Gans, C, Northcutt, RG. Neural crest and the origin of vertebrates ‐ a new head. Science 1983, 220:268–274.
Northcutt, RG, Gans, C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 1983, 58:1–28.
Hall, BK. The Neural Crest in Development and Evolution. New York: Springer‐Verlag New York, Inc.; 1999.
Meulemans, D, Bronner‐Fraser, M. Gene‐regulatory interactions in neural crest evolution and development. Dev Cell 2004, 7:291–299.
Betancur, P, Bronner‐Fraser, M, Sauka‐Spengler, T. Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol 2010, 26:581–603.
Pegoraro, C, Monsoro‐Burq, AH. Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. Dev Biol 2012.
Rogers, CD, Jayasena, CS, Nie, S, Bronner, ME. Neural crest specification: tissues, signals, and transcription factors. Wiley Interdisciplinary Reviews: Dev Biol 2012, 1:52–68.
Woda, JM, Pastagia, J, Mercola, M, Artinger, KB. Dlx proteins position the neural plate border and determine adjacent cell fates. Development 2003, 130:331–342.
de Croze, N, Maczkowiak, F, Monsoro‐Burq, AH. Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. Proc Natl Acad Sci U S A 2011, 108:155–160.
Kee, Y, Bronner‐Fraser, M. To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors. Genes Dev 2005, 19:744–755.
Light, W, Vernon, AE, Lasorella, A, Iavarone, A, LaBonne, C. Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells. Development 2005, 132:1831–1841.
Bellmeyer, A, Krase, J, Lindgren, J, LaBonne, C. The protooncogene c‐myc is an essential regulator of neural crest formation in xenopus. Dev Cell 2003, 4:827–839.
Perez‐Alcala, S, Nieto, MA, Barbas, JA. LSox5 regulates RhoB expression in the neural tube and promotes generation of the neural crest. Development 2004, 131:4455–4465.
Stewart, RA, Arduini, BL, Berghmans, S, George, RE, Kanki, JP, Henion, PD, Look, AT. Zebrafish foxd3 is selectively required for neural crest specification, migration and survival. Dev Biol 2006, 292:174–188.
Cano, A, Perez‐Moreno, MA, Rodrigo, I, Locascio, A, Blanco, MJ, del Barrio, MG, Portillo, F, Nieto, MA. The transcription factor snail controls epithelial‐mesenchymal transitions by repressing E‐cadherin expression. Nat Cell Biol 2000, 2:76–83.
Yan, YL, Miller, CT, Nissen, RM, Singer, A, Liu, D, Kirn, A, Draper, B, Willoughby, J, Morcos, PA, Amsterdam, A, et al. A zebrafish sox9 gene required for cartilage morphogenesis. Development 2002, 129:5065–5079.
Das, A, Crump, JG. Bmps and id2a act upstream of twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genet 2012, 8:e1002710.
Gai, Z, Donoghue, PC, Zhu, M, Janvier, P, Stampanoni, M. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 2011, 476:324–327.
Heimberg, AM, Cowper‐Sallari, R, Semon, M, Donoghue, PCJ, Peterson, KJ. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci U S A 2010, 107:19379–19383.
Stock, DW, Whitt, GS. Evidence from 18s ribosomal‐RNA Sequences That lampreys and hagfishes form a natural group. Science 1992, 257:787–789.
Damas, H. Recherches sur la devélopment de Lampetra fluviatilis L. Contribution şal`étude de la céiphalogene`se des vertéibrés. Arch Biol 1944, 55:5–284.
Johnels, AG. On the development and morphology of the skeleton of the head of Petromyzon. Acta Zool 1948, 29:140–277.
Hardisty, MW. Biology of the Cyclostomes. London: Chapman and Hall; 1979.
Newth, DR. Experiments on the neural crest of the lamprey embryo. J Exp Biol 1951, 28:247–260.
Newth, DR. On the neural crest of the lamprey embryo. J Embryol Exp Morphol 1956, 4:358–375.
Langille, RM, Hall, BK. Evidence of cranial neural crest contribution to the skeleton of the sea lamprey, Petromyzon marinus. Prog Clin Biol Res 1986, 217B:263–266.
Langille, RM, Hall, BK. role of the neural crest in development of the trabeculae and branchial arches in embryonic sea lamprey, Petromyzon‐Marinus (L). Development 1988, 102:301–310.
McCauley, DW, Bronner‐Fraser, M. Neural crest contributions to the lamprey head. Development 2003, 130:2317–2327.
Horigome, N, Myojin, M, Ueki, T, Hirano, S, Aizawa, S, Kuratani, S. Development of cephalic neural crest cells in embryos of Lampetra japonica, with special reference to the evolution of the jaw. Dev Biol 1999, 207:287–308.
