U.S. Geological Survey. Soda ash. In: McNutt MK, ed. Mineral Commodity Summaries 2012. Reston, VA: U.S. Geological Survey; 2012, 148.
Ellis, BL, Nazar, LF. Sodium and sodium‐ion energy storage batteries. Curr Opin Solid State Mater Sci 2012, 16:168–177.
Goodenough, JB. Rechargeable batteries: challenges old and new. J Solid State Electrochem 2012, 16:2019–2029.
Kummer, JT, Weber, N. Battery having a molten alkali metal anode and molten sulfur cathode. US Patent 3413150, 1968.
Sun, Q, Yang, Y, Fu, ZW. Electrochemical properties of room temperature sodium–air batteries with non‐aqueous electrolyte. Electrochem Commun 2012, 16:22–25.
Sudworth, JL. The sodium/nickel chloride (ZEBRA) battery. J Power Sources 2001, 100:149–163.
Bullis, K. Sodium‐ion cells for cheap energy storage. Technology review, Published by MIT, Wednesday December 2, 2009.
Pan, H, Hu, YS, Chen, L. Room‐temperature stationary sodium‐ion batteries for large‐scale electric energy storage. Energy Environ Sci 2013, 6:2338–2360.
Shannon, RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr 1976, A32:751–767.
Slater, MD, Kim, D, Lee, E, Johnson, CS. Sodium ion batteries. Grand challenges in energy storage. Adv Funct Mater 2013, 23:917–1089.
Kalyani, P, Chitra, S, Mohan, T, Gopukumar, S. Lithium metal rechargeable cells using Li2MnO3 as a positive electrode. J Power Sources 1999, 80:103–106.
Gopukumar, S, Jeong, Y, Kim, KB. Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ion 2003, 159:223–232.
Gopukumar, S, Chung, KY, Kim, KB. Novel synthesis of layered LiNi1/2Mn1/2O2 as cathode material for lithium rechargeable cells. Electrochim Acta 2004, 49:803–810.
Sivashanmugam, A, Thirunakaran, R, Zou, M, Yoshio, M, Yamaki, J, Gopukumar, S. Glycine assisted sol‐gel combustion synthesis and characterization of aluminium doped LiNiVO4 for use in lithium ion batteries. J Electrochem Soc 2006, 153:A497–A503.
Nithya, C, Thirunakaran, R, Sivashanmugam, A, Gopukumar, S. Microwave synthesis of novel high voltage (4.6 V) high capacity LiCuxCo1‐xO2±δ cathode material for lithium rechargeable cells. J Power Sources 2011, 196:6788–6793.
Nithya, C, Thirunakaran, R, Sivashanmugam, A, Gopukumar, S. A new high performing cathode material for lithium rechargeable batteries. ACS Appl Mater Interfaces 2012, 4:4040–4046.
Gopukumar, S, Nithya, C, Maheswari, PH, Ravikumar, R, Thirunakaran, R, Sivashanmugam, A, Dhawan, SK, Mathur, RB. Solar powered ne lithium ion battery incorporating high performing electrode materials. RSC Adv 2012, 2:11574–11577.
Nithya, C, Gopukumar, S. Reduced graphite oxide/Sn nano composite: a superior anode for lithium ion batteries. ChemSusChem 2013, 6:898–904.
Ravikumar, R, Gopukumar, S. High quality NMP expoliated graphene nano sheets—SnO2 composite anode material for lithium ion battery. Phys Chem Chem Phys 2013, 15:3712–3717.
Koleva, V, Boyadzhieva, T, Zhecheva, E, Nihtianova, D, Simova, S, Tyuliev, G, Stoyanova, R. Precursor‐based methods for low‐temperature synthesis of defectless NaMnPO4 with an olivine‐ and maricite‐type structure. Crystal Eng Commun 2013, 15:9080–9089.
Bridson, JN, Quinlan, SE, Tremaine, PR. Synthesis and crystal structure of maricite and sodium Iron(III) hydroxyphosphate. Chem Mater 1998, 10:763–768.
Klein, F, Jache, B, Bhide, A, Adelhelm, P. Conversion reactions for sodium‐ion batteries. Phys Chem Chem Phys 2013, 15:15876–15887.
Senguttuvan, P, Rousse, G, Seznec, V, Tarascon, JM, Palacin, MR. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 2011, 23:4109–4111.
Stevens, DA, Dahn, JR. High capacity anode materials for rechargeable sodium‐ion batteries. J Electrochem Soc 2000, 147:1271–1273.
Jiang, JW, Dahn, JR. Effects of solvents and salts on the thermal stability of LiC6. Electrochim Acta 2004, 49:4599–4604.
Asher, RC. A lamellar compound of sodium and graphite. J Inorg Nucl Chem 1959, 10:238–249.
