Simpson, AP, Lutz, AE. Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 2007, 32:4811–4820.
Barreto, L, Makihira, A, Riahi, K. The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 2003, 28:267–284.
Ogden, JM. Prospects for building a hydrogen energy infrastructure. Annu Rev Energy Environ 1999, 24:227–279.
Marbán, G, Valdés‐Solís, T. Towards the hydrogen economy? Int J Hydrogen Energy 2007, 32:1625–1637.
Steinfeld, A. Solar thermochemical production of hydrogen––a review. Solar Energy 2005, 78:603–615.
Perkins, C, Weimer, AW. Solar‐thermal production of renewable hydrogen. AICHE J 2009, 55:286–293.
Holladay, JD, Hu, J, King, DL, Wang, Y. An overview of hydrogen production technologies. Catal Today 2009, 139:244–260.
Zou, Z, Ye, J, Sayama, K, Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414:625–627.
Lewis, NS, Nocera, DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 2006, 103:15729–15735.
Siegel, NP, Miller, JE, Ermanoski, I, Diver, RB, Stechel, EB. Factors affecting the efficiency of solar driven metal oxide thermochemical cycles. Ind Eng Chem Res 2013, 52:3276–3286.
Roeb, M, Neises, M, Monnerie, N, Call, F, Simon, H, Sattler, C, Schmücker, M, Pitz‐Paal, R. Materials‐related aspects of thermochemical water and carbon dioxide splitting: a review. Materials 2012, 5:2015–2054.
Perkins, C, Weimer, AW. Likely near‐term solar‐thermal water splitting technologies. Int J Hydrogen Energy 2004, 29:1587–1599.
Abanades, S, Charvin, P, Flamant, G, Neveu, P. Screening of water‐splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 2006, 31:2805–2822.
Scheffe, JR, Steinfeld, A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review. Mater Today 2014, 17:341–348.
Naterer, GF, Gabriel, K, Wang, ZL, Daggupati, VN, Gravelsins, R. Thermochemical hydrogen production with a copper‐chlorine cycle. I: oxygen release from copper oxychloride decomposition. Int J Hydrogen Energy 2008, 33:5439–5450.
Naterer, G, Suppiah, S, Lewis, M, Gabriel, K, Dincer, I, Rosen, MA, Fowler, M, Rizvi, G, Easton, EB, Ikeda, BM, et al. Recent Canadian advances in nuclear‐based hydrogen production and the thermochemical Cu‐Cl cycle. Int J Hydrogen Energy 2009, 34:2901–2917.
Kasahara, S, Kubo, S, Hino, R, Onuki, K, Nomura, M, Nakao, S. Flowsheet study of the thermochemical water‐splitting iodine‐sulfur process for effective hydrogen production. Int J Hydrogen Energy 2007, 32:489–496.
Yildiz, B, Kazimi, MS. Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrogen Energy 2006, 31:77–92.
Nakamura, N, Miyaoka, H, Ichikawa, T, Kojima, Y. Hydrogen production via thermochemical water‐splitting by lithium redox reaction. J Alloys Compd 2013, 580:S410–S413.
Marugán, J, Botas, JA, Martín, M, Molina, R, Herradón, C. Study of the first step of the Mn2O3/MnO thermochemical cycle for solar hydrogen production. Int J Hydrogen Energy 2012, 37:7017–7025.
Kreider, PB, Funke, HH, Cuche, K, Schmidt, M, Steinfeld, A, Weimer, AW. Manganese oxide based thermochemical hydrogen production cycle. Int J Hydrogen Energy 2011, 36:7028–7037.
Francis, TM, Lichty, PR, Weimer, AW. Manganese oxide dissociation kinetics for the Mn2O3 thermochemical water‐splitting cycle. Part 1: experimental. Chem Eng Sci 2010, 65:3709–3717.
Chueh, WC, Falter, C, Abbott, M, Scipio, D, Furler, P, Haile, SM, Steinfeld, A. High‐flux solar‐driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010, 330:1797–1801.
Meredig, B, Wolverton, C. First‐principles thermodynamic framework for the evaluation of thermochemical H2O or CO2 splitting materials. Phys Rev B 2009, 80:245119.
