Alexander,, J. M., Guan,, J., Li,, B., Maliskova,, L., Song,, M., Shen,, Y., … Weiner,, O. D. (2019). Live‐cell imaging reveals enhancer‐dependent Sox2 transcription in the absence of enhancer proximity. eLife, 8, e41769. https://doi.org/10.7554/eLife.41769
Alipour,, E., & Marko,, J. F. (2012). Self‐organization of domain structures by DNA‐loop‐extruding enzymes. Nucleic Acids Research, 40(22), 11202–11212. https://doi.org/10.1093/nar/gks925
Allahyar,, A., Vermeulen,, C., Bouwman,, B. A. M., Krijger,, P. H. L., Verstegen,, M. J. A. M., Geeven,, G., … de Laat,, W. (2018). Enhancer hubs and loop collisions identified from single‐allele topologies. Nature Genetics, 50(8), 1151–1160. https://doi.org/10.1038/s41588-018-0161-5
Allan,, J., Fraser,, R. M., Owen‐Hughes,, T., & Keszenman‐Pereyra,, D. (2012). Micrococcal nuclease does not substantially bias nucleosome mapping. Journal of Molecular Biology, 417(3), 152–164. https://doi.org/10.1016/j.jmb.2012.01.043
Andrey,, G., Schopflin,, R., Jerkovic,, I., Heinrich,, V., Ibrahim,, D. M., Paliou,, C., … Mundlos,, S. (2017). Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding. Genome Research, 27(2), 223–233. https://doi.org/10.1101/gr.213066.116
Barutcu,, A. R., Fritz,, A. J., Zaidi,, S. K., van Wijnen,, A. J., Lian,, J. B., Stein,, J. L., … Stein,, G. S. (2016). C‐ing the genome: A compendium of chromosome conformation capture methods to study higher‐order chromatin organization. Journal of Cellular Physiology, 231(1), 31–35. https://doi.org/10.1002/jcp.25062
Beagan,, J. A., Duong,, M. T., Titus,, K. R., Zhou,, L., Cao,, Z., Ma,, J., … Phillips‐Cremins,, J. E. (2017). YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Genome Research, 27(7), 1139–1152. https://doi.org/10.1101/gr.215160.116
Beagan,, J. A., & Phillips‐Cremins,, J. E. (2020). On the existence and functionality of topologically associating domains. Nature Genetics, 52(1), 8–16. https://doi.org/10.1038/s41588-019-0561-1
Beagrie,, R. A., Scialdone,, A., Schueler,, M., Kraemer,, D. C. A., Chotalia,, M., Xie,, S. Q., … Pombo,, A. (2017). Complex multi‐enhancer contacts captured by genome architecture mapping. Nature, 543(7646), 519–524. https://doi.org/10.1038/nature21411
Beliveau,, B. J., Joyce,, E. F., Apostolopoulos,, N., Yilmaz,, F., Fonseka,, C. Y., McCole,, R. B., … Wu,, C. (2012). Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proceedings of the National Academy of Sciences, 109(52), 21301–21306. https://doi.org/10.1073/pnas.1213818110
Bell,, A. C., West,, A. G., & Felsenfeld,, G. (1999). The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell, 98(3), 387–396. https://doi.org/10.1016/S0092-8674(00)81967-4
Bell,, A. C., West,, A. G., & Felsenfeld,, G. (2001). Insulators and boundaries: Versatile regulatory elements in the eukaryotic genome. Science (New York, N.Y.), 291(5503), 447–450. https://doi.org/10.1126/science.291.5503.447
Bell,, J. C., Jukam,, D., Teran,, N. A., Risca,, V. I., Smith,, O. K., Johnson,, W. L., … Straight,, A. F. (2018). Chromatin‐associated RNA sequencing (ChAR‐seq) maps genome‐wide RNA‐to‐DNA contacts. eLife, 7, e27024. https://doi.org/10.7554/eLife.27024
Belmont,, A. S. (2014). Large‐scale chromatin organization: The good, the surprising, and the still perplexing. Current Opinion in Cell Biology, 26, 69–78. https://doi.org/10.1016/j.ceb.2013.10.002
Bintu,, B., Mateo,, L. J., Su,, J.‐H., Sinnott‐Armstrong,, N. A., Parker,, M., Kinrot,, S., … Zhuang,, X. (2018). Super‐resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science, 362(6413), eaau1783. https://doi.org/10.1126/science.aau1783
Boettiger,, A., & Murphy,, S. (2020). Advances in chromatin imaging at Kilobase‐scale resolution. Trends in Genetics, 36(4), 273–287. https://doi.org/10.1016/j.tig.2019.12.010
Bonev,, B., Mendelson Cohen,, N., Szabo,, Q., Fritsch,, L., Papadopoulos,, G. L., Lubling,, Y., … Cavalli,, G. (2017). Multiscale 3D genome rewiring during mouse neural development. Cell, 171(3), 557–572. https://doi.org/10.1016/j.cell.2017.09.043
Brant,, L., Georgomanolis,, T., Nikolic,, M., Brackley,, C. A., Kolovos,, P., van Ijcken,, W., … Papantonis,, A. (2016). Exploiting native forces to capture chromosome conformation in mammalian cell nuclei. Molecular Systems Biology, 12(12), 891. https://doi.org/10.15252/msb.20167311
Cai,, S., Lee,, C. C., & Kohwi‐Shigematsu,, T. (2006). SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nature Genetics, 38(11), 1278–1288. https://doi.org/10.1038/ng1913
Cai,, Z., Cao,, C., Ji,, L., Ye,, R., Wang,, D., Xia,, C., … Xue,, Y. (2020). RIC‐seq for global in situ profiling of RNA–RNA spatial interactions. Nature, 582, 432–437. https://doi.org/10.1038/s41586-020-2249-1
