptome brings new functions for axonally synthesized proteins in health and disease. The Neuroscientist, 24(2), 111–129. https://doi.org/10.1177/1073858417712668
Kellermeyer,, R., Heydman,, L. M., Mastick,, G. S., & Kidd,, T. (2018). The role of apoptotic signaling in axon guidance. Journal of Developmental Biology, 6(4), 24. https://doi.org/10.3390/jdb6040024
Kenchappa,, R. S., Tep,, C., Korade,, Z., Urra,, S., Bronfman,, F. C., Yoon,, S. O., & Carter,, B. D. (2010). p75 neurotrophin receptor‐mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up‐regulation of tumor necrosis factor‐alpha‐converting enzyme/ADAM17. The Journal of Biological Chemistry, 285(26), 20358–20368. https://doi.org/10.1074/jbc.M109.082834
Kenchappa,, R. S., Zampieri,, N., Chao,, M. V., Barker,, P. A., Teng,, H. K., Hempstead,, B. L., & Carter,, B. D. (2006). Ligand‐dependent cleavage of the P75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron, 50(2), 219–232. https://doi.org/10.1016/j.neuron.2006.03.011
Kenney,, A. M., & Kocsis,, J. D. (1998). Peripheral axotomy induces long‐term c‐Jun amino‐terminal kinase‐1 activation and activator protein‐1 binding activity by c‐Jun and junD in adult rat dorsal root ganglia in vivo. The Journal of Neuroscience, 18(4), 1318–1328.
Kim,, J. Y., Shen,, S., Dietz,, K., He,, Y., Howell,, O., Reynolds,, R., & Casaccia,, P. (2010). HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nature Neuroscience, 13(2), 180–189. https://doi.org/10.1038/nn.2471
King,, S. J., & Schroer,, T. A. (2000). Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biology, 2(1), 20–24. https://doi.org/10.1038/71338
Kisiswa,, L., Fernández‐Suárez,, D., Sergaki,, M. C., & Ibáñez,, C. F. (2018). RIP2 gates TRAF6 interaction with death receptor p75NTR to regulate cerebellar granule neuron survival. Cell Reports, 24(4), 1013–1024. https://doi.org/10.1016/j.celrep.2018.06.098
Kochańczyk,, M., Kocieniewski,, P., Kozłowska,, E., Jaruszewicz‐Błońska,, J., Sparta,, B., Pargett,, M., … Lipniacki,, T. (2017). Relaxation oscillations and hierarchy of feedbacks in MAPK signaling. Scientific Reports, 7, 38244. https://doi.org/10.1038/srep38244
Kolodkin,, A. L., & Tessier‐Lavigne,, M. (2011). Mechanisms and molecules of neuronal wiring: A primer. Cold Spring Harbor Perspectives in Biology, 3(6), a001727. https://doi.org/10.1101/cshperspect.a001727
Kraemer,, B. R., Yoon,, S. O., & Carter,, B. D. (2014). The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handbook of Experimental Pharmacology, 220, 121–164. https://doi.org/10.1007/978-3-642-45106-5_6
Krstic,, D., & Knuesel,, I. (2013). Deciphering the mechanism underlying late‐onset Alzheimer disease. Nature Reviews. Neurology, 9(1), 25–34. https://doi.org/10.1038/nrneurol.2012.236
Kuruvilla,, R., Ye,, H., & Ginty,, D. D. (2000). Spatially and functionally distinct roles of the PI3‐K effector pathway during NGF signaling in sympathetic neurons. Neuron, 27(3), 499–512. https://doi.org/10.1016/S0896-6273(00)00061-1
Kuruvilla,, R., Zweifel,, L. S., Glebova,, N. O., Lonze,, B. E., Valdez,, G., Ye,, H., & Ginty,, D. D. (2004). A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell, 118(2), 243–255. https://doi.org/10.1016/j.cell.2004.06.021
Lee,, H., Park,, S., Kang,, Y.‐S., & Park,, S. (2015). EphA receptors form a complex with caspase‐8 to induce apoptotic cell death. Molecules and Cells, 38(4), 349–355. https://doi.org/10.14348/molcells.2015.2279
Lee,, K. F., Davies,, A. M., & Jaenisch,, R. (1994). p75‐deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF. Development, 120(4), 1027–1033.