Miller, JE, McDaniel, AH, Allendorf, MD. Considerations in the design of materials for solar‐driven fuel production using metal‐oxide thermochemical cycles. Adv Energy Mater 2014, 4:1300469.
Nakamura, T. Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy 1977, 19:467–475.
Diver, RB, Miller, JE, Allendorf, MD, Siegel, NP, Hogan, RE. Solar thermochemical water‐splitting ferrite‐cycle heat engines. J Solar Energy Eng 2008, 130:041001.
Chueh, WC, Haile, SM. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Philos Trans Ser A Math Phys Eng Sci 2010, 368:3269–3294.
Lapp, J, Davidson, JH, Lipiński, W. Efficiency of two‐step solar thermochemical non‐stoichiometric redox cycles with heat recovery. Energy 2012, 37:591–600.
Scheffe, JR, Steinfeld, A. Thermodynamic analysis of cerium‐based oxides for solar thermochemical fuel production. Energy Fuel 2012, 26:1928–1936.
Muhich, CL, Evanko, BW, Weston, KC, Lichty, P, Liang, X, Martinek, J, Musgrave, CB, Weimer, AW. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science 2013, 341:540–542.
Hao, Y, Yang, C‐K, Haile, SM. High‐temperature isothermal chemical cycling for solar‐driven fuel production. Phys Chem Chem Phys 2013, 15:17084–17092.
Bader, R, Venstrom, LJ, Davidson, JH, Lipiński, W. Thermodynamic analysis of isothermal redox cycling of ceria for solar fuel production. Energy Fuel 2013, 27:5533–5544.
Venstrom, LJ, De Smith, RM, Hao, Y, Haile, SM, Davidson, JH. Efficient splitting of CO2 in an isothermal redox cycle based on ceria. Energy Fuel 2014, 28:2732–2742.
Krenzke, PT, Davidson, JH. Thermodynamic analysis of syngas production via the solar thermochemical cerium oxide redox cycle with methane‐driven reduction. Energy Fuel 2014, 28:4088–4095.
Lundberg, M. Model calculations on some feasible two‐step water splitting processes. Int J Hydrogen Energy 1993, 18:369–376.
Kodama, T, Gokon, N. Thermochemical cycles for high‐temperature solar hydrogen production. Chem Rev 2007, 107:4048–4077.
Steinfeld, A. Solar hydrogen production via a two‐step water‐splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 2002, 27:611–619.
Kaneko, H, Miura, T, Ishihara, H, Taku, S, Yokoyama, T, Nakajima, H, Tamaura, Y. Reactive ceramics of CeO2–MOx (M = Mn, Fe, Ni, Cu) for H2 generation by two‐step water splitting using concentrated solar thermal energy. Energy 2007, 32:656–663.
Abanades, S, Charvin, P, Lemont, F, Flamant, G. Novel two‐step SnO2/SnO water‐splitting cycle for solar thermochemical production of hydrogen. Int J Hydrogen Energy 2008, 33:6021–6030.
Loutzenhiser, PG, Meier, A, Steinfeld, A. Review of the two‐step H2O/CO2‐splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials 2010, 3:4922–4938.
Weidenkaff, A, Reller, A, Wokaun, A, Steinfeld, A. Thermogravimetric analysis of the ZnO/Zn water splitting cycle. Thermochim Acta 2000, 359:69–75.
Levêque, G, Abanades, S. Kinetic analysis of high‐temperature solid–gas reactions by an inverse method applied to ZnO and SnO2 solar thermal dissociation. Chem Eng J 2013, 217:139–149.
Charvin, P, Abanades, S, Lemont, F, Flamant, G. Experimental study of SnO2/SnO/Sn thermochemical systems for solar production of hydrogen. AICHE J 2008, 54:2759–2767.
Schunk, LO, Steinfeld, A. Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a solar‐driven thermogravimeter in the 1800–2100 K range. AICHE J 2009, 55:1497–1504.
Perkins, C, Lichty, P, Weimer, AW. Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry. Chem Eng Sci 2007, 62:5952–5962.