Carroll,, J. S., Liu,, X. S., Brodsky,, A. S., Li,, W., Meyer,, C. A., Szary,, A. J., … Brown,, M. (2005). Chromosome‐wide mapping of estrogen receptor binding reveals long‐range regulation requiring the Forkhead protein FoxA1. Cell, 122(1), 33–43. https://doi.org/10.1016/j.cell.2005.05.008
Cattoni,, D. I., Valeri,, A., Le Gall,, A., & Nollmann,, M. (2015). A matter of scale: How emerging technologies are redefining our view of chromosome architecture. Trends in Genetics, 31(8), 454–464. https://doi.org/10.1016/j.tig.2015.05.011
Chang,, L.‐H., Ghosh,, S., & Noordermeer,, D. (2020). TADs and their borders: Free movement or building a wall? Journal of Molecular Biology, 432(3), 643–652. https://doi.org/10.1016/j.jmb.2019.11.025
Chaya,, D., & Zaret,, K. S. (2003). Sequential chromatin immunoprecipitation from animal tissues. In Chromatin and chromatin remodeling enzymes, part B (Vol. 376, pp. 361–372). Cambridge, MA: Academic Press. https://doi.org/10.1016/S0076-6879(03)76024-8
Chen,, H., Levo,, M., Barinov,, L., Fujioka,, M., Jaynes,, J. B., & Gregor,, T. (2018). Dynamic interplay between enhancer–promoter topology and gene activity. Nature Genetics, 50(9), 1296–1303. https://doi.org/10.1038/s41588-018-0175-z
Cremer,, T., & Cremer,, M. (2010). Chromosome territories. Cold Spring Harbor Perspectives in Biology, 2(3), a003889–a003889. https://doi.org/10.1101/cshperspect.a003889
Cullen,, K. E., Kladde,, M. P., & Seyfred,, M. A. (1993). Interaction between transcription regulatory regions of prolactin chromatin. Science, 261(5118), 203–206. https://doi.org/10.1126/science.8327891
Darrow,, E. M., Huntley,, M. H., Dudchenko,, O., Stamenova,, E. K., Durand,, N. C., Sun,, Z., … Aiden,, E. L. (2016). Deletion of DXZ4 on the human inactive X chromosome alters higher‐order genome architecture. Proceedings of the National Academy of Sciences, 113(31), E4504–E4512. https://doi.org/10.1073/pnas.1609643113
Davidson,, I. F., Bauer,, B., Goetz,, D., Tang,, W., Wutz,, G., & Peters,, J.‐M. (2019). DNA loop extrusion by human cohesin. Science, 366(6471), 1338–1345. https://doi.org/10.1126/science.aaz3418
Davidson,, I. F., Goetz,, D., Zaczek,, M. P., Molodtsov,, M. I., Huis In`t Veld,, P. J., Weissmann,, F., … Peters,, J.‐M. (2016). Rapid movement and transcriptional re‐localization of human cohesin on DNA. The EMBO Journal, 35(24), 2671–2685. https://doi.org/10.15252/embj.201695402
Davies,, J. O. J., Telenius,, J. M., McGowan,, S. J., Roberts,, N. A., Taylor,, S., Higgs,, D. R., & Hughes,, J. R. (2016). Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nature Methods, 13(1), 74–80. https://doi.org/10.1038/nmeth.3664
de Wit,, E. (2020). TADs as the caller calls them. Journal of Molecular Biology, 432(3), 638–642. https://doi.org/10.1016/j.jmb.2019.09.026
de Wit,, E., Vos,, E. S. M., Holwerda,, S. J. B., Valdes‐Quezada,, C., Verstegen,, M. J. A. M., Teunissen,, H., … de Laat,, W. (2015). CTCF binding polarity determines chromatin looping. Molecular Cell, 60(4), 676–684. https://doi.org/10.1016/j.molcel.2015.09.023
Dekker,, J., Rippe,, K., Dekker,, M., & Kleckner,, N. (2002). Capturing chromosome conformation. Science, 295(5558), 1306–1311. https://science.sciencemag.org/content/295/5558/1306
Di Giammartino,, D. C., Kloetgen,, A., Polyzos,, A., Liu,, Y., Kim,, D., Murphy,, D., … Apostolou,, E. (2019). KLF4 is involved in the organization and regulation of pluripotency‐associated three‐dimensional enhancer networks. Nature Cell Biology, 21(10), 1179–1190. https://doi.org/10.1038/s41556-019-0390-6
Dixon,, J. R., Selvaraj,, S., Yue,, F., Kim,, A., Li,, Y., Shen,, Y., … Ren,, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485(7398), 376–380. https://doi.org/10.1038/nature11082
Dostie,, J., Richmond,, T. A., Arnaout,, R. A., Selzer,, R. R., Lee,, W. L., Honan,, T. A., … Dekker,, J. (2006). Chromosome conformation capture carbon copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Research, 16(10), 1299–1309. https://doi.org/10.1101/gr.5571506
Downes,, D. J., Gosden,, M. E., Telenius,, J., Carpenter,, S. J., Nussbaum,, L., De Ornellas,, S., … Hughes,, J. R. (2020). Targeted high‐resolution chromosome conformation capture at genome‐wide scale. BioRxiv. https://doi.org/10.1101/2020.03.02.953745
Erdel,, F., & Rippe,, K. (2018). Formation of chromatin subcompartments by phase separation. Biophysical Journal, 114(10), 2262–2270. https://doi.org/10.1016/j.bpj.2018.03.011
Finn,, E. H., & Misteli,, T. (2019). Molecular basis and biological function of variability in spatial genome organization. Science, 365(6457), eaaw9498. https://doi.org/10.1126/science.aaw9498
Finn,, E. H., Pegoraro,, G., Brandão,, H. B., Valton,, A.‐L., Oomen,, M. E., Dekker,, J., … Misteli,, T. (2019). Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell, 176(6), 1502–1515. https://doi.org/10.1016/j.cell.2019.01.020
