Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manage 2004, 45:651–671.
Bridgwater, A, Peacocke, G. Fast pyrolysis processes for biomass. Renew Sust Energy Rev 2000, 4:1–73.
Islam, M, Zailani, R, Ani, F. Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and its characterisation. Renew Energy 1999, 17:73–84.
Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage 2001, 42:1357–1378.
Oasmaa, A, Czernik, S. Fuel oil quality of biomass pyrolysis oils: state of the art for the end users. Energy Fuels 1999, 13:914–921.
Mohan, D, Pittman, C, Steele, P. Pyrolysis of wood/biomass for bio‐oil: a critical review. Energy Fuels 2006, 20:848–889.
Brown, R, Brown, T. Biorenewable Resources: Engineering New Products from Agriculture. Ames, IA: Iowa State Press; 2003, 53–73.
Stocker, M. Biofuels and biomass‐to‐liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 2008, 47:9200–9211.
Vitolo, S, Bresci, B, Seggiani, M, Gallo, M. Catalytic upgrading of pyrolytic oils over HZSM‐5 zeolite: behaviour of the catalyst when used in repeated upgrading–regenerating cycles. Fuel 2001, 80:17–26.
Sharma, R, Wooten, J, Baliga, V, Lin, X, Chan, W, Hajaligol, M. Characterization of chars from pyrolysis of lignin. Fuel 2004, 83:1469–1482.
Deniel, M, Haarlemmer, G, Roubaud, A, Weiss‐Hortala, E, Fages, J. Energy valorization of food processing residues and model compounds by hydrothermal liquefaction. Renew Sust Energy Rev 2016, 54:1632–1652.
Elliott, DC, Biller, P, Ross, AB, Schmidt, AJ, Jones, SB. Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour Technol 2015, 178:147–156.
Kersten, SRA, Knezevic, D, Venderbosch, RH. Handbook of Biofuels Production Processes and Technologies. UK: Woodhead Publishing Ltd; 2011, 478–492.
Elliott, DC. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. UK: John Wiley %26 Sons, Ltd.; 2011, 200–231.
Guo, Y, Yeh, T, Song, W, Xu, D, Wang, S. A review of bio‐oil production from hydrothermal liquefaction of algae. Renew Sust Energy Rev 2015, 48:776–790.
Tekin, K, Karagoz, S, Bektaş, S. A review of hydrothermal biomass processing. Renew Sust Energy Rev 2014, 40:673–687.
Bridgwater, A. Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 1999, 51:3–22.
Lewandowska, A, Monteverdi, S, Bettahar, M, Ziolek, M. MCM‐41 mesoporous molecular sieves supported nickel—physico‐chemical properties and catalytic activity in hydrogenation of benzene. J Mol Catal A: Chem 2002, 188:85–95.
Oasmaa, A, Peacocke, C. A Guide to Physical Property Characterization of Biomass‐Derived Fast Pyrolysis Liquids. Espoo: VTT Technical Research Center of Finland; 2001.
Bridgwater, A. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 1996, 29:285–295.
Elliott, DC. Transportation fuels from biomass via fast pyrolysis and hydroprocessing. Wiley Interdiscip Rev Energy Environ 2013, 2:525–533.
Lodeng, R, Hannevold, L, Bergem, H, Stöcker, M. The Role of Catalysis for the Sustainable Production of Bio‐fuels and Bio‐chemicals. UK: Elsevier B.V.; 2013, 351–396.
Ardiyanti, AR, Venderbosch, RH, Yin, W, Heeres, HJ. Catalytic Hydrogenation for Biomass Valorization. UK: RSC Publishing; 2015, 151–173.
Venderbosch, RH, Heeres, HJ. Biomass Power for the World: Transformations to Effective Use. USA: Pan Stanford Publishing Pte. Ltd; 2015, 515–540.
Undri, A, Abou‐Zaid, M, Briens, C, Berruti, F, Rosi, L, Bartoli, M, Frediani, M, Frediani, P. A simple procedure for chromatographic analysis of bio‐oils from pyrolysis. J Anal Appl Pyrolysis 2015, 114:208–221.