Chambon, M, Abanades, S, Flamant, G. Solar thermal reduction of ZnO and SnO2: characterization of the recombination reaction with O2. Chem Eng Sci 2010, 65:3671–3680.
Gstoehl, D, Brambilla, A, Schunk, LO, Steinfeld, A. A quenching apparatus for the gaseous products of the solar thermal dissociation of ZnO. J Mater Sci 2008, 43:4729–4736.
Berman, A, Epstein, M. The kinetics of hydrogen production in the oxidation of liquid zinc with water vapor. Int J Hydrogen Energy 2000, 25:957–967.
Yang, W, Han, Z, Zhou, J, Liu, J, Cen, K. Quantum chemical calculations on the reaction of zinc and water in gas phase. Combust Sci Technol 2013, 186:24–33.
Melchior, T, Piatkowski, N, Steinfeld, A. H2 production by steam‐quenching of Zn vapor in a hot‐wall aerosol flow reactor. Chem Eng Sci 2009, 64:1095–1101.
Abu Hamed, T, Davidson, JH, Stolzenburg, M. Hydrolysis of evaporated Zn in a hot wall flow reactor. J Solar Energy Eng 2008, 130:041010.
Venstrom, LJ, Davidson, JH. The kinetics of the heterogeneous oxidation of zinc vapor by carbon dioxide. Chem Eng Sci 2013, 93:163–172.
Levêque, G, Abanades, S, Jumas, J‐C, Olivier‐Fourcade, J. Characterization of two‐step tin‐based redox system for thermochemical fuel production from solar‐driven CO2 and H2O splitting cycle. Ind Eng Chem Res 2014, 53:5668–5677.
Vishnevetsky, I, Epstein, M. Tin as a possible candidate for solar thermochemical redox process for hydrogen production. J Solar Energy Eng 2009, 131:021007.
Chambon, M, Abanades, S, Flamant, G. Kinetic investigation of hydrogen generation from hydrolysis of SnO and Zn solar nanopowders. Int J Hydrogen Energy 2009, 34:5326–5336.
Abanades, S. CO2 and H2O reduction by solar thermochemical looping using SnO2/SnO redox reactions: thermogravimetric analysis. Int J Hydrogen Energy 2012, 37:8223–8231.
Steinfeld, A, Sanders, S, Palumbo, R. Design aspects of solar thermochemical engineering—a case study: two‐step water‐splitting cycle using the FE3O4/FeO redox system. Solar Energy 1999, 65:43–53.
Lichty, P, Liang, X, Muhich, C, Evanko, B, Bingham, C, Weimer, AW. Atomic layer deposited thin film metal oxides for fuel production in a solar cavity reactor. Int J Hydrogen Energy 2012, 37:16888–16894.
Coker, EN, Ohlhausen, JA, Ambrosini, A, Miller, JE. Oxygen transport and isotopic exchange in iron oxide/YSZ thermochemically‐active materials via splitting of C(18O)2 at high temperature studied by thermogravimetric analysis and secondary ion mass spectrometry. J Mater Chem 2012, 22:6726–6732.
Charvin, P, Abanades, S, Flamant, G, Lemort, F. Two‐step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy 2007, 32:1124–1133.
Allen, KM, Mehdizadeh, AM, Klausner, JF, Coker, EN. Study of a magnetically stabilized porous structure for thermochemical water splitting via TGA, high‐temperature‐XRD, and SEM analyses. Ind Eng Chem Res 2013, 52:3683–3692.
Kodama, T, Nakamuro, Y, Mizuno, T. A two‐step thermochemical water splitting by iron‐oxide on stabilized zirconia. J Solar Energy Eng 2004, 128:3–7.
Kaneko, H, Kodama, T, Gokon, N, Tamaura, Y, Lovegrove, K, Luzzi, A. Decomposition of Zn‐ferrite for O2 generation by concentrated solar radiation. Solar Energy 2004, 76:317–322.
Ehrensberger, K, Frei, A, Kuhn, P, Oswald, HR, Hug, P. Comparative experimental investigations of the water‐splitting reaction with iron oxide Fe1 − yO and iron manganese oxides (Fe1 − xMnx)1 − yO. Solid State Ion 1995, 78:151–160.