Fiorillo,, L., Musella,, F., Kempfer,, R., Chiariello,, A. M., Bianco,, S., Kukalev,, A., … Nicodemi,, M. (2020). Comparison of the hi‐C, GAM and SPRITE methods by use of polymer models of chromatin. BioRxiv. https://doi.org/10.1101/2020.04.24.059915
Flyamer,, I. M., Gassler,, J., Imakaev,, M., Brandão,, H. B., Ulianov,, S. V., Abdennur,, N., … Tachibana‐Konwalski,, K. (2017). Single‐nucleus hi‐C reveals unique chromatin reorganization at oocyte‐to‐zygote transition. Nature, 544(7648), 110–114. https://doi.org/10.1038/nature21711
Franke,, M., Ibrahim,, D. M., Andrey,, G., Schwarzer,, W., Heinrich,, V., Schöpflin,, R., … Mundlos,, S. (2016). Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature, 538(7624), 265–269. https://doi.org/10.1038/nature19800
Fudenberg,, G., Abdennur,, N., Imakaev,, M., Goloborodko,, A., & Mirny,, L. A. (2017). Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harbor Symposia on Quantitative Biology, 82, 45–55. https://doi.org/10.1101/sqb.2017.82.034710
Fudenberg,, G., Imakaev,, M., Lu,, C., Goloborodko,, A., Abdennur,, N., & Mirny,, L. A. A. (2016). Formation of chromosomal domains by loop extrusion. Cell Reports, 15(9), 2038–2049. https://doi.org/10.1016/j.celrep.2016.04.085
Fullwood,, M. J., Liu,, M. H., Pan,, Y. F., Liu,, J., Xu,, H., Mohamed,, Y. B., … Ruan,, Y. (2009). An oestrogen‐receptor‐α‐bound human chromatin interactome. Nature, 462(7269), 58–64. https://doi.org/10.1038/nature08497
Fullwood,, M. J., & Ruan,, Y. (2009). ChIP‐based methods for the identification of long‐range chromatin interactions. Journal of Cellular Biochemistry, 107(1), 30–39. https://doi.org/10.1002/jcb.22116
Ganji,, M., Shaltiel,, I. A., Bisht,, S., Kim,, E., Kalichava,, A., Haering,, C. H., & Dekker,, C. (2018). Real‐time imaging of DNA loop extrusion by condensin. Science, 360(6384), 102–105. https://doi.org/10.1126/science.aar7831
Gasperini,, M., Hill,, A. J., McFaline‐Figueroa,, J. L., Martin,, B., Kim,, S., Zhang,, M. D., … Shendure,, J. (2019). A genome‐wide framework for mapping gene regulation via cellular genetic screens. Cell, 176(1), 377–390.e19. https://doi.org/10.1016/j.cell.2018.11.029
Gassler,, J., Brandão,, H. B., Imakaev,, M., Flyamer,, I. M., Ladstätter,, S., Bickmore,, W. A., … Tachibana,, K. (2017). A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture. The EMBO Journal, 36(24), 3600–3618. https://doi.org/10.15252/embj.201798083
Golfier,, S., Quail,, T., Kimura,, H., & Brugués,, J. (2020). Cohesin and condensin extrude DNA loops in a cell‐cycle dependent manner. eLife, 9, e53885. https://doi.org/10.7554/eLife.53885
Gothard,, L. Q., Hibbard,, J. C., & Seyfred,, M. A. (1996). Estrogen‐mediated induction of rat prolactin gene transcription requires the formation of a chromatin loop between the distal enhancer and proximal promoter regions. Molecular Endocrinology, 10(2), 185–195. https://doi.org/10.1210/mend.10.2.8825558
Gozalo,, A., Duke,, A., Lan,, Y., Pascual‐Garcia,, P., Talamas,, J. A., Nguyen,, S. C., … Capelson,, M. (2020). Core components of the nuclear pore bind distinct states of chromatin and contribute to polycomb repression. Molecular Cell, 77(1), 67–81.e7. https://doi.org/10.1016/j.molcel.2019.10.017
Greeley,, D., Crapo,, J. D., & Vollmer,, R. T. (1978). Estimation of the mean caliper diameter of cell nuclei. Journal of Microscopy, 114(1), 31–39. https://doi.org/10.1111/j.1365-2818.1978.tb00114.x
Guo,, Y., Xu,, Q., Canzio,, D., Shou,, J., Li,, J., Gorkin,, D. U., … Wu,, Q. (2015). CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell, 162(4), 900–910. https://doi.org/10.1016/j.cell.2015.07.038
Haarhuis,, J. H. I., van der Weide,, R. H., Blomen,, V. A., Yáñez‐Cuna,, J. O., Amendola,, M., van Ruiten,, M. S., … Rowland,, B. D. (2017). The Cohesin release factor WAPL restricts chromatin loop extension. Cell, 169(4), 693–707.e14. https://doi.org/10.1016/j.cell.2017.04.013
Handoko,, L., Xu,, H., Li,, G., Ngan,, C. Y., Chew,, E., Schnapp,, M., … Wei,, C.‐L. (2011). CTCF‐mediated functional chromatin interactome in pluripotent cells. Nature Genetics, 43(7), 630–638. https://doi.org/10.1038/ng.857
Hansen,, A. S. (2020). CTCF as a boundary factor for cohesin‐mediated loop extrusion: Evidence for a multi‐step mechanism. Nucleus, 11(1), 132–148. https://doi.org/10.1080/19491034.2020.1782024
Hansen,, A. S., Hsieh,, T.‐H. S., Cattoglio,, C., Pustova,, I., Saldaña‐Meyer,, R., Reinberg,, D., … Tjian,, R. (2019). Distinct classes of chromatin loops revealed by deletion of an RNA‐binding region in CTCF. Molecular Cell, 76(3), 395–411. https://doi.org/10.1016/j.molcel.2019.07.039
Hansen,, A. S., Pustova,, I., Cattoglio,, C., Tjian,, R., & Darzacq,, X. (2017). CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife, 6, e25776. https://doi.org/10.7554/eLife.25776
Heather,, J. M., & Chain,, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics, 107(1), 1–8. https://doi.org/10.1016/j.ygeno.2015.11.003