Lehigh,, K. M., West,, K. M., & Ginty,, D. D. (2017). Retrogradely transported TrkA endosomes signal locally within dendrites to maintain sympathetic neuron synapses. Cell Reports, 19(1), 86–100. https://doi.org/10.1016/j.celrep.2017.03.028
Leibrock,, J., Lottspeich,, F., Hohn,, A., Hofer,, M., Hengerer,, B., Masiakowski,, P., … Barde,, Y. A. (1989). Molecular cloning and expression of brain‐derived neurotrophic factor. Nature, 341(6238), 149–152. https://doi.org/10.1038/341149a0
Levi‐Montalcini,, R., & Hamburger,, V. (1951). Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. The Journal of Experimental Zoology, 116(2), 321–361. https://doi.org/10.1002/jez.1401160206
Lewin,, G. R., & Barde,, Y. A. (1996). Physiology of the neurotrophins. Annual Review of Neuroscience, 19, 289–317. https://doi.org/10.1146/annurev.ne.19.030196.001445
Lindwall,, C., Dahlin,, L., Lundborg,, G., & Kanje,, M. (2004). Inhibition of c‐Jun phosphorylation reduces axonal outgrowth of adult rat nodose ganglia and dorsal root ganglia sensory neurons. Molecular and Cellular Neurosciences, 27(3), 267–279. https://doi.org/10.1016/j.mcn.2004.07.001
Lindwall,, C., & Kanje,, M. (2005). Retrograde axonal transport of JNK signaling molecules influence injury induced nuclear changes in p‐c‐Jun and ATF3 in adult rat sensory neurons. Molecular and Cellular Neurosciences, 29(2), 269–282. https://doi.org/10.1016/j.mcn.2005.03.002
Linker,, C., & Stern,, C. D. (2004). Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development, 131(22), 5671–5681. https://doi.org/10.1242/dev.01445
Liu,, L., Orozco,, I. J., Planel,, E., Wen,, Y., Bretteville,, A., Krishnamurthy,, P., … K., (2008). A transgenic rat that develops Alzheimer`s disease‐like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiology of Disease, 31(1), 46–57. https://doi.org/10.1016/j.nbd.2008.03.005
Luo,, W., Wickramasinghe,, S. R., Savitt,, J. M., Griffin,, J. W., Dawson,, T. M., & Ginty,, D. D. (2007). A hierarchical NGF signaling cascade controls ret‐dependent and ret‐independent events during development of nonpeptidergic DRG neurons. Neuron, 54(5), 739–754. https://doi.org/10.1016/j.neuron.2007.04.027
Maday,, S., Wallace,, K. E., & Holzbaur,, E. L. F. (2012). Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. Journal of Cell Biology, 196(4), 407–417. https://doi.org/10.1083/jcb.201106120
Maday,, S., Twelvetrees,, A. E., Moughamian,, A. J., & Holzbaur,, E. L. F. (2014). Axonal transport: Cargo‐specific mechanisms of motility and regulation. Neuron, 84(2), 292–309. https://doi.org/10.1016/j.neuron.2014.10.019
Marchetti,, L., Bonsignore,, F., Gobbo,, F., Amodeo,, R., Calvello,, M., Jacob,, A., … A., (2019). Fast‐diffusing p75NTR monomers support apoptosis and growth cone collapse by neurotrophin ligands. Proceedings of the National Academy of Sciences of the United States of America, 116(43), 21563–21572. https://doi.org/10.1073/pnas.1902790116
Marín,, O., Plump,, A. S., Flames,, N., Sánchez‐Camacho,, C., Tessier‐Lavigne,, M., & Rubenstein,, J. L. R. (2003). Directional guidance of interneuron migration to the cerebral cortex relies on subcortical Slit1/2‐independent repulsion and cortical attraction. Development, 130(9), 1889–1901. https://doi.org/10.1242/dev.00417