Allendorf, MD, Diver, RB, Siegel, NP, Miller, JE. Two‐step water splitting using mixed‐metal ferrites: thermodynamic analysis and characterization of synthesized materials. Energy Fuel 2008, 22:4115–4124.
Bhosale, R, Khadka, R, Puszynski, J, Shende, R. H2 generation from two‐step thermochemical water‐splitting reaction using sol–gel derived SnxFeyOz. J Renew Sustain Energy 2011, 3:063104.
Kodama, T, Kondoh, Y, Yamamoto, R, Andou, H, Satou, N. Thermochemical hydrogen production by a redox system of ZrO2‐supported Co(II)‐ferrite. Solar Energy 2005, 78:623–631.
Tamaura, Y, Steinfeld, A, Kuhn, P, Ehrensberger, K. Production of solar hydrogen by a novel, 2‐step, water‐splitting thermochemical cycle. Energy 1995, 20:325–330.
Ishihara, H, Kaneko, H, Yokoyama, T, Fuse, A, Hasegawa, N, Tamaura, Y. Hydrogen production through two‐step water splitting using YSZ (Ni, Fe) system for solar hydrogen production. In: ASME 2005 International Solar Energy Conference: Orlando, FL, 2005.
Ishihara, H, Kaneko, H, Hasegawa, N, Tamaura, Y. Two‐step water splitting process with solid solution of YSZ and Ni‐ferrite for solar hydrogen production (ISEC 2005–76151). J Solar Energy Eng 2008, 130:044501.
Scheffe, JR, Li, JH, Weimer, AW. A spinel ferrite/hercynite water‐splitting redox cycle. Int J Hydrogen Energy 2010, 35:3333–3340.
Arifin, D, Aston, VJ, Liang, XH, McDaniel, AH, Weimer, AW. CoFe2O4 on a porous Al2O3 nanostructure for solar thermochemical CO2 splitting. Energy Environ Sci 2012, 5:9438–9443.
Muhich, CL, Weston, KC, Arifin, D, McDaniel, AH, Musgrave, CB, Weimer, AW. Extracting kinetic information from complex gas–solid reaction data. Ind Eng Chem Res 2014. doi:10.1021/ie503894f.
Abanades, S, Flamant, G. Thermochemical hydrogen production from a two‐step solar‐driven water‐splitting cycle based on cerium oxides. Solar Energy 2006, 80:1611–1623.
Kaneko, H, Ishihara, H, Taku, S, Naganuma, Y, Hasegawa, N, Tamaura, Y. Cerium ion redox system in CeO2–xFe2O3 solid solution at high temperatures (1273–1673 K) in the two‐step water‐splitting reaction for solar H2 generation. J Mater Sci 2008, 43:3153–3161.
Furler, P, Scheffe, J, Marxer, D, Gorbar, M, Bonk, A, Vogt, U, Steinfeld, A. Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual‐scale porosities. Phys Chem Chem Phys 2014, 16:10503–10511.
Scheffe, JR, Jacot, R, Patzke, GR, Steinfeld, A. Synthesis, characterization, and thermochemical redox performance of Hf4+, Zr4+, and Sc3+ doped ceria for splitting CO2. J Phys Chem C 2013, 117:24104–24114.
Abanades, S, Legal, A, Cordier, A, Peraudeau, G, Flamant, G, Julbe, A. Investigation of reactive cerium‐based oxides for H2 production by thermochemical two‐step water‐splitting. J Mater Sci 2010, 45:4163–4173.
Meng, Q‐L, Lee, C‐i, Ishihara, T, Kaneko, H, Tamaura, Y. Reactivity of CeO2‐based ceramics for solar hydrogen production via a two‐step water‐splitting cycle with concentrated solar energy. Int J Hydrogen Energy 2011, 36:13435–13441.
Meng, Q‐L, Lee, C‐i, Shigeta, S, Kaneko, H, Tamaura, Y. Solar hydrogen production using Ce1 − xLixO2 − δ solid solutions via a thermochemical, two‐step water‐splitting cycle. J Solid State Chem 2012, 194:343–351.