Ge, P, Fouletier, M. Electrochemical intercalation of sodium in graphite. Solid State Ion 1988, 30:1172–1175.
Doeff, MM, Ma, YP, Visco, SJ, Dejonghe, LC. Electrochemical insertion of sodium into carbon. J Electrochem Soc 1993, 140:L169–L170.
Stevens, DA, Dahn, JR. The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 2001, 148:A803–A811.
Zhao, J, Zhao, L, Chihara, K, Okada, S, Yamaki, J, Matsumoto, S, Kuze, S, Nakane, K. Electrochemical and thermal properties of hard carbon‐type anodes for Na‐ion batteries. J Power Sources 2013, 244:752–757.
Komaba, S, Murata, W, Ishikawa, T, Yabuuchi, N, Ozeki, T, Nakayama, T, Ogata, A, Gotoh, K, Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard‐carbon electrodes and application to Na‐Ion batteries. Adv Funct Mater 2011, 21:3859–3867.
Alcantara, R, Jimenez‐Mateos, JM, Lavela, P, Tirado, JL. Carbon black: a promising electrode material for sodium ion batteries. Electrochem Commun 2001, 3:639–642.
Shao, Y, Xiao, J, Wang, W, Engelhard, M, Chen, X, Nie, Z, Gu, M, Saraf, LV, Exarhos, G, Zhang, JG, et al. Surface‐driven sodium ion storage in nano cellular carbon foams. Nano Lett 2013, 13:3909–3914.
Zhou, X, Guo, YG. Highly disordered carbon as a superior anode material for room‐temperature sodium ion batteries. ChemElectroChem 2013, 1:83–86.
Cao, Y, Xiao, L, Shshko, ML, Wang, W, Schwenzer, B, Xiao, J, Nie, Z, Yang, Z, Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 2012, 12:3783–3787.
Matsushita, T, Ishii, Y, Kawasaki, S. Electrochemical insertion of sodium ion into nanocarbon materials for sodium ion batteries. ECS Trans 2013, 50:1–6.
Tang, K, Fu, L, White, RJ, Yu, L, Titirici, MM, Antonietti, M, Maier, J. Hollow carbon nanospheres with superior rate capability for sodium based batteries. Adv Energy Mater 2012, 2:873–877.
Ponrouch, A, Goni, AR, Rosa Palacin, M. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 2013, 27:85–88.
Wang, Z, Qie, L, Yuan, L, Zhang, W, Hu, X, Huang, Y. Functionalized N‐doped interconnected carbon nanofibers as an anode material for sodium ion storage with excellent performance. Carbon 2013, 55:328–334.
Chevrier, VL, Ceder, G. Challenges for Na‐ion negative electrodes. J Electrochem Soc 2011, 158:A1011–A1014.
Darwhiche, A, Marino, C, Sougrati, T, Fraisse, B, Stievano, L, Monconduit, L. Better cycling performances of bulk Sb in Na‐ion batteries compared to Li–ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 2012, 134:20805–20811.
Qian, J, Chen, Y, Wu, L, Cao, Y, Ai, X, Yang, H. High capacity Na‐storage and superior cyclability of nanocomposite Sb/C anode for Na‐ion batteries. Chem Commun 2012, 48:7070–7072.
Zhu, Y, Han, X, Xu, Y, Liu, Y, Zheng, S, Xu, K, Hu, L, Wang, C. Electrospun Sb/C fibers for a stable and fast sodium ion battery anode. ACS Nano 2013, 7:6378–6386.
Datta, MK, Epur, R, Saha, P, Kadakia, K, Park, SK, Kumta, PN. Tin and graphite based nanocomposites: potential anode for sodium ion batteries. J Power Sources 2013, 225:316–322.
Zhu, H, Jia, Z, Chen, Y, Weadock, N, Wan, J, Vaaland, O, Han, X, Li, T, Hu, L. Tin anode for sodium ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 2013, 13:3093–3100.
Xu, Y, Zhu, Y, Liu, Y, Wang, C. Electrochemical performance of porous carbon/tin composite anodes for sodium ion and lithium ion batteries. Adv Energy Mater 2013, 3:128–133.
Abel, PR, Lin, YM, Souza, T, Chou, CY, Gupta, A, Goodenough, JB, Hwang, GS, Heller, A, Mullins, CB. Nanocolumnar germanium thin films as a high rate sodium ion battery anode material. J Phys Chem C 2013, 117:18885–18890.
Baggetto, L, Keum, JK, Browning, JF, Veith, GM. Germanium as negative electrode material for sodium ion batteries. Electrochem Commun 2013, 34:41–44.
Kim, Y, Park, Y, Choi, A, Choi, NS, Kim, J, Lee, J, Ryu, JH, Oh, SM, Lee, KT. An amorphous red phosphorous/carbon composite as a promising anode material for sodium ion batteries. Adv Mater 2013, 25:3045–3049.