Hildebrand,, E. M., & Dekker,, J. (2020). Mechanisms and functions of chromosome compartmentalization. Trends in Biochemical Sciences, 45(5), 385–396. https://doi.org/10.1016/j.tibs.2020.01.002
Hiratani,, I., Ryba,, T., Itoh,, M., Yokochi,, T., Schwaiger,, M., Chang,, C.‐W., … Gilbert,, D. M. (2008). Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biology, 6(10), e245. https://doi.org/10.1371/journal.pbio.0060245
Horike,, S., Cai,, S., Miyano,, M., Cheng,, J.‐F., & Kohwi‐Shigematsu,, T. (2005). Loss of silent‐chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nature Genetics, 37(1), 31–40. https://doi.org/10.1038/ng1491
Hsieh,, T.‐H. S., Cattoglio,, C., Slobodyanyuk,, E., Hansen,, A. S., Rando,, O. J., Tjian,, R., & Darzacq,, X. (2020). Resolving the 3D landscape of transcription‐linked mammalian chromatin folding. Molecular Cell, 78, 1–15. https://doi.org/10.1016/j.molcel.2020.03.002
Hsieh,, T.‐H. S., Fudenberg,, G., Goloborodko,, A., & Rando,, O. J. (2016). Micro‐C XL: Assaying chromosome conformation from the nucleosome to the entire genome. Nature Methods, 13(12), 1009–1011. https://doi.org/10.1038/nmeth.4025
Hsieh,, T.‐H. S., Weiner,, A., Lajoie,, B., Dekker,, J., Friedman,, N., & Rando,, O. J. J. (2015). Mapping nucleosome resolution chromosome folding in yeast by micro‐C. Cell, 162(1), 108–119. https://doi.org/10.1016/j.cell.2015.05.048
Hughes,, J. R., Roberts,, N., McGowan,, S., Hay,, D., Giannoulatou,, E., Lynch,, M., … Higgs,, D. R. (2014). Analysis of hundreds of cis‐regulatory landscapes at high resolution in a single, high‐throughput experiment. Nature Genetics, 46(2), 205–212. https://doi.org/10.1038/ng.2871
Jäger,, R., Migliorini,, G., Henrion,, M., Kandaswamy,, R., Speedy,, H. E., Heindl,, A., … Houlston,, R. S. (2015). Capture hi‐C identifies the chromatin interactome of colorectal cancer risk loci. Nature Communications, 6(1), 6178. https://doi.org/10.1038/ncomms7178
Kanke,, M., Tahara,, E., Huis in`t Veld,, P. J., & Nishiyama,, T. (2016). Cohesin acetylation and Wapl‐Pds5 oppositely regulate translocation of cohesin along DNA. The EMBO Journal, 35(24), 2686–2698. https://doi.org/10.15252/embj.201695756
Kempfer,, R., & Pombo,, A. (2020). Methods for mapping 3D chromosome architecture. Nature Reviews Genetics, 21(4), 207–226. https://doi.org/10.1038/s41576-019-0195-2
Kim,, J. H., Titus,, K. R., Gong,, W., Beagan,, J. A., Cao,, Z., & Phillips‐Cremins,, J. E. (2018). 5C‐ID: Increased resolution chromosome‐conformation‐capture‐carbon‐copy with in situ 3C and double alternating primer design. Methods, 142, 39–46. https://doi.org/10.1016/j.ymeth.2018.05.005
Kim,, Y., Shi,, Z., Zhang,, H., Finkelstein,, I. J., & Yu,, H. (2020). Human cohesin compacts DNA by loop extrusion. Science, 366, 1345–1349. https://doi.org/10.1126/science.aaz4475
Krietenstein,, N., Abraham,, S., Venev,, S. V., Abdennur,, N., Gibcus,, J., Hsieh,, T.‐H. S., … Rando,, O. J. (2020). Ultrastructural details of mammalian chromosome architecture. Molecular Cell, 78, 1–12. https://doi.org/10.1016/j.molcel.2020.03.003
Lähnemann,, D., Köster,, J., Szczurek,, E., McCarthy,, D. J., Hicks,, S. C., Robinson,, M. D., … Schönhuth,, A. (2020). Eleven grand challenges in single‐cell data science. Genome Biology, 21(1), 31. https://doi.org/10.1186/s13059-020-1926-6
Lajoie,, B. R., Dekker,, J., & Kaplan,, N. (2015). The Hitchhiker`s guide to Hi‐C analysis: Practical guidelines. Methods, 72, 65–75. https://doi.org/10.1016/j.ymeth.2014.10.031
Lakadamyali,, M., & Cosma,, M. P. (2020). Visualizing the genome in high resolution challenges our textbook understanding. Nature Methods, 17(4), 371–379. https://doi.org/10.1038/s41592-020-0758-3
Lambert,, S. A., Jolma,, A., Campitelli,, L. F., Das,, P. K., Yin,, Y., Albu,, M., … Weirauch,, M. T. (2018). The human transcription factors. Cell, 172(4), 650–665. https://doi.org/10.1016/j.cell.2018.01.029
Li,, X., Zhou,, B., Chen,, L., Gou,, L.‐T., Li,, H., & Fu,, X.‐D. (2017). GRID‐seq reveals the global RNA–chromatin interactome. Nature Biotechnology, 35(10), 940–950. https://doi.org/10.1038/nbt.3968
Lieberman‐Aiden,, E., van Berkum,, N. L., Williams,, L., Imakaev,, M., Ragoczy,, T., Telling,, A., … Dekker,, J. (2009). Comprehensive mapping of long‐range interactions reveals folding principles of the human genome. Science, 326(5950), 289–293. https://doi.org/10.1126/science.1181369
Lis,, J. T. (2019). A 50 year history of technologies that drove discovery in eukaryotic transcription regulation. Nature Structural %26 Molecular Biology, 26(9), 777–782. https://doi.org/10.1038/s41594-019-0288-9
Luger,, K., Mäder,, A. W., Richmond,, R. K., Sargent,, D. F., & Richmond,, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389(6648), 251–260. https://doi.org/10.1038/38444
