Goodenough, JB, Kim, Y. Challenges for rechargeable Li batteries. Chem Mater 2010, 22:587–603.
Larminie, J, Lowry, J. Electric Vehicle Technology Explained. Chichester: John Wiley %26 Sons; 2003.
Salminen, J, Steingart, D, Kallio, T. Fuel cells and batteries. In: Letcher, TM, ed. Future Energy—Improved, Sustainable and Clean Options for Our Planet. Amsterdam: Elsevier; 2008, 259–277.
Fuel Cell Handbook. 7 ed. Morgantown: EG%26G Technical Services, Inc; 2004.
Chen, E. Thermodynamics and electrochemical kinetics. In: Hoogers, G, ed. Fuel Cell Technology Handbook, vol. 1. Boca Raton: CRC Press; 2003, 60–89.
Vielstich, W. Ideal and effective efficiencies of cell reactions and comparison to carnot cycles. In: Vielstich, W, Lamm, A, Gasteiger, HA, eds. Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 1. Chichester: John Wiley %26 Sons; 2003, 26–30.
Fuller, TF, Meyers, J. Findings of the Fuel Cell Workshop 208th ECS Meeting. 2005.
Gasteiger, HA, MarkoviĐ, NM. Just a dream—or future reality? Science 2009, 324:48–49.
Gasteiger, HA, Panels, EA, Yan, SG. Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 2004, 127:162–171.
Kocha, SS. Principles of MEA preparation. In: Vielstich, W, Lamm, A, Gasteiger, HA, eds. Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3. Chichester: John Wiley %26 Sons; 2003, 538–565.
Gottesfeld, S. Zawodzinski TA. In: Alkire, RC, Gerischer, H, Kolb, DM, Tobias, CW, eds. Advances in Electrochemical Science and Engineering, vol. 5. Weinheim: Wiley‐VCH; 1997.
Wilson, MS, Gottesfeld, S. Thin‐film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 1992, 22:1–7.
Wilson, MS, Gottesfeld, S. High performance catalyzed membranes of ultra low Pt loadings for polymer electrolyte fuel cells. J Electrochem Soc 1992, 139:L28.
U.S. department of Energy. Fuel Cell Technologies Office Multi‐Year Research, Development and Demonstration Plan. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/.
Debe, MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486:43–51.
Baturina, OA, Garsany, Y, Zega, TJ, Stroud, RM, Schull, T, Swider‐Lyons, KE. Oxygen reduction reaction on platinum/tantalum oxide electrocatalysts for PEM fuel cells. J Electrochem Soc 2008, 155:B1314–B1321.
Ugarte, NP, Swider‐Lyons, KE. Low‐platinum tin‐oxide electrocatalysts for PEM fuel cell cathodes. In: Murthy, M, Fuller, TF, VanZee, JW, Gottesfeld, S, eds. Proton Conducting Membrane Fuel Cells III, vol. 2005. Pennington, NJ: The Electrochemical Society; 2002, 67–73.
Zhang, L, Wang, LY, Holt, CMB, Zahiri, B, Li, Z, Malek, K, Navessin, T, Eikerling, MH, Mitlin, D. Highly corrosion resistant platinum‐niobium oxide‐carbon nanotube electrodes for the oxygen reduction in PEM fuel cells. Energy Environ Sci 2012, 5:6156–6172.
Bashyam, R, Zelenay, P. A class of non‐precious metal composite catalysts for fuel cells. Nature 2006, 443:63–66.
Gasteiger, HA, Kocha, SS, Sompalli, B, Wagner, FT. Activity benchmark and requirements for Pt, Pt‐alloy, and non‐Pt oxygen reduction catalysts for PEMFCs. Appl Catal Environ 2005, 56:9–35.