Qian, J, Wu, X, Cao, Y, Ai, X, Yang, H. High capacity and rate capability of amorphous phosphorous for sodium ion batteries. Angew Chem 2013, 125:4731–4734.
Luo, C, Xu, Y, Zhu, Y, Liu, Y, Zheng, S, Liu, Y, Langrock, A, Wang, C. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013, 7:8003–8010.
Tarascon, JM. Key challenges in future Li‐battery research. Philos Trans R Soc A 2010, 368:3227–3241.
Shannon, RD. Revised effective ionic‐radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A: Found Crystallogr 1976, 32:751–767.
Xiong, H, Slater, MD, Balasubramanian, M, Johnson, CS, Rajh, T. Amorphous TiO2 anode for sodium ion batteries. J Phys Chem Lett 2011, 2:2560–2565.
Huang, JP, Yuan, DD, Zhang, HZ, Cao, YL, Li, GR, Yang, HX, Gao, XP. Electrochemical sodium storage of TiO2 (B) nanotubes for sodium ion batteries. RSC Adv 2013, 3:12593–12597.
Bi, Z, Paranthaman, MP, Menchhofer, PA, Dehoff, RR, Bridges, CA, Chi, M, Guo, B, Sun, XG, Dai, S. Self‐organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries self‐organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sources 2013, 222:461–466.
Xu, Y, Lotfabad, EM, Wang, H, Farbod, B, Xu, Z, Kohandehghan, A, Mitlin, D. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 2013, 49:8973–8975.
Reddy, MV, Subba Rao, GV, Chowdari, BVR. Metal oxides and oxysalts as anode materials for lithium ion batteries. Chem Rev 2013, 113:5364–5457.
Reddy, MV, Andreea, LYT, Ling, AY, Hwee, JNC, Lin, CA, Adams, S, Loh, KP, Mathe, MK, Ozoemena, KI, Chowdari, BVR. Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2. Electrochim Acta 2013, 106:143–148.
Gu, M, Kushima, A, Shao, Y, Zhang, JG, Liu, J, Browning, ND, Li, J, Wang, C. Probing the failure mechanism of SnO2 nanowires sodium ion batteries. Nano Lett 2013, 13:5203–5211.
Su, D, Ahn, HJ, Wang, G. SnO2@graphene nanocomposites as anode materials for Na‐ion batteries with superior electrochemical performance. Chem Commun 2013, 49:3131–3133.
Wang, Y, Su, D, Wang, C, Wang, G. SnO2@MWCNT nanocomposite as a high capacity anode material for sodium‐ion batteries. Electrochem Commun 2013, 29:8–11.
Liu, Y, Qiao, Y, Zhang, W, Hu, P, Chen, C, Li, Z, Yuan, L, Hu, X, Huang, Y. Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage. J Alloys Compd 2014, 586:208–215.
Do, GX, Paul, BJ, Mathew, V, Kim, J. Nanostructured iron ((III) oxyhydroxide/(VI) oxide) composite as a reversible Li, Na and K‐ion insertion electrode for energy storage devices. J Mater Chem A 2013, 1:7185–7190.
Koo, B, Chattopadhyay, S, Shibata, T, Prakapenka, VB, Johnson, CS, Rajh, T, Shevchenko, E. Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem Mater 2013, 25:245–252.
Valvo, M, Lindgren, M, Lafont, L, Björefors, F, Edstrom, K. Towards more sustainable negative electrodes in Na‐ion batteries via nanostructured iron oxide. J Power Sources 2014, 245:967–978.
Tompsett, DA, Islam, MS. Electrochemistry of hollandite α‐MnO2: Li‐Ion and Na‐Ion insertion and Li2O incorporation. Chem Mater 2013, 25:2515–2526.
Cao, Y, Xiao, L, Wang, W, Choi, D, Nie, Z, Yu, J, Saraf, LV, Yang, Z, Liu, J. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 2011, 23:3155–3160.
Hariharan, S, Saravanan, K, Balaya, P. α‐MoO3: a high performance anode material for sodium‐ion batteries. Electrochem Commun 2013, 31:5–9.
Thissen, A, Ensling, D, Madrigal, FJF, Jaegermann, W. Photoelectron spectroscopic study of the reaction of Li and Na with NiCo2O4. Chem Mater 2005, 17:5202–5208.
Sun, Q, Ren, QQ, Li, H, Fu, ZW. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem Commun 2011, 13:1462–1464.
Lu, L, Sui, ML, Lu, K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 2000, 287:1463–1466.
McFadden, SX, Mishra, RS, Valiev, RZ, Zhilyaev, AP, Mukherjee, AK. Low‐temperature superplasticity in nanostructured nickel and metal alloys. Nature 1999, 398:684–686.