Choi, YS, Johnston, PA, Brown, RC, Shanks, BH, Lee, K‐H. Detailed characterization of red oak‐derived pyrolysis oil: integrated use of GC, HPLC, IC, GPC and Karl‐Fischer. J Anal Appl Pyrolysis 2014, 110:147–154.
Smets, K, Adriaensens, P, Reggers, G, Schreurs, S, Carleer, R, Yperman, J. Flash pyrolysis of rapeseed cake: influence of temperature on the yield and the characteristics of the pyrolysis liquid. J Anal Appl Pyrolysis 2011, 90:118–125.
Hoekstra, E, Van Swaaij, W, Kersten, S, Hogendoorn, K. Fast pyrolysis in a novel wire‐mesh reactor: decomposition of pine wood and model compounds. Chem Eng J 2012, 187:172–184.
Alsbou, E, Helleur, R. Whole sample analysis of bio‐oils and thermal cracking fractions by Py‐GC/MS and TLC–FID. J Anal Appl Pyrolysis 2013, 101:222–231.
Bertero, M, de la Puente, G, Sedran, U. Fuels from bio‐oils: bio‐oil production from different residual sources, characterization and thermal conditioning. Fuel 2012, 95:263–271.
Calderon, FJ, McCarty, GW, Reeves, JB. Pyrolisis‐MS and FT‐IR analysis of fresh and decomposed dairy manure. J Anal Appl Pyrolysis 2006, 76:14–23.
Castellví, BM, Langea, J‐P, van Rossuma, G, Kersten, S. A new approach for bio‐oil characterization based on gel permeation chromatography preparative fractionation. J Anal Appl Pyrolysis 2015, 113:444–453.
Mullen, CA, Boateng, AA. Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. J Anal Appl Pyrolysis 2011, 90:197–203.
Garcia‐Pereza, M, Chaalac, A, Pakdela, H, Kretschmer, D, Roya, C. Characterization of bio‐oils in chemical families. Biomass Bioenergy 2007, 31:222–242.
Ben, H, Ragauskas, A. One step thermal conversion of lignin to the gasoline range liquid products by using zeolites as additives. RSC Adv 2012, 2:12892–12898.
Santos, RM, Santos, AO, Sussuchi, EM, Nascimento, JS, Lima, AS, Freitas, LS. Pyrolysis of mangaba seed: production and characterization of bio‐oil. Bioresour Technol 2015, 196:43–48.
Elkasabi, Y, Mullen, CA, Jachson, MA, Boateng, AA. Characterization of fast‐pyrolysis bio‐oil distillation residues and their potential applications. J Anal Appl Pyrolysis 2015, 114:179–186.
Fan, X, Zhu, J‐L, Zheng, A‐L, Wei, X‐Y, Zhao, Y‐P, Cao, J‐P, Zhao, W, Lu, Y, Chen, L, You, C‐Y. Rapid characterization of heteroatomic molecules in a bio‐oil from pyrolysis of rice husk using atmospheric solids analysis probe mass spectrometry. J Anal Appl Pyrolysis 2015, 115:16–23.
Meesuk, S, Cao, J‐P, Sato, K, Ogawa, Y, Takarada, T. The effects of temperature on product yields and composition of bio‐oils in hydropyrolysis of rice husk using nickel‐loaded brown coal char catalyst. J Anal Appl Pyrolysis 2012, 94:238–245.
Wang, Y, Wang, S, Leng, F, Chen, J, Zhu, L, Luo, Z. Separation and characterization of pyrolytic lignins from the heavy fraction of bio‐oil by molecular distillation. Sep Purif Technol 2015, 152:123–132.
Moralı, U, Sensöz, S. Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio‐oil and bio‐char. Fuel 2015, 150:672–678.
Ben, H, Ragauskas, AJ. Comparison for the compositions of fast and slow pyrolysis oils by NMR characterization. Bioresour Technol 2013, 147:577–584.
Staš, M, Kubička, D, Chudoba, J, Pospíšil, M. Overview of analytical methods used for chemical characterization of pyrolysis oil. Energy Fuels 2014, 28:385–402.
Kanaujia, P, Sharma, Y, Agrawal, U, Garg, M. Analytical approaches to characterizing pyrolysis oil from biomass. Trends Anal Chem 2013, 42:125–136.