Jaouen, F, Herranz, J, Lefèvre, M, Dodelet, J‐P, Kramm, UI, Herrmann, I, Bogdanoff, P, Maruyama, J, Nagaoka, T, Garsuch, A, et al. Cross‐laboratory experimental study of non‐noble‐metal electrocatalysts for the oxygen reduction reaction. Appl Mater Interf 2009, 1:1623–1639.
Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201:1212–1213.
Lefèvre, M, Proietti, E, Jaouen, F, Dodelet, J‐P. Iron‐based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324:71–74.
Sasaki, K, Naohara, H, Cai, Y, Choi, Y‐M, Liu, P, Vukmirovic, MB, Wang, JX, Adzic, RR. Core‐protected platinum monolayer shell high‐stability electrocatalysts for fuel‐cell cathodes. Angew Chem Int Ed 2010, 49:8602–8607.
Eikerling, M, Kornyshev, A, Kulikovsky, A. Fuel Cell Rev 2004, fcr.iop.org.
Xia, Z, Wang, Q, Eikerling, M, Liu, Z. Effectiveness factor of Pt utilization in cathode catalyst layer of polymer electrolyte fuel cells. Can J Chem 2008, 86:657–667.
Liu, D‐J, Yang, J. Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell. US Patent 7758921, 2010.
Liu D‐J, Yang J, Wang X. Aligned carbon nanotube with electro‐catalytic activity for oxygen reduction reaction. US Patent 7767616, 2010.
Middelman, E. Improved PEM fuel cell electrodes by controlled self‐assembly. Fuel Cells Bull 2002:9–12.
Debe, MK, Schmoeckel, AK, Vernstrom, GD, Atanasoski, R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 2006, 161:1002–1011.
Lamy, C, Jones, DJ, Coutanceau, C, Brault, P, Martemianov, S, Bultel, Y. Do not forget the electrochemical characteristics of the membrane electrode assembly when designing a proton exchange membrane fuel cell stack. Electrochim Acta 2011, 56:10406–10423.
Ruvinskiy, PS, Bonnefont, A, Houllé, M, Pham‐Huu, C, Savinova, ER. Preparation, testing and modeling of three‐dimensionally ordered catalytic layers for electrocatalysis of fuel cell reactions. Electrochim Acta 2010, 55:3245–3256.
Che, G, Lakshmi, BB, Fisher, ER, Martin, CR. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998, 393:346–349.
Mo, Z, Liao, S, Zheng, Y, Fu, Z. Preparation of nitrogen‐doped carbon nanotube arrays and their catalysis towards cathodic oxygen reduction in acidic and alkaline media. Carbon 2012, 50:2620–2627.
Bonakdarpour, A, Tucker, RT, Fleischauer, MD, Beckers, NA, Brett, MJ, Wilkinson, DP. Nanopillar niobium oxides as support structures for oxygen reduction electrocatalysts. Electrochim Acta 2012, 85:492–500.
Debe, MK. Novel catalysts, catalysts support and catalysts coated membrane methods. In: Vielstich, W, Lamm, A, Gasteiger, HA, eds. Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3. Chichester: John Wiley %26 Sons; 2003, 576–589.
Debe, MK. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts fuel cells, electrolyzers, and energy conversion. J Electrochem Soc 2013, 160:F522–F534.
Debe, MK, Schmoeckel, A, Hendricks, S, Vernstrom, G, Haugen, G, Atanasoski, R. Durability aspects of nanostructured thin film catalysts for PEM fuel cells. ECS Trans 2006, 1:51–66.
Garsuch, A, Stevens, DA, Sanderson, RJ, Wang, S, Atanasoski, RT, Hendricks, S, Debe, MK, Dahn, JR. Alternative catalyst supports deposited on nanostructured thin films for proton exchange membrane fuel cells. J Electrochem Soc 2010, 157:B187–B194.
Rabat, H, Andreazza, C, Brault, P, Caillard, A, Béguin, F, Charles, C, Boswell, R. Carbon/platinum nanotextured films produced by plasma sputtering. Carbon 2009, 47:209–214.