Appelstone, D, Yoon, S, Manthiram, A. Mo3Sb7–C composite anodes for lithium‐ion batteries. J Phys Chem C 2011, 115:18909–18915.
Baggetto, L, Jumas, JC, Górka, J, Bridges, CA, Veith, GM. Predictions of particle size and lattice diffusion pathway requirements for sodium‐ion anodes using η‐Cu6Sn5 thin films as a model system. Phys Chem Chem Phys 2013, 15:10885–10894.
Baggetto, L, Marszewski, M, Górka, J, Jaroniec, M, Veith, GM. AlSb thin films as negative electrodes for Li‐ion and Na‐ion batteries. J Power Sources 2013, 243:699–705.
Thorne, JS, Dunlap, RA, Obrovac, MN. (Cu6Sn5)1−xCx active/inactive nanocomposite negative electrodes for Na‐ion batteries. Electrochim Acta 2013, 112:133–137.
Baggetto, L, Allcorn, E, Unocic, RR, Manthiram, A, Veith, GM. Mo3Sb7 as a very fast anode material for lithium‐ion and sodium‐ion batteries. J Mater Chem A 2013, 1:11163–11169.
Nam, DH, Hong, KS, Lim, SJ, Kwon, HS. Electrochemical synthesis of a three‐dimensional porous Sb/Cu2Sb anode for Na‐ion batteries. J Power Sources 2014, 247:423–427.
Liu, Y, Xu, Y, Zhu, Y, Culver, JN, Lundgren, CA, Xu, K, Wang, C. Tin‐coated viral nanoforests as sodium‐ion battery anodes. ACS Nano 2013, 7:3627–3634.
Lin, YM, Abel, PR, Gupta, A, Goodenough, JB, Heller, A, Mullins, CB. Sn–Cu nanocomposite anodes for rechargeable sodium‐ion batteries. ACS Appl Mater Interfaces 2013, 5:8273–8277.
Darwiche, A, Sougrati, MT, Fraisse, B, Stievano, L, Monconduit, L. Facile synthesis and long cycle life of SnSb as negative electrode material for Na‐ion batteries. Electrochem Commun 2013, 32:18–21.
Xiao, L, Cao, Y, Xiao, J, Wang, W, Kovarik, L, Nie, Z, Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na‐ion battery applications. Chem Commun 2012, 48:3321–3323.
Wu, L, Pei, F, Mao, R, Wu, F, Wu, Y, Qian, J, Cao, Y, Ai, X, Yang, H. SiC–Sb–C nanocomposites as high‐capacity and cycling‐stable anode for sodium‐ion batteries. Electrochim Acta 2013, 87:41–45.
Shirpour, M, Cabana, J, Doeff, M. New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energy Environ Sci 2013, 6:2538–2547.
Wang, W, Yu, C, Lin, Z, Hou, J, Zhu, H, Jiao, S. Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium‐ion batteries with ultrafast charge–discharge rates. Nanoscale 2013, 5:594–599.
Wang, W, Yu, C, Lin, Z, Hou, J, Zhu, H, Jiao, S. Single crystalline Na2Ti3O7 rods as an anode material for sodium‐ion batteries. RSC Adv 2013, 3:1041–1044.
Rudola, A, Saravanan, K, Devaraj, S, Gong, H, Balaya, P. Na2Ti6O13: a potential anode for grid‐storage sodium‐ion batteries. Chem Commun 2013, 49:7451–7453.
Wessells, CD, Huggins, RA, Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat Commun 2011, 2:1–5.
Park, Y, Shin, DS, Woo, SH, Choi, NS, Shin, KH, Oh, SM, Lee, KT, Hong, SY. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 2012, 24:3562–3567.
Zhao, L, Zhao, J, Hu, YS, Li, H, Zhou, Z, Armand, M, Chen, L. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low‐cost room‐temperature sodium‐ion battery. Adv Energy Mater 2012, 2:962–965.
Zhao, RR, Cao, YL, Ai, XP, Yang, HX. Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li‐ and Na‐ion batteries. J Electroanal Chem 2013, 688:93–97.
Shakoor, RA, Lim, SY, Kim, H, Nam, KW, Kang, JK, Kang, K, Choi, JW. Mechanochemical synthesis and electrochemical behavior of Na3FeF6 in sodium and lithium batteries. Solid State Ion 2012, 218:35–40.
Liu, WM, Sun, Q, Fu, ZW. Interfacial sodium storage in NaF–Ti nanocomposites. Electrochem Commun 2013, 27:156–159.
Li, X, Hasan, MM, Hector, AL, Owen, JR. Performance of nanocrystalline Ni3N as a negative electrode for sodium‐ion batteries. J Mater Chem A 2013, 1:6441–6445.
Park, SI, Gocheva, I, Okada, S, Yamaki, J. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium‐ion batteries. J Electrochem Soc 2011, 158:A1067–A1070.