Kanaujia, P, Sharma, Y, Garg, M, Tripathi, D, Singh, R. Review of analytical strategies in the production and upgrading of bio‐oils derived from lignocellulosic biomass. J Anal Appl Pyrolysis 2014, 105:55–74.
Bayerbach, R, Meier, D. Characterization of the water‐insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: structure elucidation of oligomeric molecules. J Anal Appl Pyrolysis 2009, 85:98–107.
Moraes, MSA, Georges, F, Almeida, SR, Damasceno, FC, da Silva, MGP, Zini, CA, Jacques, RA, Caramão, EB. Analysis of products from pyrolysis of Brazilian sugar cane straw. Fuel Process Technol 2012, 101:35–43.
Araújo, RCS, Pasa, VMD, Marriott, PJ, Cardeal, ZL. Analysis of volatile organic compounds in polyurethane coatings based on Eucalyptus sp. bio‐oil pitch using comprehensive two‐dimensional gas chromatography (GC × GC). J Anal Appl Pyrolysis 2012, 88:91–97.
da Cunha, ME, Schneider, JK, Brasil, MC, Cardoso, CA, Monteiro, LR, Mendes, FL, Pinho, A, Jacques, RA, Machado, ME, Freitas, LS, et al. Analysis of fractions and bio‐oil of sugar cane straw by one‐dimensional and two‐dimensional gas chromatography with quadrupole mass spectrometry (GC × GC/qMS). Microchem J 2013, 110:113–119.
Schneider, JK, da Cunha, ME, dos Santos, AL, Maciel, GP, Brasil, MC, Pinho, AR, Mendes, FL, Jacques, RA, Caramão, EB. Comprehensive two dimensional gas chromatography with fast‐quadrupole mass spectrometry detector analysis of polar compounds extracted from the bio‐oil from the pyrolysis of sawdust. J Chromatogr A 2014, 1356:236–240.
Venkatramani, CJ, Xu, J, Phillips, JB. Separation orthogonality in temperature‐programmed comprehensive two‐dimensional gas chromatography. Anal Chem 1996, 68:1486–1492.
Murray, J. Qualitative and quantitative approaches in comprehensive two‐dimensional gas chromatography. J Chromatogr A 2012, 1261:58–68.
Murphy, RE, Schure, MR, Foley, JP. Effect of sampling rate on resolution in comprehensive two‐dimensional liquid chromatography. Anal Chem 1998, 70:1585–1594.
Seeley, JV. T heoretical study of incomplete sampling of the first dimension in comprehensive two‐dimensional chromatography. J Chromatogr A 2002, 962:21–27.
Blumberg, LM, David, F, Klee, MS, Sandra, P. Comparison of one‐dimensional and comprehensive two‐dimensional separations by gas chromatography. J Chromatogr A 2008, 1188:2–16.
Gorecki, T, Harynuk, J, Panic, O. The evolution of comprehensive two‐dimensional gas chromatography (GC × GC). J Sep Sci 2004, 27:359–379.
Beens, J, Brinkman, U. Comprehensive two‐dimensional gas chromatography‐a powerful and versatile technique. Analyst 2005, 130:123–127.
Dallüge, J, Beens, J, Brinkman, UA. Comprehensive two‐dimensional gas chromatography: a powerful and versatile analytical tool. J Chromatogr A 2003, 1000:69–108.
Marriott, P, Shellie, R. Principles and applications of comprehensive two‐dimensional gas chromatography. Trends Anal Chem 2002, 21:573–583.
Mostafa, A, Edwards, M, Górecki, T. Optimization aspects of comprehensive two‐dimensional gas chromatography. J Chromatogr A 2012, 1255:38–55.
Gu, Q, David, F, Lynen, F, Vanormelingen, P, Vyverman, W, Rumpel, K, Xu, G, Sandra, P. Evaluation of ionic liquid stationary phases for one dimensional gas chromatography–mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota. J Chromatogr A 2011, 1218:3056–3063.
da Silva, JM, Zini, CA, Caramão, EB. Evaluation of comprehensive two‐dimensional gas chromatography with micro‐electron capture detection for the analysis of seven pesticides in sediment samples. J Chromatogr A 2011, 1218:3166–3172.
van Stee, LL, Beens, J, Vreuls, RJ, Brinkman, UA. Comprehensive two‐dimensional gas chromatography with atomic emission detection and correlation with mass spectrometric detection: principles and application in petrochemical analysis. J Chromatogr A 2003, 1019:89–99.