Meulemans, D, Bronner‐Fraser, M. Amphioxus and lamprey AP‐2 genes: implications for neural crest evolution and migration patterns. Development 2002, 129:4953–4962.
Bronner‐Fraser, M, Meulemans, D, McCauley, D. Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution. Dev Biol 2003, 264:430–442.
Neidert, AH, Virupannavar, V, Hooker, GW, Langeland, JA. Lamprey Dlx genes and early vertebrate evolution. Proc Natl Acad Sci U S A 2001, 98:1665–1670.
McCauley, DW, Bronner‐Fraser, M. Importance of SoxE in neural crest development and the evolution of the pharynx. Nature 2006, 441:750–752.
Bronner‐Fraser, M, Sauka‐Spengler, T, Meulemans, D, Jones, M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 2007, 13:405–420.
Nikitina, N, Tong, L, Bronner, ME. Ancestral network module regulating prdm1 expression in the lamprey neural plate border. Dev Dyn 2011, 240:2265–2271.
Rahimi, RA, Allmond, JJ, Wagner, H, McCauley, DW, Langeland, JA. Lamprey snail highlights conserved and novel patterning roles in vertebrate embryos. Dev Genes Evol 2009, 219:31–36.
Ohtani, K, Yao, T, Kobayashi, M, Kusakabe, R, Kuratani, S, Wada, H. Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. J Exp Zoolog B Mol Dev Evol 2008, 310:596–607.
Kuratani, S, Ota, KG, Kuraku, S. Hagfish embryology with reference to the evolution of the neural crest. Nature 2007, 446:672–675.
Davidson, EH, Erwin, DH. Gene regulatory networks and the evolution of animal body plans. Science 2006, 311:796–800.
Murray, SA, Gridley, T. Snail family genes are required for left‐right asymmetry determination, but not neural crest formation, in mice. Proc Natl Acad Sci U S A 2006, 103:10300–10304.
Shi, J, Severson, C, Yang, J, Wedlich, D, Klymkowsky, MW. Snail2 controls mesodermal BMP/Wnt induction of neural crest. Development 2011, 138:3135–3145.
Shubin, N, Tabin, C, Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 2009, 457:818–823.
Arendt, D, Tomer, R, Denes, A, Jekely, G, Raible, F. Annelid neurodevelopment supports Dohrn`s “Annelid Theory” for the origin of vertebrates. J Morphol 2008, 269:1469–1469.
Pani, AM, Mullarkey, EE, Aronowicz, J, Assimacopoulos, S, Grove, EA, Lowe, CJ. Ancient deuterostome origins of vertebrate brain signalling centres. Nature 2012, 483:289–294.
Yu, JK, Meulemans, D, McKeown, SJ, Bronner‐Fraser, M. Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res 2008, 18:1127–1132.
Meulemans, D, Bronner‐Fraser, M. Central role of gene cooption in neural crest evolution. J Exp Zoolog B Mol Dev Evol 2005, 304:298–303.
Pasini, A, Amiel, A, Rothbacher, U, Roure, A, Lemaire, P, Darras, S. Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. PLoS Biol 2006, 4:e225.
Bone, Q. The central nervous system in amphioxus. J Comp Neurol 1960, 115:27–51.
Denes, AS, Jekely, G, Steinmetz, PRH, Raible, F, Snyman, H, Prud`homme, B, Ferrier, DEK, Balavoine, G, Arendt, D. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 2007, 129:277–288.
Montell, DJ. The genetics of cell migration in Drosophila melanogaster and Caenorhabditis elegans development. Development 1999, 126:3035–3046.
Kee, Y, Hwang, BJ, Sternberg, PW, Bronner‐Fraser, M. Evolutionary conservation of cell migration genes: from nematode neurons to vertebrate neural crest. Genes Dev 2007, 21:6.
Kaltenbach, SL, Yu, JK, Holland, ND. The origin and migration of the earliest‐developing sensory neurons in the peripheral nervous system of amphioxus. Evol Dev 2009, 11:142–151.
Bone, Q. The organization of the atrial nervous system of amphioxus [Branchiostoma lanceolatum (Pallas)]. Philos Trans R Soc Lond B 1961, 243:241–269.
Manni, L, Lane, NJ, Sorrentino, M, Zaniolo, G, Burighel, P. Mechanism of neurogenesis during the embryonic development of a tunicate. J Comp Neurol 1999, 412:527–541.
Wu, SY, McClay, DR. Epithelial‐mesenchymal transition regulators snail and twist are required for PMC ingression in the sea urchin embryo. Dev Biol 2006, 295:411–411.
Amore, G, Davidson, EH. cis‐regulatory control of cyclophilin, a member of the ETS‐DRI skeletogenic gene battery in the sea urchin embryo. Dev Biol 2006, 293:555–564.