Shacklette, LW, Jew, TR, Townsend, L. Rechargeable electrodes from sodium cobalt bronzes. J Electrochem Soc 1988, 135:2669–2674.
Braconnier, JJ, Delmas, C, Fouassier, C, Hagenmuller, P. Comportement electrochimique des phases NaxCoO2. Mater Res Bull 1980, 15:1797–1804.
Kim, D, Kang, SH, Slater, M, Rood, S, Vaughey, JT, Karan, N, Balasubramanian, M, Johnson, CS. Enabling sodium batteries using lithium‐substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 2011, 1:333–336.
Berthelot, R, Carlier, D, Delmas, C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 2011, 10:74–80.
Delams, C, Braconnier, JJ, Fouassier, C, Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion 1981, 3‐4:165–169.
Miyazaki, S, Kikkawa, S, Koizumi, M. Chemical and electrochemical deintercalations of the layered compounds LiMO2 (M = Cr, Co) and NaM′O2 (M′ Cr, Fe, Co, Ni). Synth Met 1983, 6:211–217.
Ding, JJ, Zhou, YN, Sun, Q, Yu, XQ, Yang, XQ, Fu, ZW. Electrochemical properties of P2‐phase Na0.74CoO2 compounds as cathode material for rechargeable sodium‐ion batteries. Electrochim Acta 2013, 87:388–393.
Rai, AK, Anh, LT, Gim, J, Mathew, V, Kim, J. Electrochemical properties of NaxCoO2 (x ∼ 0.71) cathode for rechargeable sodium‐ion batteries. Ceram Int 2014, 40:2411–2417.
Xia, X, Dahn, JR. NaCrO2 is a fundamentally safe positive electrode material for sodium‐ion batteries with liquid electrolytes. Electrochem Solid‐State Lett 2012, 15:A1–A4.
Ding, JJ, Zhou, YN, Sun, Q, Fu, ZW. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem Commun 2012, 22:85–88.
Yoshida, H, Yabuuchi, N, Komaba, S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na‐ion batteries. Electrochem Commun 2013, 34:60–63.
Singh, G, Acebedo, B, Cabanas, MC, Shanmukaraj, D, Armand, M, Rojo, D. A novel approach to overcome first cycle irreversible capacity in P2‐Na2/3[Fe1/2Mn1/2]O2. Electrochem Commun 2013, 37:61–63.
Wang, X, Tamaru, M, Okubo, M, Yamada, A. Electrode properties of P2–Na2/3MnyCo1‐yO2 as cathode materials for sodium‐ion batteries. J Phys Chem C 2013, 117:15545–15551.
Komaba, S, Yaabuchi, N, Nakayama, T, Ogata, A, Ishikawa, T, Nakai, I. Study on the reversible electrode reaction of Na1−xNi0.5Mn0.5O2 for a rechargeable sodium‐ion Battery. Inorg Chem 2012, 51:6211–6220.
Jian, Z, Yu, H, Zhou, H. Designing high‐capacity cathode materials for sodium‐ion batteries. Electrochem Commun 2013, 34:215–218.
Kim, D, Lee, A, Slater, M, Lu, W, Rood, S, Johnson, CS. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na‐ion battery application. Electrochem Commun 2012, 18:66–69.
Yuan, D, He, W, Pei, F, Wu, F, Wu, Y, Qian, J, Cao, Y, Ai, X, Yang, H. Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium‐ion batteries. J Mater Chem A 2013, 1:3895–3899.
Kataoka, R, Mukai, T, Yoshizawa, A, Sakai, T. Development of high capacity cathode material for sodium ion batteries Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2. J Electrochem Soc 2013, 160:A933–A939.
Buchholz, D, Moretti, A, Kloepsch, R, Nowak, S, Siozios, V, Winter, M, Passerini, S. Toward Na‐ion batteries‐synthesis and characterization of a novel high capacity Na Ion intercalation material. Chem Mater 2013, 25:142–148.
Chagas, LC, Buchholz, D, Wu, L, Vortmann, B, Passerini, S. Unexpected performance of layered sodium‐ion cathode material in ionic liquid‐based electrolyte. J Power Sources 2014, 247:377–383.
Gupta, A, Mullins, C, Goodenough, JB. Na2Ni2TeO6: evaluation as a cathode for sodium battery. J Power Sources 2013, 243:817–821.
Tamaru, M, Wang, X, Okubo, M, Yamada, A. Layered Na2RuO3 as a cathode material for Na‐ion batteries. Electrochem Commun 2013, 33:23–26.
Lu, H, Zhou, H, Chen, L, Tang, Z, Yang, W. Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium‐based batteries. J Power Sources 2011, 196:814–819.
Tepavcevic, S, Xiong, X, Stamenkovic, VR, Zuo, X, Balasubramanian, M, Prakapenka, VB, Johnson, CS, Rajh, T. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium‐ion batteries. ACS Nano 2012, 6:530–538.