Melechko, AV, Merkulov, VI, McKnight, TE, Guillorn, MA, Klein, KL, Lowndes, DH, Simpson, ML. Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 2005, 97:041301.
Wang, S‐G, Wang, J‐H, Han, J‐J. Effect of particle density on the aligned growth of carbon nanotubes. J Wuhan Univ Technol 2004, 19:4–6.
Kam, KK, Debe, MK, Poirier, RJ, Drube, AR. Summary abstract: dramatic variation of the physical microstructure of a vapor deposited organic thin film. J Vacuum Sci Technol A 1987, 5:1914–1916.
van der Vliet, D, Wang, C, Debe, M, Atanasoski, R, Markovic, NM, Stamenkovic, VR. Platinum‐alloy nanostructured thin film catalysts for the oxygen reduction reaction. Electrochim Acta 2011, 56:8695–8699.
Rouhet, M, Bozdech, S, Bonnefont, A, Savinova, ER. Influence of the proton transport on the ORR kinetics and on the H2O2 escape in three‐dimensionally ordered electrodes. Electrochem Commun 2013, 33:111–114.
Bonakdarpour, A, Stevens, K, Vernstrom, GD, Atanasoski, R, Schmoeckel, AK, Debe, MK, Dahn, JR. Oxygen reduction activity of Pt and Pt–Mn–Co electrocatalysts sputtered on nano‐structured thin film support. Electrochim Acta 2007, 53:688–694.
Dubau, L, Durst, J, Maillard, F, Guetaz, L, Chatenet, M, Andre, J, Rossinot, E. Further insights into the durability of Pt3Co/C electrocatalysts: Formation of ‘hollow’ Pt nanoparticles induced by the Kirkendall effect. Electrochim Acta 2011, 56:10658–10667.
Dubau, L, Maillard, F, Chatenet, M, Andre, J, Rossinot, E. Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton‐exchange membrane fuel cell operation. Electrochim Acta 2010, 56:776–783.
Zhang, S, Yuan, X‐Z, Ng, J, Hin, C, Wang, H, Friedrich, KA, Schulze, M. A review of platinum‐based catalyst layer degradation in proton exchange membrane fuel cells. J Power Sources 2009, 194:588–600.
Steinbach, A, Debe, M, Pejsa, M, Peppin, D, Haug, A, Kurkowski, M, Maier‐Hendricks, S. Influence of anode GDL on PEMFC ultra‐thin electrode water management at low temperatures diagnostics and phenomena: Porous transport layers. ECS Trans 2011, 41:449–457.
Cavarroc, M, Ennadjaoui, A, Mougenot, M, Brault, P, Escalier, R, Tessier, Y, Durand, J, Roualdès, S, Sauvage, T, Coutanceau, C. Performance of plasma sputtered fuel cell electrodes with ultra‐low Pt loadings. Electrochem Commun 2009, 11:859–861.
Billy, E, Maillard, F, Morin, A, Guetaz, L, Emieux, F, Thurier, C, Doppelt, P, Donet, S, Mailley, S. Impact of ultra‐low Pt loadings on the performance of anode/cathode in a proton‐exchange membrane fuel cell. J Power Sour 2010, 195:2737–2746.
Brault, P, Caillard, A, Baranton, S, Mougenot, M, Cuynet, S, Coutanceau, C. One‐step synthesis and chemical characterization of Pt–C nanowire composites by plasma sputtering. ChemSusChem 2013, 6:1168–1171.
Hatanaka, T, Nakanishi, H, Matsumoto, S, Morimoto, Y. PEFC electrodes based on vertically oriented carbon nanotubes catalyst supports and electrodes. ECS Trans 2006, 3:277–284.
Lebert, M, Kaempgen, M, Soehn, M, Wirth, T, Roth, S, Nicoloso, N. Fuel cell electrodes using carbon nanostructures. Catal Today 2009, 143:64–68.