Maroney,, A. C., Finn,, J. P., Bozyczko‐Coyne,, D., O`Kane,, T. M., Neff,, N. T., Tolkovsky,, A. M., … Greene,, L. A. (1999). CEP‐1347 (KT7515), an inhibitor of JNK activation, rescues sympathetic neurons and neuronally differentiated PC12 cells from death evoked by three distinct insults. Journal of Neurochemistry, 73(5), 1901–1912. https://doi.org/10.1046/j.1471-4159.1999.01901.x
Marshall,, C. J. (1995). Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal‐regulated kinase activation. Cell, 80(2), 179–185. https://doi.org/10.1016/0092-8674(95)90401-8
Matusica,, D., & Coulson,, E. J. (2014). Local versus long‐range neurotrophin receptor signalling: Endosomes are not just carriers for axonal transport. Seminars in Cell %26 Developmental Biology, 31, 57–63. https://doi.org/10.1016/j.semcdb.2014.03.032
McKenney,, R. J., Huynh,, W., Tanenbaum,, M. E., Bhabha,, G., & Vale,, R. D. (2014). Activation of cytoplasmic dynein motility by dynactin‐cargo adapter complexes. Science, 345(6194), 337–341. https://doi.org/10.1126/science.1254198
Mehlen,, P., Rabizadeh,, S., Snipas,, S. J., Assa‐Munt,, N., Salvesen,, G. S., & Bredesen,, D. E. (1998). The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature, 395(6704), 801–804. https://doi.org/10.1038/27441
Meinhardt,, H., & Gierer,, A. (2000). Pattern formation by local self‐activation and lateral inhibition. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 22(8), 753–760. https://doi.org/10.1002/1521-1878(200008)22:8%3C753::AID-BIES9%3E3.0.CO;2-Z
Miller,, F. D., & Kaplan,, D. R. (2001). On Trk for retrograde signaling. Neuron, 32(5), 767–770. https://doi.org/10.1016/s0896-6273(01)00529-3
Mitchell,, D. J., Blasier,, K. R., Jeffery,, E. D., Ross,, M. W., Pullikuth,, A. K., Suo,, D., … Pfister,, K. K. (2012). Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. The Journal of Neuroscience, 32(44), 15495–15510. https://doi.org/10.1523/JNEUROSCI.5599-11.2012
Miyazaki,, N., Furuyama,, T., Sakai,, T., Fujioka,, S., Mori,, T., Ohoka,, Y., … S., (1999). Developmental localization of semaphorin H messenger RNA acting as a collapsing factor on sensory axons in the mouse brain. Neuroscience, 93(1), 401–408. https://doi.org/10.1016/s0306-4522(99)00134-7
Mok,, S.‐A., Lund,, K., & Campenot,, R. B. (2009). A retrograde apoptotic signal originating in NGF‐deprived distal axons of rat sympathetic neurons in compartmented cultures. Cell Research, 19(5), 546–560. https://doi.org/10.1038/cr.2009.11
Moqrich,, A., Earley,, T. J., Watson,, J., Andahazy,, M., Backus,, C., Martin‐Zanca,, D., … Patapoutian,, A. (2004). Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nature Neuroscience, 7(8), 812–818. https://doi.org/10.1038/nn1283
Moughamian,, A. J., & Holzbaur,, E. L. F. (2012). Dynactin is required for transport initiation from the distal axon. Neuron, 74(2), 331–343. https://doi.org/10.1016/j.neuron.2012.02.025
Naska,, S., Lin,, D. C., Miller,, F. D., & Kaplan,, D. R. (2010). p75NTR is an obligate signaling receptor required for cues that cause sympathetic neuron growth cone collapse. Molecular and Cellular Neurosciences, 45(2), 108–120. https://doi.org/10.1016/j.mcn.2010.05.015
Negulescu,, A.‐M., & Mehlen,, P. (2018). Dependence receptors—The dark side awakens. The FEBS Journal, 285(21), 3909–3924. https://doi.org/10.1111/febs.14507
Niclou,, S. P., Franssen,, E. H. P., Ehlert,, E. M. E., Taniguchi,, M., & Verhaagen,, J. (2003). Meningeal cell‐derived semaphorin 3A inhibits neurite outgrowth. Molecular and Cellular Neurosciences, 24(4), 902–912. https://doi.org/10.1016/s1044-7431(03)00243-4