Ma,, W., Ay,, F., Lee,, C., Gulsoy,, G., Deng,, X., Cook,, S., … Duan,, Z. (2015). Fine‐scale chromatin interaction maps reveal the cis‐regulatory landscape of human lincRNA genes. Nature Methods, 12(1), 71–78. https://doi.org/10.1038/nmeth.3205
Ma,, W., Ay,, F., Lee,, C., Gulsoy,, G., Deng,, X., Cook,, S., … Duan,, Z. (2018). Using DNase hi‐C techniques to map global and local three‐dimensional genome architecture at high resolution. Methods (San Diego, CA), 142, 59–73. https://doi.org/10.1016/j.ymeth.2018.01.014
Marbouty,, M., Le Gall,, A., Cattoni,, D. I., Cournac,, A., Koh,, A., Fiche,, J.‐B., … Nollmann,, M. (2015). Condensin‐ and replication‐mediated bacterial chromosome folding and origin condensation revealed by hi‐C and super‐resolution imaging. Molecular Cell, 59(4), 588–602. https://doi.org/10.1016/j.molcel.2015.07.020
Mateo,, L. J., Murphy,, S. E., Hafner,, A., Cinquini,, I. S., Walker,, C. A., & Boettiger,, A. N. (2019). Visualizing DNA folding and RNA in embryos at single‐cell resolution. Nature, 568(7750), 49–54. https://doi.org/10.1038/s41586-019-1035-4
Mifsud,, B., Tavares‐Cadete,, F., Young,, A. N., Sugar,, R., Schoenfelder,, S., Ferreira,, L., … Osborne,, C. S. (2015). Mapping long‐range promoter contacts in human cells with high‐resolution capture hi‐C. Nature Genetics, 47(6), 598–606. https://doi.org/10.1038/ng.3286
Mumbach,, M. R., Rubin,, A. J., Flynn,, R. A., Dai,, C., Khavari,, P. A., Greenleaf,, W. J., & Chang,, H. Y. (2016). HiChIP: Efficient and sensitive analysis of protein‐directed genome architecture. Nature Methods, 13(11), 919–922. https://doi.org/10.1038/nmeth.3999
Mumbach,, M. R., Satpathy,, A. T., Boyle,, E. A., Dai,, C., Gowen,, B. G., Cho,, S. W., … Chang,, H. Y. (2017). Enhancer connectome in primary human cells identifies target genes of disease‐associated DNA elements. Nature Genetics, 49(11), 1602–1612. https://doi.org/10.1038/ng.3963
Nagano,, T., Lubling,, Y., Stevens,, T. J., Schoenfelder,, S., Yaffe,, E., Dean,, W., … Fraser,, P. (2013). Single‐cell hi‐C reveals cell‐to‐cell variability in chromosome structure. Nature, 502(7469), 59–64. https://doi.org/10.1038/nature12593
Nagano,, T., Lubling,, Y., Várnai,, C., Dudley,, C., Leung,, W., Baran,, Y., … Tanay,, A. (2017). Cell‐cycle dynamics of chromosomal organization at single‐cell resolution. Nature, 547(7661), 61–67. https://doi.org/10.1038/nature23001
Nagano,, T., Lubling,, Y., Yaffe,, E., Wingett,, S. W., Dean,, W., Tanay,, A., & Fraser,, P. (2015). Single‐cell hi‐C for genome‐wide detection of chromatin interactions that occur simultaneously in a single cell. Nature Protocols, 10(12), 1986–2003. https://doi.org/10.1038/nprot.2015.127
Nagano,, T., Várnai,, C., Schoenfelder,, S., Javierre,, B.‐M., Wingett,, S. W., & Fraser,, P. (2015). Comparison of hi‐C results using in‐solution versus in‐nucleus ligation. Genome Biology, 16(1), 175. https://doi.org/10.1186/s13059-015-0753-7
Nichols,, M. H., & Corces,, V. G. (2015). A CTCF code for 3D genome architecture. Cell, 162(4), 703–705. https://doi.org/10.1016/j.cell.2015.07.053
Nora,, E. P., Goloborodko,, A., Valton,, A.‐L., Gibcus,, J. H., Uebersohn,, A., Abdennur,, N., … Bruneau,, B. G. (2017). Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell, 169(5), 930–944. https://doi.org/10.1016/j.cell.2017.05.004
Nora,, E. P., Lajoie,, B. R., Schulz,, E. G., Giorgetti,, L., Okamoto,, I., Servant,, N., … Heard,, E. (2012). Spatial partitioning of the regulatory landscape of the X‐inactivation centre. Nature, 485(7398), 381–385. https://doi.org/10.1038/nature11049
Nuebler,, J., Fudenberg,, G., Imakaev,, M., Abdennur,, N., & Mirny,, L. A. (2018). Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proceedings of the National Academy of Sciences, 115(29), E6697–E6706. https://doi.org/10.1073/pnas.1717730115
Ohlsson,, R., Renkawitz,, R., & Lobanenkov,, V. (2001). CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends in Genetics, 17(9), 520–527. https://doi.org/10.1016/S0168-9525(01)02366-6
Olivares‐Chauvet,, P., Mukamel,, Z., Lifshitz,, A., Schwartzman,, O., Elkayam,, N. O., Lubling,, Y., … Tanay,, A. (2016). Capturing pairwise and multi‐way chromosomal conformations using chromosomal walks. Nature, 540(7632), 296–300. https://doi.org/10.1038/nature20158
Oudelaar,, A. M., Beagrie,, R. A., Gosden,, M., de Ornellas,, S., Georgiades,, E., Kerry,, J., … Hughes,, J. R. (2020). Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nature Communications, 11(1), 2722. https://doi.org/10.1038/s41467-020-16598-7
Oudelaar,, A. M., Davies,, J. O. J., Hanssen,, L. L. P., Telenius,, J. M., Schwessinger,, R., Liu,, Y., … Hughes,, J. R. (2018). Single‐allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nature Genetics, 50(12), 1744–1751. https://doi.org/10.1038/s41588-018-0253-2