Yang, J, Goenaga, G, Call, A, Liu, D‐J. Polymer electrolyte fuel cell with vertically aligned carbon nanotubes as the electrocatalyst support. Electrochem Solid‐State Lett 2010, 13:B55–B57.
Antolini, E. Carbon supports for low‐temperature fuel cell catalysts. Appl Catal Environ 2009, 88:1–24.
De Volder, MFL, Tawfick, SH, Baughman, RH, Hart, AJ. Carbon nanotubes: present and future commercial applications. Science 2013, 339:535–539.
Serp, P, Corrias, M, Kalck, P. Carbon nanotubes and nanofibers in catalysis. Appl Catal Gen 2003, 253:337–358.
Liu, Y, Janowska, I, Romero, T, Edouard, D, Nguyen, LD, Ersen, O, Keller, V, Keller, N, Pham‐Huu, C. High surface‐to‐volume hybrid platelet reactor filled with catalytically grown vertically aligned carbon nanotubes. Catal Today 2010, 150:133–139.
Pham‐Huu, C, Ledoux, M‐J. Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials. Topics Catal 2006, 40:49–63.
Yang, J, Liu, D‐J. Three‐dimensionally structured electrode assembly for proton‐exchange membrane fuel cell based on patterned and aligned carbon nanotubes. Carbon 2007, 45:2845–2848.
Huang, ZP, Xu, JW, Ren, ZF, Wang, JH, Siegal, MP, Provencio, PN. Growth of highly oriented carbon nanotubes by plasma‐enhanced hot filament chemical vapor deposition. Appl Phys Lett 1998, 73:3845–3847.
Ren, ZF, Huang, ZP, Wang, DZ, Wen, JG, Xu, JW, Wang, JH, Calvet, LE, Chen, J, Klemic, JF, Reed, MA. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl Phys Lett 1999, 75:1086–1089.
Sarno, M, Tamburrano, A, Arurault, L, Fontorbes, S, Pantani, R, Datas, L, Ciambelli, P, Sarto, MS. Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminium oxide membrane. Carbon 2013, 55:10–22.
Zhang, L, Tan, Y, Resasco, DE. Controlling the growth of vertically oriented single‐walled carbon nanotubes by varying the density of Cosingle bondMo catalyst particles. Chem Phys Lett 2006, 422:198–203.
Ruvinskiy, PS, Bonnefont, A, Savinova, ER. 3D‐ordered layers of vertically aligned carbon nanofilaments as a model approach to study electrocatalysis on nanomaterials. Electrochim Acta 2012, 84:174–186.
Meyyappan, M, Delzeit, L, Cassell, A, Hash, D. Carbon nanotube growth by PECVD. Plasma Sourc Sci Technol 2003, 12:205–216.
Chhowalla, M, Teo, KBK, Ducati, C, Rupesinghe, NL, Amaratunga, GAJ, Ferrari, AC, Roy, D, Robertson, J, Milne, WI. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 2001, 90:5308–5317.
Zhang, ZJ, Wei, BQ, Ramanath, G, Ajayan, PM. Substrate‐site selective growth of aligned carbon nanotubes. Appl Phys Lett 2000, 77:3764–3766.
Hornyak, GL, Dillon, AC, Parilla, PA, Schneider, JJ, Czap, N, Jones, KM, Fasoon, FS, Mason, A, Heben, MJ. Template synthesis of carbon nanotubes. Nanostruct Mater 1999, 12:83–88.
Schneider, JJ, Maksimova, NI, Engstler, J, Joshi, R, Schierholz, R, Feile, R. Catalyst free growth of a carbon nanotube–alumina composite structure. Inorg Chim Acta 2008, 361:1770–1778.
Cavaliere, S, Subianto, S, Savych, I, Jones, DJ, Rozière, J. Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 2011, 4:4761–4785.