Nikoletopoulou,, V., Lickert,, H., Frade,, J. M., Rencurel,, C., Giallonardo,, P., Zhang,, L., … Y.‐A., (2010). Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature, 467(7311), 59–63. https://doi.org/10.1038/nature09336
Oppenheim,, R. W. (1991). Cell death during development of the nervous system. Annual Review of Neuroscience, 14, 453–501. https://doi.org/10.1146/annurev.ne.14.030191.002321
Ovsepian,, S. V., Antyborzec,, I., O`Leary,, V. B., Zaborszky,, L., Herms,, J., & Oliver Dolly,, J. (2014). Neurotrophin receptor p75 mediates the uptake of the amyloid beta (Aβ) peptide, guiding it to lysosomes for degradation in basal forebrain cholinergic neurons. Brain Structure %26 Function, 219(5), 1527–1541. https://doi.org/10.1007/s00429-013-0583-x
Palmada,, M., Kanwal,, S., Rutkoski,, N. J., Gustafson‐Brown,, C., Johnson,, R. S., Wisdom,, R., & Carter,, B. D. (2002). C‐Jun is essential for sympathetic neuronal death induced by NGF withdrawal but not by p75 activation. The Journal of Cell Biology, 158(3), 453–461. https://doi.org/10.1083/jcb.200112129
Pandey,, J. P., & Smith,, D. S. (2011). A Cdk5‐dependent switch regulates Lis1/Ndel1/dynein‐driven organelle transport in adult axons. The Journal of Neuroscience, 31(47), 17207–17219. https://doi.org/10.1523/JNEUROSCI.4108-11.2011
Pathak,, A., & Carter,, B. D. (2017). Retrograde apoptotic signaling by the p75 neurotrophin receptor. Neuronal Signaling, 1(1), NS20160007. https://doi.org/10.1042/NS20160007
Pathak,, A., Stanley,, E. M., Hickman,, F. E., Wallace,, N., Brewer,, B., Li,, D., … Carter,, B. D. (2018). Retrograde degenerative signaling mediated by the p75 neurotrophin receptor requires p150Glued deacetylation by axonal HDAC1. Developmental Cell, 46(3), 376–387.e7. https://doi.org/10.1016/j.devcel.2018.07.001
Pazyra‐Murphy,, M. F., Hans,, A., Courchesne,, S. L., Karch,, C., Cosker,, K. E., Heerssen,, H. M., … Segal,, R. A. (2009). A retrograde neuronal survival response: Target‐derived neurotrophins regulate MEF2D and bcl‐w. The Journal of Neuroscience, 29(20), 6700–6709. https://doi.org/10.1523/JNEUROSCI.0233-09.2009
Perlson,, E., Jeong,, G.‐B., Ross,, J. L., Dixit,, R., Wallace,, K. E., Kalb,, R. G., & Holzbaur,, E. L. F. (2009). A switch in retrograde signaling from survival to stress in rapid‐onset neurodegeneration. The Journal of Neuroscience, 29(31), 9903–9917. https://doi.org/10.1523/JNEUROSCI.0813-09.2009
Perlson,, E., Maday,, S., Fu,, M.‐M., Moughamian,, A. J., & Holzbaur,, E. L. F. (2010). Retrograde axonal transport: Pathways to cell death? Trends in Neurosciences, 33(7), 335–344. https://doi.org/10.1016/j.tins.2010.03.006
Petersen,, P. H., Tang,, H., Zou,, K., & Zhong,, W. (2006). The enigma of the numb‐notch relationship during mammalian embryogenesis. Developmental Neuroscience, 28(1–2), 156–168. https://doi.org/10.1159/000090761
Prasad,, M. S., Charney,, R. M., & García‐Castro,, M. I. (2019). Specification and formation of the neural crest: Perspectives on lineage segregation. Genesis, 57(1), e23276. https://doi.org/10.1002/dvg.23276
Prasher,, V. P., Farrer,, M. J., Kessling,, A. M., Fisher,, E. M., West,, R. J., Barber,, P. C., & Butler,, A. C. (1998). Molecular mapping of Alzheimer‐type dementia in Down`s syndrome. Annals of Neurology, 43(3), 380–383. https://doi.org/10.1002/ana.410430316
Putcha,, G. V., Le,, S., Frank,, S., Besirli,, C. G., Clark,, K., Chu,, B., … Johnson,, E. M. (2003). JNK‐mediated BIM phosphorylation potentiates BAX‐dependent apoptosis. Neuron, 38(6), 899–914. https://doi.org/10.1016/s0896-6273(03)00355-6