Mahé, L, Dutriez, T, Courtiade, M, Thiébaut, D, Dulot, H, Bertoncini, F. Global approach for the selection of high temperature comprehensive two‐dimensional gas chromatography experimental conditions and quantitative analysis in regards to sulfur‐containing compounds in heavy petroleum cuts. J Chromatogr A 2011, 1218:534–544.
Adam, F, Bertoncini, F, Brodusch, N, Durand, E, Thiebaut, D, Espinat, D, Hennion, M‐C. New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two‐dimensional gas chromatography. J Chromatogr A 2007, 1148:55–64.
von Muehlen, C, de Oliveira, EC, Morrison, PD, Zini, CA, Caramao, EB, Marriott, PJ. Qualitative and quantitative study of nitrogen‐containing compounds in heavy gas oil using comprehensive two‐dimensional gas chromatography with nitrogen phosphorus detection. J Sep Sci 2007, 30:3223–3232.
Winniford, BL, Sun, K, Griffith, JF, Luong, JC. Universal and discriminative detection using a miniaturized pulsed discharge detector in comprehensive two‐dimensional GC. J Sep Sci 2006, 29:2664–2670.
Ieda, T, Ochiai, N, Miyawaki, T, Ohura, T, Horii, Y. Environmental analysis of chlorinated and brominated polycyclic aromatic hydrocarbons by comprehensive two‐dimensional gas chromatography coupled to high‐resolution time‐of‐flight mass spectrometry. J Chromatogr A 2011, 1218:3224–3232.
Purcaro, G, Tranchida, PQ, Ragonese, C, Conte, L, Dugo, P, Dugo, G, Mondello, L. Evaluation of a rapid‐scanning quadrupole mass spectrometer in an apolar × ionic‐liquid comprehensive two‐dimensional gas chromatography system. Anal Chem 2010, 82:8583–8590.
Adahchour, M, Brandt, M, Bayer, HU, Vreuls, RJJ, Batenburg, AM, Brinkman, UAT. Comprehensive two‐dimensional gas chromatography coupled to a rapid‐scanning quadrupole mass spectrometer: principles and applications. J Chromatogr A 2005, 1067:245–254.
Zeng, Z, Li, J, Hugel, HM, Xu, G, Marriott, PJ. Interpretation of comprehensive two‐dimensional gas chromatography data using advanced chemometrics. Trends Anal Chem 2014, 53:150–166.
Pierce, K, Kehimkar, B, Marney, L, Hoggard, J, Synovec, R. Review of chemometric analysis techniques for comprehensive two dimensional separations data. J Chromatogr A 2012, 1255:3–11.
Adahchour, M, Beens, J, Brinkman, UAT. Recent developments in the application of comprehensive two‐dimensional gas chromatography. J Chromatogr A 2008, 1186:67–108.
Kloekhorst, A, Shen, Y, Yie, Y, Fang, M, Heeres, HJ. Catalytic hydrogenation and hydrocracking of Alcell Lignin in alcohol/formic acid mixtures using Ru/C catalyst. Biomass Bioenergy 2015, 80:147–161.
Windt, M, Meier, D, Marsman, JH, Heeres, HJ, de Koning, S. Micro‐pyrolysis of technical lignins in a new modular rig and product analysis. J Anal Appl Pyrolysis 2009, 85:38–46.
Pyl, SP, Schietekat, CM, Van Geem, KM, Reyniers, M‐F, Vercammen, J, Beens, J, Marin, GB. Rapeseed oil methyl ester pyrolysis: on‐line product analysis using comprehensive two‐dimensional gas chromatography. J Chromatogr A 2011, 1218:3217–3223.