Chueh, WC, Haile, SM. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. Chemsuschem 2009, 2:735–739.
Jiang, Q, Zhou, G, Jiang, Z, Li, C. Thermochemical CO2 splitting reaction with CexM1 − xO2 − δ (M = Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions. Solar Energy 2014, 99:55–66.
Ramos‐Fernandez, EV, Shiju, NR, Rothenberg, G. Understanding the solar‐driven reduction of CO2 on doped ceria. RSC Adv 2014, 4:16456–16463.
Le Gal, A, Abanades, S, Bion, N, Le Mercier, T, Harlé, V. Reactivity of doped ceria‐based mixed oxides for solar thermochemical hydrogen generation via two‐step water‐splitting cycles. Energy Fuel 2013, 27:6068–6078.
Le Gal, A, Abanades, S. Dopant incorporation in ceria for enhanced water‐splitting activity during solar thermochemical hydrogen generation. J Phys Chem C 2012, 116:13516–13523.
Le Gal, A, Abanades, S, Flamant, G. CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions. Energy Fuel 2011, 25:4836–4845.
Scaranto, J, Idriss, H. The effect of uranium cations on the redox properties of CeO2 within the context of hydrogen production from water. Top Catal 2014, 58:1–6.
Kang, M, Zhang, J, Wang, C, Wang, F, Zhao, N, Xiao, F, Wei, W, Sun, Y. CO2 splitting via two step thermochemical reactions over doped ceria/zirconia solid solutions. RSC Adv 2013, 3:18878–18885.
Kang, M, Wu, X, Zhang, J, Zhao, N, Wei, W, Sun, Y. Enhanced thermochemical CO2 splitting over Mg‐ and Ca‐doped ceria/zirconia solid solutions. RSC Adv 2014, 4:5583–5590.
Dasari, HP, Ahn, K, Park, S‐Y, Ji, H‐I, Yoon, KJ, Kim, B‐K, Je, H‐J, Lee, H‐W, Lee, J‐H. Hydrogen production from water‐splitting reaction based on RE‐doped ceria–zirconia solid‐solutions. Int J Hydrogen Energy 2013, 38:6097–6103.
Al‐Shankiti, I, Al‐Otaibi, F, Al‐Salik, Y, Idriss, H. Solar thermal hydrogen production from water over modified CeO2 materials. Top Catal 2013, 56:1129–1138.
Al‐Salik, Y, Al‐Shankiti, I, Idriss, H. Core level spectroscopy of oxidized and reduced CexU1 − xO2 materials. J Electron Spectrosc Relat Phenom 2014, 194:66–73.
Nalbandian, L, Evdou, A, Zaspalis, V. La1 − xSrxMO3 (M = Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors. Int J Hydrogen Energy 2009, 34:7162–7172.
Evdou, A, Zaspalis, V, Nalbandian, L. La1 − xSrxFeO3 − δ perovskites as redox materials for application in a membrane reactor for simultaneous production of pure hydrogen and synthesis gas. Fuel 2010, 89:1265–1273.
Scheffe, JR, Weibel, D, Steinfeld, A. Lanthanum–strontium–manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2. Energy Fuel 2013, 27:4250–4257.
McDaniel, AH, Miller, EC, Arifin, D, Ambrosini, A, Coker, EN, O`Hayre, R, Chueh, WC, Tong, JH. Sr‐ and Mn‐doped LaAlO3–δ for solar thermochemical H2 and CO production. Energy Environ Sci 2013, 6:2424–2428.
McDaniel, AH, Ambrosini, A, Coker, EN, Miller, JE, Chueh, WC, O`Hayre, R, Tong, J. Nonstoichiometric perovskite oxides for solar thermochemical H2 and CO production. Energy Procedia 2014, 49:2009–2018.
Demont, A, Abanades, S, Beche, E. Investigation of perovskite structures as oxygen‐exchange redox materials for hydrogen production from thermochemical two‐step water‐splitting cycles. J Phys Chem C 2014, 118:12682–12692.