Qian,, L., Milne,, M. R., Shepheard,, S., Rogers,, M.‐L., Medeiros,, R., & Coulson,, E. J. (2019). Removal of p75 Neurotrophin receptor expression from cholinergic basal forebrain neurons reduces amyloid‐β plaque deposition and cognitive impairment in aged APP/PS1 mice. Molecular Neurobiology, 56(7), 4639–4652. https://doi.org/10.1007/s12035-018-1404-2
Qui,, M. S., & Green,, S. H. (1992). PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron, 9(4), 705–717. https://doi.org/10.1016/0896-6273(92)90033-a
Rabizadeh,, S., Oh,, J., Zhong,, L. T., Yang,, J., Bitler,, C. M., Butcher,, L. L., & Bredesen,, D. E. (1993). Induction of apoptosis by the low‐affinity NGF receptor. Science, 261(5119), 345–348. https://doi.org/10.1126/science.8332899
Rao,, A. N., & Baas,, P. W. (2018). Polarity sorting of microtubules in the axon. Trends in Neurosciences, 41(2), 77–88. https://doi.org/10.1016/j.tins.2017.11.002
Reck‐Peterson,, S. L., Redwine,, W. B., Vale,, R. D., & Carter,, A. P. (2018). The cytoplasmic dynein transport machinery and its many cargoes. Nature Reviews. Molecular Cell Biology, 19(6), 382–398. https://doi.org/10.1038/s41580-018-0004-3
Riccio,, A., Pierchala,, B. A., Ciarallo,, C. L., & Ginty,, D. D. (1997). An NGF‐TrkA‐mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science, 277(5329), 1097–1100. https://doi.org/10.1126/science.277.5329.1097
Rosenthal,, A., Goeddel,, D. V., Nguyen,, T., Lewis,, M., Shih,, A., Laramee,, G. R., … J. W., (1990). Primary structure and biological activity of a novel human neurotrophic factor. Neuron, 4(5), 767–773.
Roux,, P. P., & Barker,, P. A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology, 67(3), 203–233. https://doi.org/10.1016/S0301-0082(02)00016-3
Sahoo,, P. K., Smith,, D. S., Perrone‐Bizzozero,, N., & Twiss,, J. L. (2018). Axonal mRNA transport and translation at a glance. Journal of Cell Science, 131(8), jcs196808. https://doi.org/10.1242/jcs.196808
Salehi,, A., Delcroix,, J.‐D., Belichenko,, P. V., Zhan,, K., Wu,, C., Valletta,, J. S., … Mobley,, W. C. (2006). Increased app expression in a mouse model of Down`s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron, 51(1), 29–42. https://doi.org/10.1016/j.neuron.2006.05.022
Scott‐Solomon,, E., & Kuruvilla,, R. (2018). Mechanisms of neurotrophin trafficking via Trk receptors. Molecular and Cellular Neurosciences, 91, 25–33. https://doi.org/10.1016/j.mcn.2018.03.013
Senger,, D. L., & Campenot,, R. B. (1997). Rapid retrograde tyrosine phosphorylation of trkA and other proteins in rat sympathetic neurons in compartmented cultures. The Journal of Cell Biology, 138(2), 411–421. https://doi.org/10.1083/jcb.138.2.411
Sharma,, N., Deppmann,, C. D., Harrington,, A. W., St Hillaire,, C., Chen,, Z.‐Y., Lee,, F. S., & Ginty,, D. D. (2010). Long‐distance control of synapse assembly by target‐derived NGF. Neuron, 67(3), 422–434. https://doi.org/10.1016/j.neuron.2010.07.018
Simon,, D. J., Pitts,, J., Hertz,, N. T., Yang,, J., Yamagishi,, Y., Olsen,, O., … Tessier‐Lavigne,, M. (2016). Axon degeneration gated by retrograde activation of somatic pro‐apoptotic signaling. Cell, 164(5), 1031–1045. https://doi.org/10.1016/j.cell.2016.01.032
Simon,, D. J., & Watkins,, T. A. (2018). Therapeutic opportunities and pitfalls in the treatment of axon degeneration. Current Opinion in Neurology, 31(6), 693–701. https://doi.org/10.1097/WCO.0000000000000621