Katow, H, Yaguchi, S, Kiyomoto, M, Washio, M. The 5‐HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae. Mech Dev 2004, 121:325–337.
Hardin, J, Illingworth, CA. A homologue of Snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down‐regulated in axis‐deficient embryos. Dev Dyn 2006, 235:3121–3131.
Wu, SY, Yang, YP, McClay, DR. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol 2008, 319:406–415.
Jeffery, WR, Strickler, AG, Yamamoto, Y. Migratory neural crest‐like cells form body pigmentation in a urochordate embryo. Nature 2004, 431:696–699.
Jeffery, WR, Chiba, T, Krajka, FR, Deyts, C, Satoh, N, Joly, JS. Trunk lateral cells are neural crest‐like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest. Dev Biol 2008, 324:152–160.
Jeffery, WR. Ascidian neural crest‐like cells: Phylogenetic distribution, relationship to larval complexity, and pigment cell fate. J Exp Zoolog B Mol Dev Evol 2006, 306B:470–480.
Meulemans, D, Bronner‐Fraser, M. Insights from amphioxus into the evolution of vertebrate cartilage. PLoS ONE 2007, 2:e787.
Alvarado, AS, Tsonis, PA. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 2006, 7:873–884.
Bely, AE, Sikes, JM. Acoel and platyhelminth models for stem‐cell research. J Biol 2010, 9:14.
Simionato, E, Kerner, P, Dray, N, Le Gouar, M, Ledent, V, Arendt, D, Vervoort, M. Atonal‐ and achaete‐scute‐related genes in the annelid Platynereis dumerilii: insights into the evolution of neural basic‐helix‐loop‐helix genes. BMC Evol Biol 2008, 8:170.
Meulemans, D, Bronner‐Fraser, M. The amphioxus SoxB family: implications for the evolution of vertebrate placodes. Int J Biol Sci 2007, 3:356–364.
Yajima, L, Endo, K, Sato, S, Toyoda, R, Wada, H, Shibahara, S, Numakunai, T, Ikeo, K, Gojobori, T, Goding, CR, et al. Cloning and functional analysis of ascidian Mitf in vivo: insights into the origin of vertebrate pigment cells. Mech Dev 2003, 120:1489–1504.
Witten, PE, Huysseune, A, Hall, BK. A practical approach for the identification of the many cartilaginous tissues in teleost fish. J Appl Ichthyol 2010, 26:257–262.
Cole, AG, Hall, BK. The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage‐like tissues within the Metazoa. Zoology (Jena) 2004, 107:261–273.
Cole, AG, Hall, BK. Cartilage differentiation in cephalopod molluscs. Zoology 2009, 112:2–15.
Ettensohn, CA, Illies, MR, Oliveri, P, De Jong, DL. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired‐class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo. Development 2003, 130:2917–2928.
Rychel, AL, Swalla, BJ. Development and evolution of chordate cartilage. J Exp Zoolog B Mol Dev Evol 2007, 308:325–335.
Prud`homme, B, Gompel, N, Carroll, SB. Emerging principles of regulatory evolution. Proc Natl Acad Sci U S A 2007, 104:8605–8612.
Koebernick, K, Kashef, J, Pieler, T, Wedlich, D. Xenopus Teashirt1 regulates posterior identity in brain and cranial neural crest. Dev Biol 2006, 298:312–326.
Mallatt, J. Pumping rates and particle retention efficiencies of the larval lamprey, an unusual suspension feeder. Biol Bull 1982, 163:197–210.
Schubert, M, Holland, ND, Escriva, H, Holland, LZ, Laudet, V. Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus). Proc Natl Acad Sci U S A 2004, 101:10320–10325.
Hans, S, Christison, J, Liu, D, Westerfield, M. Fgf‐dependent otic induction requires competence provided by Foxi1 and Dlx3b. BMC Dev Biol 2007, 7:5.
Sarrazin, AF, Nunez, VA, Sapede, D, Tassin, V, Dambly‐Chaudiere, C, Ghysen, A. Origin and early development of the posterior lateral line system of zebrafish. J Neurosci 2010, 30:8234–8244.
Dutton, KA, Pauliny, A, Lopes, SS, Elworthy, S, Carney, TJ, Rauch, J, Geisler, R, Haffter, P, Kelsh, RN. Zebrafish colourless encodes sox10 and specifies non‐ectomesenchymal neural crest fates. Development 2001, 128:4113–4125.
Cheung, M, Briscoe, J. Neural crest development is regulated by the transcription factor Sox9. Development 2003, 130:5681–5693.