Moraes, MSA, Migliorini, MV, Damasceno, FC, Georges, F, Almeida, S, Zini, CA, Jacques, RA, Caramão, EB. Qualitative analysis of bio oils of agricultural residues obtained through pyrolysis using comprehensive two dimensional gas chromatography with time‐of‐flight mass spectrometric detector. J Anal Appl Pyrolysis 2012, 98:51–64.
Tessarolo, NS, dos Santos, LR, Silva, RS, Azevedo, DA. Chemical characterization of bio‐oils using comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry. J Chromatogr A 2013, 1279:68–75.
Tessarolo, NS, Silva, RC, Vanini, G, Pinho, A, Romão, W, de Castro, EV, Azevedo, DA. Assessing the chemical composition of bio‐oils using FT‐ICR mass spectrometry and comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry. Microchem J 2014, 117:68–76.
Djokic, MR, Dijkmans, T, Yildiz, G, Prins, W, Van Geem, KM. Quantitative analysis of crude and stabilized bio‐oils by comprehensive two‐dimensional gas‐chromatography. J Chromatogr A 2012, 1257:131–140.
Pyl, SP, Van Geem, KM, Puimège, P, Sabbe, MK, Reyniers, M‐F, Marin, GB. A comprehensive study of methyl decanoate pyrolysis. Energy 2012, 43:146–160.
Onorevoli, B, Machado, ME, Claudio, D, Franceschi, E, Krause, LC, Jacques, RA, Caramão, EB. A one‐dimensional and comprehensive two‐dimensional gas chromatography study of the oil and the bio‐oil of the residual cakes from the seeds of Crambe abyssinica. Ind Crops Prod 2014, 52:8–16.
Rathsack, P, Rieger, A, Haseneder, R, Gerlach, D, Repke, J‐U, Otto, M. Analysis of pyrolysis liquids from scrap tires using comprehensive gas chromatography–mass spectrometry and unsupervised learning. J Anal Appl Pyrolysis 2014, 109:234–243.
Rathsack, P, Otto, M. Classification of chemical compound classes in slow pyrolysis liquids from brown coal using comprehensive gas‐chromatography mass‐spectrometry. Fuel 2014, 116:841–849.
Silva, RV, Casilli, A, Sampaio, AL, Ávila, BM, Veloso, MC, Azevedo, DA, Romeiro, GA. The analytical characterization of castor seed cake pyrolysis bio‐oils by using comprehensive GC coupled to time of flight mass spectrometry. J Anal Appl Pyrolysis 2014, 106:152–159.
Toraman, HE, Dijkmans, T, Djokic, MR, Van Geem, KM, Marin, GB. Detailed compositional characterization of plastic waste pyrolysis oil by comprehensive two‐dimensional gas‐chromatography coupled to multiple detectors. J Chromatogr A 2014, 1359:237–246.
Marsman, J, Wildschut, J, Mahfud, F, Heeres, HJ. Identification of components in fast pyrolysis oil and upgraded products by comprehensive two‐dimensional gas chromatography and flame ionisation detection. J Chromatogr A 2007, 1150:21–27.
Marsman, JH, Wildschut, J, Evers, P, de Koning, S, Heeres, HJ. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two‐dimensional gas chromatography and time‐of‐flight mass spectrometry. J Chromatogr A 2008, 1188:17–25.
Sfetsas, T, Michailof, C, Lappas, A, Li, Q, Kneale, B. Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry. J Chromatogr A 2011, 1218:3317–3325.
Kallai, M, Veres, Z, Balla, J. Response of flame ionization detectors to different homologous series. Chromatographia 2001, 54:511–517.
Jalali‐Heravi, M, Fatemi, M. Prediction of thermal conductivity detection response factors using an artificial neural network. J Chromatogr A 2000, 897:227–235.
Jalali‐Heravi, M, Noroozian, E, Mousavi, M. Prediction of relative response factors of electron‐capture detection for some polychlorinated biphenyls using chemometrics. J Chromatogr A 2004, 1023:247–254.
Lundgren, K, Rappe, C, Tysklind, M. Low‐resolution mass spectrometric relative response factors (RRFs) and relative retention times (RRTs) on two common gas chromatographic stationary phases for 87 polychlorinated dibenzofurans. Chemosphere 2004, 55:983–995.