Paliou,, C., Guckelberger,, P., Schöpflin,, R., Heinrich,, V., Esposito,, A., Chiariello,, A. M., … Andrey,, G. (2019). Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proceedings of the National Academy of Sciences, 116(25), 12390–12399. https://doi.org/10.1073/pnas.1900672116
Pękowska,, A., Klaus,, B., Xiang,, W., Severino,, J., Daigle,, N., Klein,, F. A., … Huber,, W. (2018). Gain of CTCF‐anchored chromatin loops marks the exit from naive pluripotency. Cell Systems, 7(5), 482–495. https://doi.org/10.1016/j.cels.2018.09.003
Phillips‐Cremins,, J. E., Sauria,, M. E. G., Sanyal,, A., Gerasimova,, T. I., Lajoie,, B. R., Bell,, J. S. K., … Corces,, V. G. (2013). Architectural protein subclasses shape 3D Organization of Genomes during lineage commitment. Cell, 153(6), 1281–1295. https://doi.org/10.1016/j.cell.2013.04.053
Piovesan,, A., Pelleri,, M. C., Antonaros,, F., Strippoli,, P., Caracausi,, M., & Vitale,, L. (2019). On the length, weight and GC content of the human genome. BMC Research Notes, 12(1), 106. https://doi.org/10.1186/s13104-019-4137-z
Quinodoz,, S. A., Ollikainen,, N., Tabak,, B., Palla,, A., Schmidt,, J. M., Detmar,, E., … Guttman,, M. (2018). Higher‐order inter‐chromosomal hubs shape 3D genome organization in the Nucleus. Cell, 174(3), 744–757.e24. https://doi.org/10.1016/j.cell.2018.05.024
Ramani,, V., Deng,, X., Qiu,, R., Gunderson,, K. L., Steemers,, F. J., Disteche,, C. M., … Shendure,, J. (2017). Massively multiplex single‐cell hi‐C. Nature Methods, 14(3), 263–266. https://doi.org/10.1038/nmeth.4155
Rao,, S. S. P., Huang,, S.‐C. C., Glenn St Hilaire,, B., Engreitz,, J. M., Perez,, E. M., Kieffer‐Kwon,, K.‐R. R., … Aiden,, E. L. (2017). Cohesin loss eliminates all loop domains. Cell, 171(2), 305–320. https://doi.org/10.1016/j.cell.2017.09.026
Rao,, S. S. P., Huntley,, M. H., Durand,, N. C., Stamenova,, E. K., Bochkov,, I. D., Robinson,, J. T., … Aiden,, E. L. (2014). A 3D map of the human genome at Kilobase resolution reveals principles of chromatin looping. Cell, 159(7), 1665–1680. https://doi.org/10.1016/j.cell.2014.11.021
Redolfi,, J., Zhan,, Y., Valdes‐Quezada,, C., Kryzhanovska,, M., Guerreiro,, I., Iesmantavicius,, V., … Giorgetti,, L. (2019). DamC reveals principles of chromatin folding in vivo without crosslinking and ligation. Nature Structural %26 Molecular Biology, 26(6), 471–480. https://doi.org/10.1038/s41594-019-0231-0
Rhind,, N., & Gilbert,, D. M. (2013). DNA replication timing. Cold Spring Harbor Perspectives in Biology, 5(8). https://doi.org/10.1101/cshperspect.a010132
Riggs,, A. D., Holliday,, R., Monk,, M., & Pugh,, J. E. (1990). DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 326(1235), 285–297. https://doi.org/10.1098/rstb.1990.0012
Risca,, V. I., Denny,, S. K., Straight,, A. F., & Greenleaf,, W. J. (2017). Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature, 541(7636), 237–241. https://doi.org/10.1038/nature20781
Roeder,, R. G. (2019). 50+ years of eukaryotic transcription: An expanding universe of factors and mechanisms. Nature Structural %26 Molecular Biology, 26(9), 783–791. https://doi.org/10.1038/s41594-019-0287-x
Rosencrance,, C. D., Ammouri,, H. N., Yu,, Q., Ge,, T., Rendleman,, E. J., Marshall,, S. A., & Eagen,, K. P. (2020). Chromatin Hyperacetylation impacts chromosome folding by forming a nuclear subcompartment. Molecular Cell, 78(1), 112–126. https://doi.org/10.1016/j.molcel.2020.03.018
Rowley,, M. J., & Corces,, V. G. (2018). Organizational principles of 3D genome architecture. Nature Reviews Genetics, 19(12), 789–800. https://doi.org/10.1038/s41576-018-0060-8
Rowley,, M. J., Lyu,, X., Rana,, V., Ando‐Kuri,, M., Karns,, R., Bosco,, G., & Corces,, V. G. (2019). Condensin II counteracts Cohesin and RNA polymerase II in the establishment of 3D chromatin organization. Cell Reports, 26(11), 2890–2903. https://doi.org/10.1016/j.celrep.2019.01.116
Rust,, M. J., Bates,, M., & Zhuang,, X. (2006). Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3(10), 793–796. https://doi.org/10.1038/nmeth929
Sanborn,, A. L., Rao,, S. S. P., Huang,, S.‐C., Durand,, N. C., Huntley,, M. H., Jewett,, A. I., … Aiden,, E. L. (2015). Chromatin extrusion explains key features of loop and domain formation in wild‐type and engineered genomes. Proceedings of the National Academy of Sciences, 112(47), E6456–E6465. https://doi.org/10.1073/pnas.1518552112
Sati,, S., Bonev,, B., Szabo,, Q., Jost,, D., Bensadoun,, P., Serra,, F., … Cavalli,, G. (2020). 4D genome rewiring during oncogene‐induced and replicative senescence. Molecular Cell, 78(3), 522–538. https://doi.org/10.1016/j.molcel.2020.03.007
Sati,, S., & Cavalli,, G. (2017). Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma, 126(1), 33–44. https://doi.org/10.1007/s00412-016-0593-6