Doeff, MM, Richardson, TJ, Kepley, L. Lithium insertion processes of orthorhombic NaxMnO2‐based electrode materials. J Electrochem Soc 1996, 143:2507–2516.
Sauvage, F, Laffont, L, Tarascon, JM, Baudrin, E. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 2007, 46:3289–3294.
Shun‐yi, Y, Xian‐you, W, Ying, W, Quan‐qi, C, Jiao‐jiao, L, Xiu‐kang, Y. Effect of sodium content on structure and electrochemical performances of NaxMnO2+δ cathode material. Trans Nonferrous Met Soc China 2010, 20:1892–1898.
Ruffo, R, Fathi, R, Kim, DJ, Jung, YH, Mari, CM, Kim, DK. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim Acta 2013, 108:575–582.
Zhao, L, Ni, J, Wang, H, Gao, L. Na0.44MnO2 electrodes for non‐aqueous sodium batteries. RSC Adv 2013, 3:6650–6655.
Su, D, Wang, C, Ahn, H, Wang, G. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium‐ Ion batteries with enhanced performance. Chem Eur J 2013, 19:10884–10889.
Whitacre, JF, Tevar, A, Sharma, S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium‐ion energy storage device. Electrochem Commun 2010, 12:463–466.
Wang, H, Yang, B, Liao, XZ, Xu, J, Yang, D, He, YS, Ma, ZF. Electrochemical properties of P2‐Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim Acta 2013, 113:200–204.
Su, D, Ahn, HJ, Wang, G. Hydrothermal synthesis of α‐MnO2 and β‐MnO2 nanorods as high capacity cathode materials for sodium ion batteries. J Mater Chem A 2013, 1:4845–4850.
Padhi, AK, Nanjundaswamy, KS, Masquelier, C, Okada, S, Goodenough, JB. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J Electrochem Soc 1997, 144:1188–1194.
Ramesh, TN, Lee, KT, Ellis, BL, Nazar, LF. Tavorite lithium iron fluorophosphate cathode materials: phase transition and electrochemistry of LiFePO4F – Li2FePO4F. Electrochem Solid‐State Lett 2010, 13:A43–A47.
Tripathi, R, Ramesh, TN, Ellis, BL, Nazar, LF. Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem Int Ed 2010, 49:8738–8742.
Recham, N, Chotard, JN, Dupont, L, Delacourt, C, Walker, W, Armand, M, Tarascon, JM. A 3.6 V lithium‐based fluorosulphate insertion positive electrode for lithium‐ion batteries. Nat Mater 2010, 9:68–74.
Ong, SP, Chevrier, VL, Hautier, G, Jain, A, Moore, C, Kim, S, Ma, X, Ceder, G. Voltage, stability and diffusion barrier differences between sodium‐ion and lithium‐ion intercalation materials. Energy Environ Sci 2011, 4:3680–3688.
Moreau, P, Guyomard, D, Gaubicher, J, Boucher, F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem Mater 2010, 22:4126–4128.
Kim, H, Park, I, Seo, DH, Lee, S, Kim, SW, Kwon, WJ, Park, YU, Kim, CS, Jeo, S, Kang, K. New iron‐based mixed‐polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 2012, 134:10369–10372.
Casas‐Cabanas, M, Roddatis, V, Saurel, D, Kubiak, P, Carretero‐Gonzalez, J, Palomares, V, Serras, P, Rojo, T. Crystal chemistry of Na insertion/deinsertion in FePO4‐NaFePO4. J Mater Chem 2012, 22:17421–17423.
Zhu, Y, Xu, Y, Liu, X, Luo, C, Wang, C. Comparison of electrochemical performances of olivine NaFePO4 in sodium‐ion batteries and olivine LiFePO4 in lithium‐ion batteries. Nanoscale 2013, 5:780–787.
Lee, KT, Ramesh, TN, Nan, F, Botton, G, Nazar, F. Topochemical synthesis of sodium metal phosphate olivines for sodium‐ion batteries. Chem Mater 2011, 23:3593–3600.
Liu, Y, Xu, Y, Han, X, Pellegrinelli, C, Zhu, Y, Zhu, H, Wan, Y, Chung, AC, Zhu, Y, Zhu, H, et al. Porous amorphous FePO4 nanoparticles connected by single‐wall carbon nanotubes for sodium ion battery cathodes. Nano Lett 2012, 12:5664–5668.
Barker, J, Saidi, MY, Swoyer, JL. A sodium‐ion cell based on the fluorophosphates compound NaVPO4F. Electrochem Solid‐State Lett 2003, 6:A1–A4.
Liu, Z, Wang, X, Wang, Y, Tang, A, Yang, S, He, L. Preparation of NaV1‐xAlxPO4F cathode materials for application of sodium‐ion battery. Trans Nonferrous Met Soc China 2008, 18:346–350.