Tian, ZQ, Lim, SH, Poh, CK, Tang, Z, Xia, Z, Luo, Z, Shen, PK, Chua, D, Feng, YP, Shen, Z, et al. A highly order‐structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra‐low Pt loading PEM fuel cells. Adv Energy Mater 2011, 1:1205–1214.
Orfanidi, A, Daletou, MK, Neophytides, S. Preparation and characterization of Pt on modified multi‐wall carbon nanotubes to be used as electrocatalysts for high temperature fuel cell applications. Appl Catal B 2011, 106:379–389.
Dameron, AA, Pylypenko, S, Bult, JB, Neyerlin, KC, Engtrakul, C, Bochert, C, Leong, GJ, Frisco, SL, Simpson, L, Dinh, HN, et al. Aligned carbon nanotube array functionalization for enhanced atomic layer deposition of platinum electrocatalysts. Appl Surf Sci 2012, 258:5212–5221.
Maiyalagan, T, Viswanathan, B, Varadraju, UV. Nitrogen containing carbon nanotubes as supports for Pt—alternate anodes for fuel cell applications. Electrochem Commun 2005, 7:905–912.
Baranton, S, Bélanger, D. Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations. J Phys Chem B 2005, 109:24401–24410.
Ohta, R, Gunjishima, I, Shinozaki, K, Hatanaka, T, Okamoto, A, Nishikawa, K. Anti‐agglomerating effect in vertically aligned carbon nanotubes derived by antisolvent precipitation of naphthalene. Chem Commun 2010, 46:5259–5261.
Ruvinskiy, PS, Bonnefont, A, Pham‐Huu, C, Savinova, ER. Using ordered carbon nanomaterials for shedding light on the mechanism of the cathodic oxygen reduction reaction. Langmuir 2011, 27:9018–9027.
Ruvinskiy, PS, Bonnefont, A, Savinova, ER. Further insight into the oxygen reduction reaction on Pt nanoparticles supported on spatially structured catalytic layers. Electrocatalysis 2011, 2:123–133.
Paulus, UA, Schmidt, TJ, Gasteiger, HA, Behm, RJ. Oxygen reduction on a high‐surface area Pt/Vulcan carbon catalyst: a thin‐film rotating ring‐disk electrode study. J Electroanal Chem 2001, 495:134–145.
Inaba, M, Yamada, H, Tokunaga, J, Tasaka, A. Effect of agglomeration of Pt/C catalyst on hydrogen peroxide formation. Electrochem Solid‐State Lett 2004, 7:A474–A476.
Bonakdarpour, A, Dahn, JR, Atanasoski, RT, Debe, MK. H2O2 release during oxygen reduction reaction on Pt nanoparticles. Electrochem Solid‐State Lett 2008, 11:B208–B211.
Schneider, A, Colmenares, L, Seidel, YE, Jusys, Z, Wickman, B, Kasemo, B, Behm, RJ. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Phys Chem Chem Phys 2008, 10:1931–1943.
Rodgers, MP, Bonville, LJ, Kunz, HR, Slattery, DK, Fenton, JM. Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime. Chem Rev 2012, 112:6075–6103.
Ruvinskiy, PS, Rouhet, M, Bonnefont, A, Friedrich, KA, Pham‐Huu, C, Savinova, ER. Cathode materials for polymer electrolyte fuel cells based on vertically aligned carbon filaments. ECS Trans 2011, 41:1089–1097.
Hasegawa S, Shinozaki Y, Imanishi M, Sano S. Method of manufacturing fuel cell. US Patent 20130020280 A1, 2013.
Matsumoto, T, Komatsu, T, Nakano, H, Arai, K, Nagashima, Y, Yoo, E, Yamazaki, T, Kijima, M, Shimizu, H, Takasawa, Y, et al. Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells. Catal Today 2004, 90:277–281.
Gong, K, Du, F, Xia, Z, Durstock, M, Dai, L. Nitrogen‐doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323:760–764.
