Waddington, CH. The Strategy of the Genes. London: George Allen %26 Unwin; 1957.
Cohen, DE, Melton, D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet 2011, 12:243–252.
Zhou, Q, Brown, J, Kanarek, A, Rajagopal, J, Melton, DA. In vivo reprogramming of adult pancreatic exocrine cells to beta‐cells. Nature 2008, 455:627–632.
Gore, A, Li, Z, Fung, HL, Young, JE, Agarwal, S, Antosiewicz‐Bourget, J, Canto, I, Giorgetti, A, Israel, MA, Kiskinis, E, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011, 471:63–67.
Lister, R, Pelizzola, M, Kida, YS, Hawkins, RD, Nery, JR, Hon, G, Antosiewicz‐Bourget, J, O`Malley, R, Castanon, R, Klugman, S, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011, 471:68–73.
Sulston, JE, Schierenberg, E, White, JG, Thomson, JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64–119.
Seydoux, G, Braun, RE. Pathway to totipotency: lessons from germ cells. Cell 2006, 127:891–904.
Unhavaithaya, Y, Shin, TH, Miliaras, N, Lee, J, Oyama, T, Mello, CC. MEP‐1 and a homolog of the NURD complex component Mi‐2 act together to maintain germline‐soma distinctions in C. elegans. Cell 2002, 111:991–1002.
Mello, CC, Draper, BW, Krause, M, Weintraub, H, Priess, JR. The pie‐1 and mex‐1 genes and maternal control of blastomere identity in early C. elegans embryos. Cell 1992, 70:163–176.
Mello, CC, Schubert, C, Draper, B, Zhang, W, Lobel, R, Priess, JR. The PIE‐1 protein and germline specification in C. elegans embryos. Nature 1996, 382:710–712.
Seydoux, G, Mello, CC, Pettitt, J, Wood, WB, Priess, JR, Fire, A. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 1996, 382:713–716.
Ciosk, R, DePalma, M, Priess, JR. Translational regulators maintain totipotency in the Caenorhabditis elegans germline. Science 2006, 311:851–853.
Jones, AR, Francis, R, Schedl, T. GLD‐1, a cytoplasmic protein essential for oocyte differentiation, shows stage‐ and sex‐specific expression during Caenorhabditis elegans germline development. Dev Biol 1996, 180:165–183.
Francis, R, Maine, E, Schedl, T. Analysis of the multiple roles of gld‐1 in germline development: interactions with the sex determination cascade and the glp‐1 signaling pathway. Genetics 1995, 139:607–630.
Francis, R, Barton, MK, Kimble, J, Schedl, T. gld‐1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 1995, 139:579–606.
Jones, AR, Schedl, T. Mutations in gld‐1, a female germ cell‐specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src‐associated protein Sam68. Genes Dev 1995, 9:1491–1504.
Biedermann, B, Wright, J, Senften, M, Kalchhauser, I, Sarathy, G, Lee, MH, Ciosk, R. Translational repression of cyclin E prevents precocious mitosis and embryonic gene activation during C. elegans meiosis. Dev Cell 2009, 17:355–364.
Draper, BW, Mello, CC, Bowerman, B, Hardin, J, Priess, JR. MEX‐3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 1996, 87:205–216.
Hunter, CP, Kenyon, C. Spatial and temporal controls target pal‐1 blastomere‐specification activity to a single blastomere lineage in C. elegans embryos. Cell 1996, 87:217–226.
Mootz, D, Ho, DM, Hunter, CP. The STAR/Maxi‐KH domain protein GLD‐1 mediates a developmental switch in the translational control of C. elegans PAL‐1. Development 2004, 131:3263–3272.
Tursun, B, Patel, T, Kratsios, P, Hobert, O. Direct conversion of C. elegans germ cells into specific neuron types. Science 2011, 331:304–308.
Lu, X, Horvitz, HR. lin‐35 and lin‐53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 1998, 95:981–991.
Loyola, A, Almouzni, G. Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 2004, 1677:3–11.
Eitoku, M, Sato, L, Senda, T, Horikoshi, M. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cell Mol Life Sci 2008, 65:414–444.
Doitsidou, M, Flames, N, Lee, AC, Boyanov, A, Hobert, O. Automated screening for mutants affecting dopaminergic‐neuron specification in C. elegans. Nat Methods 2008, 5:869–872.
Doitsidou, M, Poole, RJ, Sarin, S, Bigelow, H, Hobert, O. C. elegans mutant identification with a one‐step whole‐genome‐sequencing and SNP mapping strategy. PLoS One 2010, 5:e15435.
Zuryn, S, Le Gras, S, Jamet, K, Jarriault, S. A strategy for direct mapping and identification of mutations by whole‐genome sequencing. Genetics 2010, 186:427–430.
Priess, JR, Thomson, JN. Cellular interactions in early C. elegans embryos. Cell 1987, 48:241–250.
Fukushige, T, Krause, M. The myogenic potency of HLH‐1 reveals wide‐spread developmental plasticity in early C. elegans embryos. Development 2005, 132:1795–1805.