Park, YU, Seo, DH, Kwon, HS, Kim, B, Kim, J, Kim, H, Kim, I, Yoo, HI, Kang, K. A new high‐energy cathode for a Na‐Ion battery with ultrahigh stability. J Am Chem Soc 2013, 135:13870–13878.
Lu, Y, Zhang, S, Li, Y, Xue, L, Xu, G, Yang, X. Preparation and characterization of carbon‐coated NaVPO4F as cathode material for rechargeable sodium‐ion batteries. J Power Sources 2014, 247:770–777.
Langrock, A, Xu, Y, Liu, Y, Ehrman, S, Manivannan, A, Wang, C. Carbon coated hollow Na2FePO4F spheres for Na‐ion battery cathodes. J Power Sources 2013, 223:62–67.
Wang, Q, Madsen, A, Owen, JR, Weller, MT. Direct hydrofluorothermal synthesis of sodium transition metal fluorosulfates as possible Na‐ion battery cathode materials. Chem Commun 2013, 49:2121–2123.
Padhi, AK, Nanjundaswamy, KS, Masquelier, C, Okada, S, Goodenough, JB. J Electrochem Soc 1997, 144:1609–1613.
Barpanda, P, Nishimura, S, Yamada, A. High‐voltage pyrophosphate cathodes. Adv Energy Mater 2012, 2:841–859.
Uebou, Y, Okada, S, Yamaki, J. Electrochemical insertion of lithium and sodium into (MoO2)2P2O7. J Power Sources 2003, 115:119–124.
Uebou, Y, Okada, S, Yamaki, J. Electrochemical alkali metal intercalation into the 3D‐framework of MP2O7(M = Mo,W). Electrochemistry 2003, 78:308–312.
Adam, L, Guesdon, A, Raveau, B. A new lithium manganese phosphate with an original tunnel structure in the A2MP2O7 family. J Solid State Chem 2008, 181:3110–3115.
Barpanda, P, Ye, T, Nishimura, S, Chung, SC, Yamada, Y, Okubo, M, Zhou, H, Yamada, A, Zhou, H, Yamada, A. Sodium iron pyrophosphate: a novel 3.0 V iron‐based cathode for sodium‐ion batteries. Electrochem Commun 2012, 24:116–119.
Barpanda, P, Liu, G, Ling, CD, Tamuru, M, Avdeev, M, Chung, SC, Yamada, Y, Yamada, A. Na2FeP2O7: a safe cathode for rechargeable sodium‐ion batteries. Chem Mater 2013, 25:3480–3487.
Honma, T, Ito, N, Togashi, T, Sato, A, Komatsu, T. Triclinic Na2‐xFe1+x/2P2O7/C glass‐ceramics with high current density performance for sodium ion battery. J Power Sources 2013, 227:31–34.
Chen, CY, Matsumoto, K, Nohira, T, Hagiwara, R, Orikasa, Y, Uchimoto, Y. Pyrophosphate Na2FeP2O7 as a low‐cost and high‐performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid. J Power Sources 2014, 246:783–787.
Barpanda, P, Lu, J, Ye, T, Kajiyama, M, Chung, SC, Yabuuchi, N, Komaba, S, Yamada, A. A layer‐structured Na2CoP2O7 pyrophosphate cathode for sodium‐ion batteries. RSC Adv 2013, 3:3857–3860.
Nose, M, Nakayama, H, Nobuhara, K, Yamaguchi, H, Nakanishi, S, Iba, H. Na4Co3(PO4)2P2O7: a novel storage material for sodium‐ion batteries. J Power Sources 2013, 234:175–179.
Barpanda, P, Ye, T, Avdeev, M, Chung, SC, Yamada, A. A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium‐ion batteries. J Mater Chem A 2013, 1:4194–4197.
Nose, M, Shiotani, S, Nakayama, H, Nobuhara, K, Nakanishi, S, Iba, H. Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: high potential and high capacity electrode material for sodium‐ion batteries. Electrochem Commun 2013, 34:266–269.
Masquelier, C, Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 2013, 113:6552–6591.
Delmas, C, Cherkaoui, F, Nadiri, A, Hagenmuller, P. A NASICON type phase as intercalation electrode: NaTi2(PO4)3. Mater Res Bull 1987, 22:631–639.
Goodenough, JB, Hong, HYP, Kafalas, JA. Fast Na+‐ion transport in skeleton structures. Mater Res Bull 1976, 11:203–220.
Plashnitsa, LS, Kobayashi, E, Noguchi, Y, Okada, S, Yamaki, J. Performance of NASICON symmetric cell with ionic liquid electrolyte. J Electrochem Soc 2010, 157:A536–A543.