Schwartzman,, O., Mukamel,, Z., Oded‐Elkayam,, N., Olivares‐Chauvet,, P., Lubling,, Y., Landan,, G., … Tanay,, A. (2016). UMI‐4C for quantitative and targeted chromosomal contact profiling. Nature Methods, 13(8), 685–691. https://doi.org/10.1038/nmeth.3922
Schwarzer,, W., Abdennur,, N., Goloborodko,, A., Pekowska,, A., Fudenberg,, G., Loe‐Mie,, Y., … Spitz,, F. (2017). Two independent modes of chromatin organization revealed by cohesin removal. Nature, 551(7678), 51–56. https://doi.org/10.1038/nature24281
Seitan,, V. C., Faure,, A. J., Zhan,, Y., McCord,, R. P., Lajoie,, B. R., Ing‐Simmons,, E., … Merkenschlager,, M. (2013). Cohesin‐based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Research, 23(12), 2066–2077. https://doi.org/10.1101/gr.161620.113
Shi,, Z., Gao,, H., Bai,, X., & Yu,, H. (2020). Cryo‐EM structure of the human cohesin‐NIPBL‐DNA complex. Science, 368, 1454–1459. https://doi.org/10.1126/science.abb0981
Simonis,, M., Klous,, P., Splinter,, E., Moshkin,, Y., Willemsen,, R., de Wit,, E., … de Laat,, W. (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on‐chip (4C). Nature Genetics, 38(11), 1348–1354. https://doi.org/10.1038/ng1896
Sofueva,, S., Yaffe,, E., Chan,, W.‐C., Georgopoulou,, D., Vietri Rudan,, M., Mira‐Bontenbal,, H., … Hadjur,, S. (2013). Cohesin‐mediated interactions organize chromosomal domain architecture. The EMBO Journal, 32(24), 3119–3129. https://doi.org/10.1038/emboj.2013.237
Spitz,, F. (2016). Gene regulation at a distance: From remote enhancers to 3D regulatory ensembles. Seminars in Cell %26 Developmental Biology, 57, 57–67. https://doi.org/10.1016/j.semcdb.2016.06.017
Sridhar,, B., Rivas‐Astroza,, M., Nguyen,, T. C., Chen,, W., Yan,, Z., Cao,, X., … Zhong,, S. (2017). Systematic mapping of RNA‐chromatin interactions In vivo. Current Biology, 27(4), 602–609. https://doi.org/10.1016/j.cub.2017.01.011
Stevens,, T. J., Lando,, D., Basu,, S., Atkinson,, L. P., Cao,, Y., Lee,, S. F., … D,, E. (2017). 3D structures of individual mammalian genomes studied by single‐cell hi‐C. Nature, 544(7648), 59–64. https://doi.org/10.1038/nature21429
Stigler,, J., Çamdere,, G. Ö., Koshland,, D. E., & Greene,, E. C. (2016). Single‐molecule imaging reveals a collapsed conformational state for DNA‐bound Cohesin. Cell Reports, 15(5), 988–998. https://doi.org/10.1016/j.celrep.2016.04.003
Sugimoto,, Y., Vigilante,, A., Darbo,, E., Zirra,, A., Militti,, C., D`Ambrogio,, A., … Ule,, J. (2015). hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature, 519(7544), 491–494. https://doi.org/10.1038/nature14280
Symmons,, O., Uslu,, V. V., Tsujimura,, T., Ruf,, S., Nassari,, S., Schwarzer,, W., … Spitz,, F. (2014). Functional and topological characteristics of mammalian regulatory domains. Genome Research, 24(3), 390–400. https://doi.org/10.1101/gr.163519.113
Szabo,, Q., Bantignies,, F., & Cavalli,, G. (2019). Principles of genome folding into topologically associating domains. Science Advances, 5(4), eaaw1668. https://doi.org/10.1126/sciadv.aaw1668
Szerlong,, H. J., & Hansen,, J. C. (2010). Nucleosome distribution and linker DNA: Connecting nuclear function to dynamic chromatin structureThis paper is one of a selection of papers published in a special issue entitled 31st annual international Asilomar chromatin and chromosomes conference. Biochemistry and Cell Biology, 89(1), 24–34. https://doi.org/10.1139/O10-139
Tan,, L., Xing,, D., Chang,, C.‐H., Li,, H., & Xie,, X. S. (2018). Three‐dimensional genome structures of single diploid human cells. Science, 361(6405), 924–928. https://doi.org/10.1126/science.aat5641
Tang,, Z., Luo,, O. J., Li,, X., Zheng,, M., Zhu,, J. J., Szalaj,, P., … Ruan,, Y. (2015). CTCF‐mediated human 3D genome architecture reveals chromatin topology for transcription. Cell, 163(7), 1611–1627. https://doi.org/10.1016/j.cell.2015.11.024
Tedeschi,, A., Wutz,, G., Huet,, S., Jaritz,, M., Wuensche,, A., Schirghuber,, E., … Peters,, J.‐M. (2013). Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature, 501(7468), 564–568. https://doi.org/10.1038/nature12471
Terakawa,, T., Bisht,, S., Eeftens,, J. M., Dekker,, C., Haering,, C. H., & Greene,, E. C. (2017). The condensin complex is a mechanochemical motor that translocates along DNA. Science, 358(6363), 672–676. https://doi.org/10.1126/science.aan6516
Tiwari,, V. K., Cope,, L., McGarvey,, K. M., Ohm,, J. E., & Baylin,, S. B. (2008). A novel 6C assay uncovers Polycomb‐mediated higher order chromatin conformations. Genome Research, 18(7), 1171–1179. https://doi.org/10.1101/gr.073452.107
Tolhuis,, B., Palstra,, R.‐J., Splinter,, E., Grosveld,, F., & de Laat,, W. (2002). Looping and interaction between hypersensitive sites in the active β‐globin locus. Molecular Cell, 10(6), 1453–1465. https://doi.org/10.1016/S1097-2765(02)00781-5