Singh,, K. K., Park,, K. J., Hong,, E. J., Kramer,, B. M., Greenberg,, M. E., Kaplan,, D. R., & Miller,, F. D. (2008). Developmental axon pruning mediated by BDNF‐p75NTR‐dependent axon degeneration. Nature Neuroscience, 11(6), 649–658. https://doi.org/10.1038/nn.2114
Siu,, M., Sengupta Ghosh,, A., & Lewcock,, J. W. (2018). Dual leucine zipper kinase inhibitors for the treatment of neurodegeneration. Journal of Medicinal Chemistry, 61(18), 8078–8087. https://doi.org/10.1021/acs.jmedchem.8b00370
Skeldal,, S., Matusica,, D., Nykjaer,, A., & Coulson,, E. J. (2011). Proteolytic processing of the p75 neurotrophin receptor: A prerequisite for signalling? Neuronal life, growth and death signalling are crucially regulated by intra‐membrane proteolysis and trafficking of p75(NTR). BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 33(8), 614–625. https://doi.org/10.1002/bies.201100036
Sleigh,, J. N., Rossor,, A. M., Fellows,, A. D., Tosolini,, A. P., & Schiavo,, G. (2019). Axonal transport and neurological disease. Nature Reviews. Neurology, 15(12), 691–703. https://doi.org/10.1038/s41582-019-0257-2
Snider,, W. D. (1994). Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell, 77(5), 627–638. https://doi.org/10.1016/0092-8674(94)90048-5
Song,, H.‐L., Shim,, S., Kim,, D.‐H., Won,, S.‐H., Joo,, S., Kim,, S., … Yoon,, S.‐Y. (2014). β‐Amyloid is transmitted via neuronal connections along axonal membranes. Annals of Neurology, 75(1), 88–97. https://doi.org/10.1002/ana.24029
Suo,, D., Park,, J., Harrington,, A. W., Zweifel,, L. S., Mihalas,, S., & Deppmann,, C. D. (2014). Coronin‐1 is a neurotrophin endosomal effector that is required for developmental competition for survival. Nature Neuroscience, 17(1), 36–45. https://doi.org/10.1038/nn.3593
Takamura,, A., Sato,, Y., Watabe,, D., Okamoto,, Y., Nakata,, T., Kawarabayashi,, T., … E., (2012). Sortilin is required for toxic action of Aβ oligomers (AβOs): Extracellular AβOs trigger apoptosis, and intraneuronal AβOs impair degradation pathways. Life Sciences, 91(23–24), 1177–1186. https://doi.org/10.1016/j.lfs.2012.04.038
Tas,, R. P., Chazeau,, A., Cloin,, B. M. C., Lambers,, M. L. A., Hoogenraad,, C. C., & Kapitein,, L. C. (2017). Differentiation between oppositely oriented microtubules controls polarized neuronal transport. Neuron, 96(6), 1264–1271.e5. https://doi.org/10.1016/j.neuron.2017.11.018
Teuling,, E., van Dis,, V., Wulf,, P. S., Haasdijk,, E. D., Akhmanova,, A., Hoogenraad,, C. C., & Jaarsma,, D. (2008). A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)‐like features in motor neurons and improves lifespan in SOD1‐ALS mice. Human Molecular Genetics, 17(18), 2849–2862. https://doi.org/10.1093/hmg/ddn182
Tomac,, A., Widenfalk,, J., Lin,, L. F., Kohno,, T., Ebendal,, T., Hoffer,, B. J., & Olson,, L. (1995). Retrograde axonal transport of glial cell line‐derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proceedings of the National Academy of Sciences of the United States of America, 92(18), 8274–8278. https://doi.org/10.1073/pnas.92.18.8274
Traverse,, S., Gomez,, N., Paterson,, H., Marshall,, C., & Cohen,, P. (1992). Sustained activation of the mitogen‐activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. The Biochemical Journal, 288(Pt 2), 351–355. https://doi.org/10.1042/bj2880351
Turing,, A. M. (1990). The chemical basis of morphogenesis. Bulletin of Mathematical Biology, 52(1–2), 153–197 discussion 119.