Yan, YL, Willoughby, J, Liu, D, Crump, JG, Wilson, C, Miller, CT, Singer, A, Kimmel, C, Westerfield, M, Postlethwait, JH. A pair of Sox: distinct and overlapping functions of zebrafish sox9 co‐orthologs in craniofacial and pectoral fin development. Development 2005, 132:1069–1083.
Honore, SM, Aybar, MJ, Mayor, R. Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol 2003, 260:79–96.
O`Donnell, M, Hong, CS, Huang, X, Delnicki, RJ, Saint‐Jeannet, JP. Functional analysis of Sox8 during neural crest development in Xenopus. Development 2006, 133:3817–3826.
Tahtakran, SA, Selleck, MA. Ets‐1 expression is associated with cranial neural crest migration and vasculogenesis in the chick embryo. Gene Expr Patterns 2003, 3:455–458.
Ishii, M, Merrill, AE, Chan, YS, Gitelman, I, Rice, DP, Sucov, HM, Maxson, RE Jr. Msx2 and Twist cooperatively control the development of the neural crest‐derived skeletogenic mesenchyme of the murine skull vault. Development 2003, 130:6131–6142.
McGonnell, IM, Graham, A, Richardson, J, Fish, JL, Depew, MJ, Dee, CT, Holland, PWH, Takahashi, T. Evolution of the Alx homeobox gene family: parallel retention and independent loss of the vertebrate Alx3 gene. Evol Dev 2011, 13:343–351.
Kurokawa, D, Kitajima, T, Mitsunaga‐Nakatsubo, K, Amemiya, S, Shimada, H, Akasaka, K. HpEts implicated in primary mesenchyme cell differentiation of the sea urchin (Hemicentrotus pulcherrimus) embryo. Zygote 2000, 8:S33–S34.
Imai, KS, Satoh, N, Satou, Y. A Twist‐like bHLH gene is a downstream factor of an endogenous FGF and determines mesenchymal fate in the ascidian embryos. Development 2003, 130:4461–4472.
Rottinger, E, Saudemont, A, Duboc, V, Besnardeau, L, McClay, D, Lepage, T. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis of the skeleton and regulate gastrulation during sea urchin development. Development 2008, 135:353–365.
Walshe, J, Mason, I. Fgf signalling is required for formation of cartilage in the head. Dev Biol 2003, 264:522–536.
Holland, PWH, Garciafernandez, J, Williams, NA, Sidow, A. Gene duplications and the origins of vertebrate development. Development 1994:125–133.
McMahon, AR, Merzdorf, CS. Expression of the zic1, zic2, zic3, and zic4 genes in early chick embryos. BMC Res Notes 2010, 3:167.
Toyama, R, Gomez, DM, Mana, MD, Dawid, IB. Sequence relationships and expression patterns of zebrafish zic2 and zic5 genes. Gene Expr Patterns 2004, 4:345–350.
Phillips, BT, Kwon, HJ, Melton, C, Houghtaling, P, Fritz, A, Riley, BB. Zebrafish msxB, msxC and msxE function together to refine the neural‐nonneural border and regulate cranial placodes and neural crest development. Dev Biol 2006, 294:376–390.
Maczkowiak, F, Mateos, S, Wang, E, Roche, D, Harland, R, Monsoro‐Burq, AH. The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. Dev Biol(Orlando) 2010, 340:381–396.
Aybar, MJ, Nieto, MA, Mayor, R. Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 2003, 130:483–494.
Kee, Y, Bronner‐Fraser, M. Id4 expression and its relationship to other Id genes during avian embryonic development. Mech Dev 2001, 109:341–345.
Van Otterloo, E, Li, W, Garnett, A, Cattell, M, Medeiros, DM, Cornell, RA. Novel Tfap2‐mediated control of soxE expression facilitated the evolutionary emergence of the neural crest. Development 2012, 139:720–730.
Sasai, N, Mizuseki, K, Sasai, Y. Requirement of FoxD3‐class signaling for neural crest determination in Xenopus. Development 2001, 128:2525–2536.
Cossais, F, Sock, E, Hornig, J, Schreiner, S, Kellerer, S, Bosl, MR, Russell, S, Wegner, M. Replacement of mouse Sox10 by the Drosophila ortholog Sox100B provides evidence for co‐option of SoxE proteins into vertebrate‐specific gene‐regulatory networks through altered expression. Dev Biol (Orlando) 2010, 341:267–281.
Nomaksteinsky, M, Rottinger, E, Dufour, HD, Chettouh, Z, Lowe, CJ, Martindale, MQ, Brunet, JF. Centralization of the deuterostome nervous system predates chordates. Curr Biol 2009, 19:1264–1269.
Cerny, R, Cattell, M, Sauka‐Spengler, T, Bronner‐Fraser, M, Yu, F, Medeiros, DM. Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proc Natl Acad Sci U S A 2010, 107:17262–17267.