Lin, R, Thompson, S, Priess, JR. pop‐1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 1995, 83:599–609.
Fukushige, T, Hawkins, MG, McGhee, JD. The GATA‐factor elt‐2 is essential for formation of the Caenorhabditis elegans intestine. Dev Biol 1998, 198:286–302.
Zhu, J, Fukushige, T, McGhee, JD, Rothman, JH. Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. Genes Dev 1998, 12:3809–3814.
Horner, MA, Quintin, S, Domeier, ME, Kimble, J, Labouesse, M, Mango, SE. pha‐4, an HNF‐3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev 1998, 12:1947–1952.
Quintin, S, Michaux, G, McMahon, L, Gansmuller, A, Labouesse, M. The Caenorhabditis elegans gene lin‐26 can trigger epithelial differentiation without conferring tissue specificity. Dev Biol 2001, 235:410–421.
Gilleard, JS, McGhee, JD. Activation of hypodermal differentiation in the Caenorhabditis elegans embryo by GATA transcription factors ELT‐1 and ELT‐3. Mol Cell Biol 2001, 21:2533–2544.
Gaudet, J, Mango, SE. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA‐4. Science 2002, 295:821–825.
Kiefer, JC, Smith, PA, Mango, SE. PHA‐4/FoxA cooperates with TAM‐1/TRIM to regulate cell fate restriction in the C. elegans foregut. Dev Biol 2007, 303:611–624.
Mango, SE, Lambie, EJ, Kimble, J. The pha‐4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development 1994, 120:3019–3031.
Maduro, MF, Hill, RJ, Heid, PJ, Newman‐Smith, ED, Zhu, J, Priess, JR, Rothman, JH. Genetic redundancy in endoderm specification within the genus Caenorhabditis. Dev Biol 2005, 284:509–522.
Fukushige, T, Brodigan, TM, Schriefer, LA, Waterston, RH, Krause, M. Defining the transcriptional redundancy of early bodywall muscle development in C. elegans: evidence for a unified theory of animal muscle development. Genes Dev 2006, 20:3395–3406.
Page, BD, Zhang, W, Steward, K, Blumenthal, T, Priess, JR. ELT‐1, a GATA‐like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos. Genes Dev 1997, 11:1651–1661.
Zhu, J, Hill, RJ, Heid, PJ, Fukuyama, M, Sugimoto, A, Priess, JR, Rothman, JH. end‐1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev 1997, 11:2883–2896.
Labouesse, M, Hartwieg, E, Horvitz, HR. The Caenorhabditis elegans LIN‐26 protein is required to specify and/or maintain all non‐neuronal ectodermal cell fates. Development 1996, 122:2579–2588.
Labouesse, M, Sookhareea, S, Horvitz, HR. The Caenorhabditis elegans gene lin‐26 is required to specify the fates of hypodermal cells and encodes a presumptive zinc‐finger transcription factor. Development 1994, 120:2359–2368.
Yuzyuk, T, Fakhouri, TH, Kiefer, J, Mango, SE. The polycomb complex protein mes‐2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos. Dev Cell 2009, 16:699–710.
Strome, S. Specification of the germ line. WormBook 2005, 1–10.
Wang, D, Kennedy, S, Conte, D Jr, Kim, JK, Gabel, HW, Kamath, RS, Mello, CC, Ruvkun, G. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 2005, 436:593–597.
Petrella, LN, Wang, W, Spike, CA, Rechtsteiner, A, Reinke, V, Strome, S. synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival. Development 138:1069–1079.
Shibata, Y, Takeshita, H, Sasakawa, N, Sawa, H. Double bromodomain protein BET‐1 and MYST HATs establish and maintain stable cell fates in C. elegans. Development 2010, 137:1045–1053.
Sprecher, SG, Desplan, C. Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons. Nature 2008, 454:533–537.
Gettings, M, Serman, F, Rousset, R, Bagnerini, P, Almeida, L, Noselli, S. JNK signalling controls remodelling of the segment boundary through cell reprogramming during Drosophila morphogenesis. PLoS Biol 2010, 8:e1000390.
Doetsch, F. The glial identity of neural stem cells. Nat Neurosci 2003, 6:1127–1134.
Red‐Horse, K, Ueno, H, Weissman, IL, Krasnow, MA. Coronary arteries form by developmental reprogramming of venous cells. Nature 2010, 464:549–553.
Jarriault, S, Schwab, Y, Greenwald, I. A Caenorhabditis elegans model for epithelial–neuronal transdifferentiation. Proc Natl Acad Sci U S A 2008, 105:3790–3795.
Richard, JP, Zuryn, S, Fischer, N, Pavet, V, Vaucamps, N, Jarriault, S. Direct in vivo cellular reprogramming involves transition through discrete, non‐pluripotent steps. Development 2011, 138:1483–1492.
Prasad, B, Karakuzu, O, Reed, RR, Cameron, S. unc‐3‐dependent repression of specific motor neuron fates in Caenorhabditis elegans. Dev Biol 2008, 323:207–215.