Yang, C‐K, Yamazaki, Y, Aydin, A, Haile, SM. Thermodynamic and kinetic assessments of strontium‐doped lanthanum manganite perovskites for two‐step thermochemical water splitting. J Mater Chem A 2014, 2:13612–13623.
Deml, AM, Stevanovic, V, Muhich, CL, Musgrave, CB, O`Hayre, R. Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics. Energy Environ Sci 2014, 7:1996–2004.
Jiang, Q, Tong, J, Zhou, G, Jiang, Z, Li, Z, Li, C. Thermochemical CO2 splitting reaction with supported LaxA1−xFeyB1−yO3 (A = Sr, Ce, B = Co, Mn; 0 %3C x, y %3C 1) perovskite oxides. Solar Energy 2014, 103:425–437.
Ermanoski, I, Miller, JE, Allendorf, MD. Efficiency maximization in solar‐thermochemical fuel production: challenging the concept of isothermal water splitting. Phys Chem Chem Phys 2014, 16:8418–8427.
Lange, M, Roeb, M, Sattler, C, Pitz‐Paal, R. T–S diagram efficiency analysis of two‐step thermochemical cycles for solar water splitting under various process conditions. Energy 2014, 67:298–308.
Ermanoski, I. Cascading pressure thermal reduction for efficient solar fuel production. Int J Hydrogen Energy 2014, 39:13114–13117.
Ermanoski, I, Siegel, NP, Stechel, EB. A new reactor concept for efficient solar‐thermochemical fuel production. J Solar Energy Eng 2013, 135:031002.
Dyer, PN, Richards, RE, Russek, SL, Taylor, DM. Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 2000, 134:21–33.
Felinks, J, Brendelberger, S, Roeb, M, Sattler, C, Pitz‐Paal, R. Heat recovery concept for thermochemical processes using a solid heat transfer medium. Appl Therm Eng 2014, 73:1004–1011.
Lapp, J, Davidson, JH, Lipiński, W. Heat transfer analysis of a solid‐solid heat recuperation system for solar‐driven nonstoichiometric redox cycles. J Solar Energy Eng 2013, 135:031004.
Krenzke, PT, Davidson, JH. On the efficiency of solar H2 and CO production via the thermochemical cerium oxide redox cycle: the option of inert‐swept reduction. Energy Fuel 2015, 29:1045–1054.
Panlener, RJ, Blumenthal, RN, Garnier, JE. A thermodynamic study of nonstoichiometric cerium dioxide. J Phys Chem Solid 1975, 36:1213–1222.
Zinkevich, M, Djurovic, D, Aldinger, F. Thermodynamic modelling of the cerium–oxygen system. Solid State Ion 2006, 177:989–1001.
Roine, A. HSC Thermochemistry 7.0. 2009.
Bale, CW, Chartrand, P, Degterov, SA, Eriksson, G, Hack, K, Ben Mahfoud, R, Melançon, J, Pelton, AD, Petersen, S. FactSage thermochemical software and databases. Calphad 2002, 26:189–228.
Furler, P, Scheffe, JR, Steinfeld, A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high‐temperature solar reactor. Energy Environ Sci 2012, 5:6098–6103.
Schunk, LO, Lipiński, W, Steinfeld, A. Heat transfer model of a solar receiver‐reactor for the thermal dissociation of ZnO—experimental validation at 10 kW and scale‐up to 1 MW. Chem Eng J 2009, 150:502–508.
Ehrhart, B, Gill, D. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage. Energy Procedia 2014, 49:752–761.
Martinek, J, Viger, R, Weimer, AW. Transient simulation of a tubular packed bed solar receiver for hydrogen generation via metal oxide thermochemical cycles. Solar Energy 2014, 105:613–631.
Houaijia, A, Sattler, C, Roeb, M, Lange, M, Breuer, S, Säck, JP. Analysis and improvement of a high‐efficiency solar cavity reactor design for a two‐step thermochemical cycle for solar hydrogen production from water. Solar Energy 2013, 97:26–38.
Agrafiotis, C, Roeb, M, Konstandopoulos, A, Nalbandian, L, Zaspalis, V, Sattler, C, Stobbe, P, Steele, A. Solar water splitting for hydrogen production with monolithic reactors. Solar Energy 2005, 79:409–421.