Tran,, N. T., Laub,, M. T., & Le,, T. B. K. (2017). SMC progressively aligns chromosomal arms in Caulobacter crescentus but is antagonized by convergent transcription. Cell Reports, 20(9), 2057–2071. https://doi.org/10.1016/j.celrep.2017.08.026
Ulianov,, S. V., Tachibana‐Konwalski,, K., & Razin,, S. V. (2017). Single‐cell hi‐C bridges microscopy and genome‐wide sequencing approaches to study 3D chromatin organization. BioEssays, 39(10), 1–8. https://doi.org/10.1002/bies.201700104
Vakoc,, C. R., Letting,, D. L., Gheldof,, N., Sawado,, T., Bender,, M. A., Groudine,, M., … Blobel,, G. A. (2005). Proximity among distant regulatory elements at the β‐globin locus requires GATA‐1 and FOG‐1. Molecular Cell, 17(3), 453–462. https://doi.org/10.1016/j.molcel.2004.12.028
van de Werken,, H. J. G., Landan,, G., Holwerda,, S. J. B., Hoichman,, M., Klous,, P., Chachik,, R., … de Laat,, W. (2012). Robust 4C‐seq data analysis to screen for regulatory DNA interactions. Nature Methods, 9(10), 969–972. https://doi.org/10.1038/nmeth.2173
Vietri Rudan,, M., Barrington,, C., Henderson,, S., Ernst,, C., Odom,, D. T., Tanay,, A., & Hadjur,, S. (2015). Comparative hi‐C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Reports, 10(8), 1297–1309. https://doi.org/10.1016/j.celrep.2015.02.004
Viny,, A. D., Ott,, C. J., Spitzer,, B., Rivas,, M., Meydan,, C., Papalexi,, E., … Levine,, R. L. (2015). Dose‐dependent role of the cohesin complex in normal and malignant hematopoiesis. Journal of Experimental Medicine, 212(11), 1819–1832. https://doi.org/10.1084/jem.20151317
Voong,, L. N., Xi,, L., Wang,, J.‐P., & Wang,, X. (2017). Genome‐wide mapping of the nucleosome landscape by Micrococcal nuclease and chemical mapping. Trends in Genetics, 33(8), 495–507. https://doi.org/10.1016/j.tig.2017.05.007
Wang,, S., Su,, J.‐H., Beliveau,, B. J., Bintu,, B., Moffitt,, J. R., Wu,, C., & Zhuang,, X. (2016). Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353(6299), 598–602. https://doi.org/10.1126/science.aaf8084
Wang,, X., Brandão,, H. B., Le,, T. B. K., Laub,, M. T., & Rudner,, D. Z. (2017). Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science, 355(6324), 524–527. https://doi.org/10.1126/science.aai8982
Weiterer,, S.‐S., Meier‐Soelch,, J., Georgomanolis,, T., Mizi,, A., Beyerlein,, A., Weiser,, H., … Kracht,, M. (2020). Distinct IL‐1α‐responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. The EMBO Journal, 39(1), e101533. https://doi.org/10.15252/embj.2019101533
West,, A. G., Gaszner,, M., & Felsenfeld,, G. (2002). Insulators: Many functions, many mechanisms. Genes %26 Development, 16(3), 271–288. http://genesdev.cshlp.org/content/16/3/271.short
Wetterstrand,, K. A. (2020). DNA sequencing costs: Data|NHGRI. Retrieved from https://www.genome.gov/sequencingcostsdata
Wu,, W., Yan,, Z., Nguyen,, T. C., Bouman Chen,, Z., Chien,, S., & Zhong,, S. (2019). Mapping RNA–chromatin interactions by sequencing with iMARGI. Nature Protocols, 14(11), 3243–3272. https://doi.org/10.1038/s41596-019-0229-4
Wutz,, G., Várnai,, C., Nagasaka,, K., Cisneros,, D. A., Stocsits,, R. R., Tang,, W., … Peters,, J.‐M. (2017). Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. The EMBO Journal, 36(24), 3573–3599. https://doi.org/10.15252/embj.201798004
Xie,, L., Dong,, P., Chen,, X., Hsieh,, T.‐H. S., Banala,, S., De Marzio,, M., … Liu,, Z. (2020). 3D ATAC‐PALM: Super‐resolution imaging of the accessible genome. Nature Methods, 17(4), 430–436. https://doi.org/10.1038/s41592-020-0775-2
Yatskevich,, S., Rhodes,, J., & Nasmyth,, K. (2019). Organization of chromosomal DNA by SMC complexes. Annual Review of Genetics, 53(1), 445–482. https://doi.org/10.1146/annurev-genet-112618-043633
Zhao,, P. A., Sasaki,, T., & Gilbert,, D. M. (2020). High‐resolution Repli‐Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biology, 21(1), 76. https://doi.org/10.1186/s13059-020-01983-8
Zhao,, Z., Tavoosidana,, G., Sjölinder,, M., Göndör,, A., Mariano,, P., Wang,, S., … Ohlsson,, R. (2006). Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra‐ and interchromosomal interactions. Nature Genetics, 38(11), 1341–1347. https://doi.org/10.1038/ng1891
Zheng,, M., Tian,, S. Z., Capurso,, D., Kim,, M., Maurya,, R., Lee,, B., … Ruan,, Y. (2019). Multiplex chromatin interactions with single‐molecule precision. Nature, 566(7745), 558–562. https://doi.org/10.1038/s41586-019-0949-1
Zhu,, H., & Wang,, Z. (2019). SCL: A lattice‐based approach to infer 3D chromosome structures from single‐cell hi‐C data. Bioinformatics, 35(20), 3981–3988. https://doi.org/10.1093/bioinformatics/btz181
Zuin,, J., Dixon,, J. R., van der Reijden,, M. I. J. A., Ye,, Z., Kolovos,, P., Brouwer,, R. W. W., … Wendt,, K. S. (2014). Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proceedings of the National Academy of Sciences, 111(3), 996–1001. https://doi.org/10.1073/pnas.1317788111