Yang, J, Liu, D‐J, Kariuki, NN, Chen, LX. Aligned carbon nanotubes with built‐in FeN4 active sites for electrocatalytic reduction of oxygen. Chem Commun 2008:329–331.
Hawkeye, MM, Brett, MJ. Glancing angle deposition: Fabrication, properties, and applications of micro‐ and nanostructured thin films. J Vacuum Sci Technol 2007, 25:1317–1335.
Khudhayer, WJ, Kariuki, N, Myers, DJ, Shaikh, AU, Karabacak, T. GLAD Cr nanorods coated with SAD Pt thin film for oxygen reduction reaction. J Electrochem Soc 2012, 159:B729–B736.
Francis, SA, Tucker, RT, Brett, MJ, Bergens, SH. Structural and activity comparison of self‐limiting versus traditional Pt electro‐depositions on nanopillar Ni films. J Power Sour 2013, 222:533–541.
Bonakdarpour, A, Fleischauer, MD, Brett, MJ, Dahn, JR. Columnar support structures for oxygen reduction electrocatalysts prepared by glancing angle deposition. Appl Catal A 2008, 349:110–115.
Khudhayer, WJ, Kariuki, NN, Wang, X, Myers, DJ, Shaikh, AU, Karabacak, T. Oxygen reduction reaction electrocatalytic activity of glancing angle deposited platinum nanorod arrays. J Electrochem Soc 2011, 158:B1029–B1041.
Ghicov, A, Schmuki, P. Self‐ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self‐aligned MOx structures. Chem Commun 2009, 45:2791–2808.
Lim, D‐H, Lee, W‐J, Wheldon, J, Macy, NL, Smyrl, WH. Electrochemical characterization and durability of sputtered Pt catalysts on TiO2 nanotube arrays as a cathode material for PEFCs fuel cells and energy conversion. J Electrochem Soc 2010, 157:B862–B867.
Bernardi, DM, Verbrugge, MW. A mathematical model of the solid polymer electrolyte fuel cell. J Electrochem Soc 1992, 139:2477–2491.
Eikerling, M, Kornishev, AA. Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells. J Electroanal Chem 1998, 453:89–106.
Gloaguen, F, Durand, R. Simulations of PEFC cathodes: an effectiveness factor approach. J Appl Electrochem 1997, 27:1029–1035.
Ticianelli, EA. A modelling approach to the characterization of the limiting polarization behaviour of gas diffusion electrodes. J Electroanal Chem 1995, 387:1–10.
Wang, Q, Eikerling, M, Song, D, Liu, ZS. Modeling of ultra‐thin two‐phase catalyst layers in PEFC. J Electrochem Soc 2007, 154:F95–F101.
Du, CY, Cheng, XQ, Yang, T, Yin, GP, Shi, PF. Numerical simulation of the ordered catalyst layer in cathode of proton exchange membrane fuel cells. Electrochem Commun 2005, 7:1411–1416.
Du, CY, Yang, T, Shi, PF, Yin, GP, Cheng, XQ. Performance analysis of the ordered and the conventional catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 2006, 51:4934–4941.
Hussain, MM, Song, D, Liu, ZS, Xie, Z. Modeling an ordered nanostructured cathode catalyst layer for proton exchange membrane fuel cells. J Power Sources 2011, 196:4533–4544.
Rao, SM, Xing, Y. Simulation of nanostructured electrodes for polymer electrolyte membrane fuel cells. J Power Sour 2008, 185:1094–1100.
Chan, K, Eikerling, M. A pore‐scale model of oxygen reduction in ionomer‐free catalyst layers of PEFCs fuel cells and energy conversion. J Electrochem Soc 2011, 158:B18–B28.
Zenyuk, IV, Litster, S. Spatially resolved modeling of electric double layers and surface chemistry for the hydrogen oxidation reaction in water‐filled platinum–carbon electrodes. J Phys Chem C 2012, 116:9862–9875.