Urra,, S., Escudero,, C. A., Ramos,, P., Lisbona,, F., Allende,, E., Covarrubias,, P., … F. C., (2007). TrkA receptor activation by nerve growth factor induces shedding of the p75 neurotrophin receptor followed by endosomal gamma‐secretase‐mediated release of the p75 intracellular domain. The Journal of Biological Chemistry, 282(10), 7606–7615. https://doi.org/10.1074/jbc.M610458200
Vicario,, A., Kisiswa,, L., Tann,, J. Y., Kelly,, C. E., & Ibáñez,, C. F. (2015). Neuron‐type‐specific signaling by the p75NTR death receptor is regulated by differential proteolytic cleavage. Journal of Cell Science, 128(8), 1507–1517. https://doi.org/10.1242/jcs.161745
Vilar,, M. (2017). Structural characterization of the p75 neurotrophin receptor: A stranger in the TNFR superfamily. Vitamins and Hormones, 104, 57–87. https://doi.org/10.1016/bs.vh.2016.10.007
Villarin,, J. M., McCurdy,, E. P., Martínez,, J. C., & Hengst,, U. (2016). Local synthesis of dynein cofactors matches retrograde transport to acutely changing demands. Nature Communications, 7, 13865. https://doi.org/10.1038/ncomms13865
Villarroel‐Campos,, D., Schiavo,, G., & Lazo,, O. M. (2018). The many disguises of the signalling endosome. FEBS Letters, 592(21), 3615–3632. https://doi.org/10.1002/1873-3468.13235
Waetzig,, V., & Herdegen,, T. (2005). Context‐specific inhibition of JNKs: Overcoming the dilemma of protection and damage. Trends in Pharmacological Sciences, 26(9), 455–461. https://doi.org/10.1016/j.tips.2005.07.006
Wang,, K. C., Koprivica,, V., Kim,, J. A., Sivasankaran,, R., Guo,, Y., Neve,, R. L., & He,, Z. (2002). Oligodendrocyte‐myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 417(6892), 941–944. https://doi.org/10.1038/nature00867
Wehner,, A. B., Abdesselem,, H., Dickendesher,, T. L., Imai,, F., Yoshida,, Y., Giger,, R. J., & Pierchala,, B. A. (2016). Semaphorin 3A is a retrograde cell death signal in developing sympathetic neurons. Development, 143(9), 1560–1570. https://doi.org/10.1242/dev.134627
Wheeler,, M. A., Heffner,, D. L., Kim,, S., Espy,, S. M., Spano,, A. J., Cleland,, C. L., & Deppmann,, C. D. (2014). TNF‐α/TNFR1 signaling is required for the development and function of primary nociceptors. Neuron, 82(3), 587–602. https://doi.org/10.1016/j.neuron.2014.04.009
Whitfield,, J., Neame,, S. J., Paquet,, L., Bernard,, O., & Ham,, J. (2001). Dominant‐negative c‐Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron, 29(3), 629–643. https://doi.org/10.1016/s0896-6273(01)00239-2
Wiseman,, F. K., Al‐Janabi,, T., Hardy,, J., Karmiloff‐Smith,, A., Nizetic,, D., Tybulewicz,, V. L. J., … Strydom,, A. (2015). A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nature Reviews. Neuroscience, 16(9), 564–574. https://doi.org/10.1038/nrn3983
Wu,, C., Cui,, B., He,, L., Chen,, L., & Mobley,, W. C. (2009). The coming of age of axonal neurotrophin signaling endosomes. Journal of Proteomics, 72(1), 46–55. https://doi.org/10.1016/j.jprot.2008.10.007
Wyttenbach,, A., & Tolkovsky,, A. M. (2006). The BH3‐only protein Puma is both necessary and sufficient for neuronal apoptosis induced by DNA damage in sympathetic neurons. Journal of Neurochemistry, 96(5), 1213–1226. https://doi.org/10.1111/j.1471-4159.2005.03676.x
Yamashita,, N., & Kuruvilla,, R. (2016). Neurotrophin signaling endosomes: Biogenesis, regulation, and functions. Current Opinion in Neurobiology, 39, 139–145. https://doi.org/10.1016/j.conb.2016.06.004