Roeb, M, Neises, M, Säck, J‐P, Rietbrock, P, Monnerie, N, Dersch, J, Schmitz, M, Sattler, C. Operational strategy of a two‐step thermochemical process for solar hydrogen production. Int J Hydrogen Energy 2009, 34:4537–4545.
Chambon, M, Abanades, S, Flamant, G. Thermal dissociation of compressed ZnO and SnO2 powders in a moving‐front solar thermochemical reactor. AICHE J 2011, 57:2264–2273.
Miller, JE, Diver, RB, Siegel, NP, Coker, EN, Ambrosini, A, Rodriguez, MA, Garino, TJ, Dedrick, DE, Johnson, TA, Allendorf, MD, et al. Sunshine to petrol: solar thermochemistry for liquid fuels. Abstr Pap Am Chem Soc 2011, 241:393‐PHYS.
Lichty, P, Perkins, C, Woodruff, B, Bingham, C, Weimer, A. Rapid high temperature solar thermal biomass gasification in a prototype cavity reactor. J Solar Energy Eng 2010, 132:011012.
Martinek, J, Weimer, AW. Design considerations for a multiple tube solar reactor. Solar Energy 2013, 90:68–83.
Melchior, T, Perkins, C, Weimer, AW, Steinfeld, A. A cavity‐receiver containing a tubular absorber for high‐temperature thermochemical processing using concentrated solar energy. Int J Therm Sci 2008, 47:1496–1503.
Miller, JE, Allendorf, MD, Ambrosini, A, Chen, KS, Coker, EN, Dedrick, DE, Diver, RB, Hogan, RE, Ermanoski, I, Johnson, TA, et al. Final Report Reimagining Liquid Transportation Fuels: Sunshine to Petrol. Sandia National Laboratories Report No. SAND2012-0307, 2012.
Martinek, J, Weimer, AW. Evaluation of finite volume solutions for radiative heat transfer in a closed cavity solar receiver for high temperature solar thermal processes. Int J Heat Mass Transf 2013, 58:585–596.
Müller, R, Haeberling, P, Palumbo, RD. Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s). Solar Energy 2006, 80:500–511.
Koepf, E, Advani, SG, Steinfeld, A, Prasad, AK. A novel beam‐down, gravity‐fed, solar thermochemical receiver/reactor for direct solid particle decomposition: design, modeling, and experimentation. Int J Hydrogen Energy 2012, 37:16871–16887.
Scheffe, JR, Welte, M, Steinfeld, A. Thermal reduction of ceria within an aerosol reactor for H2O and CO2 splitting. Ind Eng Chem Res 2014, 53:2175–2182.
Gokon, N, Takahashi, S, Yamamoto, H, Kodama, T. New solar water‐splitting reactor with ferrite particles in an internally circulating fluidized bed. J Solar Energy Eng 2009, 131:011007.
Schunk, LO, Haeberling, P, Wepf, S, Wuillemin, D, Meier, A, Steinfeld, A. A receiver‐reactor for the solar thermal dissociation of zinc oxide. J Solar Energy Eng 2008, 130:021009.
Abanades, S, Charvin, P, Flamant, G. Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides: case study of zinc oxide dissociation. Chem Eng Sci 2007, 62:6323–6333.
Möller, S, Palumbo, R. The development of a solar chemical reactor for the direct thermal dissociation of zinc oxide. J Solar Energy Eng 2000, 123:83–90.
Koepf, EE, Lindemer, MD, Advani, SG, Prasad, AK. Experimental investigation of vortex flow in a two‐chamber solar thermochemical reactor. J Fluids Eng 2013, 135:111103.
Perkins, C, Lichty, PR, Weimer, AW. Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle. Int J Hydrogen Energy 2008, 33:499–510.
Kunii, D, Levenspiel, O. Fluidization Engineering, vol. 2. Boston, MA: Butterworth‐Heinemann; 1991.
Röger, M, Amsbeck, L, Gobereit, B, Buck, R. Face‐down solid particle receiver using recirculation. J Solar Energy Eng 2011, 133:031009.