Jian, Z, Zhao, L, Pan, H, Hu, YS, Li, H, Chen, W, Chen, L. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 2012, 14:86–89.
Shen, W, Wang, C, Liu, H, Yang, W. Towards highly stable storage of sodium ions: a porous Na3V2(PO4)3/C cathode material for sodium‐ion batteries. Chem Eur J 2013, 19:14712–14718.
Kang, J, Baek, S, Mathew, V, Gim, J, Song, J, Park, H, Chae, E, Rai, AK, Kim, J. High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro‐synthesis for sodium‐ion batteries. J Mater Chem 2012, 22:20857–20860.
Jung, YH, Lim, CH, Kim, DK. Graphene supported Na3V2(PO4)3 as a high rate cathode material for sodium ion batteries. J Mater Chem A 2013, 1:11350–11354.
Aragon, MJ, Abarca, CV, Lavela, P, Tirado, JL. Improving the electrochemical performance of titanium phosphate‐based electrodes in sodium batteries by lithium substitution. J Mater Chem A 2013, 1:13963–13969.
Manthiram, A, Goodenough, JB. Lithium insertion into Fe2(MO4)3 frameworks: comparison of M = W with M = Mo. J Solid State Chem 1987, 71:349–360.
Sun, Q, Ren, QQ, Fu, ZW. NASICON‐type Fe2(MoO4)3 thin film as cathode for rechargeable sodium ion battery. Electrochem Commun 2012, 23:145–148.
Aravindan, V, Ling, WC, Hartung, S, Bucher, N, Madavi, S. Carbon‐coated LiTi2(PO4)3: an ideal insertion host for lithium‐ion and sodium‐ion batteries. Chem Asian J 2014, 9:878–882.
Yao, M, Kuratani, K, Kojima, T, Takeichi, N, Senoh, H, Kiyobayasi, T. Indigo carmine: an organic crystal as a positive‐electrode material for rechargeable sodium batteries. Sci Rep 2014, 4:1–6.
Zhao, R, Zhu, L, Cao, Y, Ai, X, Yang, HX. An aniline‐nitroaniline copolymer as a high capacity cathode for Na‐ion batteries. Electrochem Commun 2012, 21:36–38.
Yue, JL, Sun, Q, Fu, ZW. Cu2Se with facile synthesis as a cathode material for rechargeable sodium batteries. Chem Commun 2013, 49:5868–5870.
Wu, X, Deng, W, Qian, J, Cao, Y, Ai, X, Yang, H. Single‐crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na‐ion batteries. J Mater Chem A 2013, 1:10130–10134.
Wei, Z, Filatov, AS, Dikarev, EV. Volatile heterometallic precursors for the low‐temperature synthesis of prospective sodium ion battery cathode materials. J Am Chem Soc 2013, 135:12216–12219.
Wang, L, Lu, Y, Xu, M, Cheng, J, Zhang, D, Goodenough, JB. A superior low‐cost cathode for a Na‐Ion battery. Angew Chem Int Edn 2013, 125:2018–2021.
Kitajou, A, Yamaguchi, J, Hara, S, Okada, S. Discharge/charge reaction mechanism of a pyrite‐type FeS2 cathode for sodium secondary batteries. J Power Sources 2014, 247:391–395.
Chen, H, Hao, Q, Zivkovic, O, Hautier, G, Du, LS, Tang, Y, Hu, YY, Ma, X, Grey, CP, Ceder, G. Sidorenkite (Na3MnPO4CO3): a new intercalation cathode material for Na‐Ion batteries. Chem Mater 2013, 25:2777–2786.
Yang, D, Liao, XZ, Huang, B, Shen, J, He, YS, Ma, ZF. A Na4Fe(CN)6/NaCl solid solution cathode material with an enhanced electrochemical performance for sodium ion batteries. J Mater Chem A 2013, 1:13417–13421.
Chihara, K, Chujo, N, Kitajou, A, Okada, S. Cathode properties of Na2C6O6 for sodium‐ion batteries. Electrochim Acta 2013, 110:240–246.
Yamada, Y, Doi, T, Tanaka, I, Okada, S, Yamaki, J. Liquid‐phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium‐ion batteries. J Power Sources 2011, 196:4837–4841.
Kitajou, A, Komatsu, H, Chihara, K, Gocheva, ID, Okada, S. Novel synthesis and electrochemical properties of perovskite‐type NaFeF3 for a sodium‐ion battery. J Power Sources 2012, 198:389–392.
Matsuda, T, Takachi, M, Moritomo, Y. A sodium manganese ferrocyanide thin film for Na‐ion batteries. Chem Commun 2013, 49:2750–2752.
You, Y, Wu, XL, Yin, YX, Guo, YG. A zero‐strain insertion cathode material of nickel ferricyanide for sodium‐ion batteries. J Mater Chem A 2013, 1:14061–14065.