Yamashita,, N., Usui,, H., Nakamura,, F., Chen,, S., Sasaki,, Y., Hida,, T., … Y., (2014). Plexin‐A4‐dependent retrograde semaphorin 3A signalling regulates the dendritic localization of GluA2‐containing AMPA receptors. Nature Communications, 5, 3424. https://doi.org/10.1038/ncomms4424
Yamashita,, N., Yamane,, M., Suto,, F., & Goshima,, Y. (2016). TrkA mediates retrograde semaphorin 3A signaling through plexin A4 to regulate dendritic branching. Journal of Cell Science, 129(9), 1802–1814. https://doi.org/10.1242/jcs.184580
Yamashita,, T., Higuchi,, H., & Tohyama,, M. (2002). The p75 receptor transduces the signal from myelin‐associated glycoprotein to rho. The Journal of Cell Biology, 157(4), 565–570. https://doi.org/10.1083/jcb.200202010
Yau,, K. W., Schätzle,, P., Tortosa,, E., Pagès,, S., Holtmaat,, A., Kapitein,, L. C., & Hoogenraad,, C. C. (2016). Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus‐end‐out microtubule orientation. The Journal of Neuroscience, 36(4), 1071–1085. https://doi.org/10.1523/JNEUROSCI.2430-15.2016
Ye,, H., Kuruvilla,, R., Zweifel,, L. S., & Ginty,, D. D. (2003). Evidence in support of signaling endosome‐based retrograde survival of sympathetic neurons. Neuron, 39(1), 57–68. https://doi.org/10.1016/s0896-6273(03)00266-6
Ye,, M., Lehigh,, K. M., & Ginty,, D. D. (2018). Multivesicular bodies mediate long‐range retrograde NGF‐TrkA signaling. eLife, 7, e33012. https://doi.org/10.7554/eLife.33012
Yu,, W., Guo,, W., & Feng,, L. (2004). Segregation of Nogo66 receptors into lipid rafts in rat brain and inhibition of Nogo66 signaling by cholesterol depletion. FEBS Letters, 577(1–2), 87–92. https://doi.org/10.1016/j.febslet.2004.09.068
Yue,, Y., Su,, J., Cerretti,, D. P., Fox,, G. M., Jing,, S., & Zhou,, R. (1999). Selective inhibition of spinal cord neurite outgrowth and cell survival by the Eph family ligand ephrin‐A5. The Journal of Neuroscience, 19(22), 10026–10035.
Zahavi,, E. E., Maimon,, R., & Perlson,, E. (2017). Spatial‐specific functions in retrograde neuronal signalling. Traffic, 18(7), 415–424. https://doi.org/10.1111/tra.12487
Zeke,, A., Misheva,, M., Reményi,, A., & Bogoyevitch,, M. A. (2016). JNK signaling: Regulation and functions based on complex protein‐protein partnerships. Microbiology and Molecular Biology Reviews, 80(3), 793–835. https://doi.org/10.1128/MMBR.00043-14
Zhang,, Y., Moheban,, D. B., Conway,, B. R., Bhattacharyya,, A., & Segal,, R. A. (2000). Cell surface Trk receptors mediate NGF‐induced survival while internalized receptors regulate NGF‐induced differentiation. The Journal of Neuroscience, 20(15), 5671–5678.
Zhong,, W., Feder,, J. N., Jiang,, M. M., Jan,, L. Y., & Jan,, Y. N. (1996). Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron, 17(1), 43–53. https://doi.org/10.1016/s0896-6273(00)80279-2
Zhou,, B., Cai,, Q., Xie,, Y., & Sheng,, Z.‐H. (2012). Snapin recruits dynein to BDNF‐TrkB signaling endosomes for retrograde axonal transport and is essential for dendrite growth of cortical neurons. Cell Reports, 2(1), 42–51. https://doi.org/10.1016/j.celrep.2012.06.010
Zimmer,, G., Garcez,, P., Rudolph,, J., Niehage,, R., Weth,, F., Lent,, R., & Bolz,, J. (2008). Ephrin‐A5 acts as a repulsive cue for migrating cortical interneurons. The European Journal of Neuroscience, 28(1), 62–73. https://doi.org/10.1111/j.1460-9568.2008.06320.x
Zweifel,, L. S., Kuruvilla,, R., & Ginty,, D. D. (2005). Functions and mechanisms of retrograde neurotroph in signalling. Nature Reviews. Neuroscience, 6(8), 615–625. https://doi.org/10.1038/nrn1727