Arha, G, Klasinc, L, Vebera, M, Pompea, M. Calibration of mass selective detector in non‐target analysis of volatile organic compounds in the air. J Chromatogr A 2011, 1218:1538–1543.
Kloekhorst, A, Wildschut, J, Heeres, HJ. Catalytic hydrotreatment of pyrolytic lignins to give alkylphenolics and aromatics using a supported Ru catalyst. Catal Sci Technol 2014, 4:2367–2377.
Michailof, C, Sfetsas, T, Stefanidis, S, Kalogiannis, K, Theodoridis, G, Lappas, A. Quantitative and qualitative analysis of hemicellulose, cellulose and lignin bio‐oils by comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry. J Chromatogr A 2014, 1369:147–160.
Kalogiannis, K, Stefanidis, S, Michailof, C, Lappas, A, Sjöholm, E. Pyrolysis of lignin with 2DGC quantification of lignin oil: effect of lignin type, process temperature and ZSM‐5 in situ upgrading. J Anal Appl Pyrolysis 2015, 115:410–418.
Francois, I, Sandra, K, Sandra, P. Comprehensive liquid chromatography: fundamental aspects and practical considerations—a review. Anal Chim Acta 2009, 641:14–31.
Sarrut, M, Crétier, G, Heinisch, S. Theoretical and practical interest in UHPLC technology for 2D‐LC. Trends Anal Chem 2014, 63:104–112.
Guiochon, G, Marchetti, N, Mriziq, K, Shalliker, A. Implementations of two‐dimensional liquid chromatography. J Chromatogr A 2008, 1189:109–168.
Dugo, P, Cacciola, F, Kumm, T, Dugo, G, Mondello, L. Comprehensive multidimensional liquid chromatography: theory and applications. J Chromatogr A 2008, 1184:353–368.
Pól, J, Hyötyläinen, T. Comprehensive two‐dimensional liquid chromatography coupled with mass spectrometry. Anal Bioanal Chem 2008, 391:21–31.
Le Masle, A, Angot, D, Gouin, C, D`Attoma, A, Ponthus, J, Quignard, A, Heinisch, S. Development of on‐line comprehensive two‐dimensional liquid chromatography method for the separation of biomass compounds. J Chromatogr A 2014, 1340:90–98.
Tomasini, D, Cacciola, F, Rigano, F, Sciarrone, D, Donato, P, Beccaria, M, Caramão, E, Dugo, P, Mondello, L. Complementary analytical liquid chromatography methods for the characterization of aqueous phase from pyrolysis of lignocellulosic biomasses. Anal Chem 2014, 86:11255–11262.
Sarrut, M, Corgier, A, Crétier, G, Le Masle, A, Dubant, S, Heinisch, S. Potential and limitations of on‐line comprehensive reversed phase liquid chromatography × supercritical fluid chromatography for the separation of neutral compounds: an approach to separate an aqueous extract of bio‐oil. J Chromatogr A 2015, 1402:124–133.
Marshall, A, Hendrickson, C, Jackson, G. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 1998, 17:1–35.
Marshall, A, Hendrickson, C. Fourier transform ion cyclotron resonance detection: principles and experimental configurations. Int J Mass Spectrom 2002, 215:59–75.
Marshall, AG. Milestones in Fourier transform ion cyclotron resonance mass spectrometry technique development. Int J Mass Spectrom 2000, 200:331–356.
van Agthoven, M, Delsuc, M‐A, Bodenhausen, G, Rolando, C. Towards analytically useful two‐dimensional Fourier transform ion cyclotron resonance mass spectrometry. Anal Bioanal Chem 2013, 405:51–61.
Kendrick, E. A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem 1963, 35:2146–2154.
Werner, E, Heilier, J‐F, Ducruix, C, Ezan, E, Junot, C, Tabet, J‐C. Mass spectrometry for the identification of discriminating signals from metabolomics: Current status and future trends. J Chromatogr B 2008, 871:143–163.
Marshall, A, Rodgers, R. Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 2004, 37:53–59.
Hughey, C, Hendrickson, C, Rodgers, R, Marshall, A. Kendrick mass defect spectrum: a compact visual analysis for ultrahigh‐resolution broadband mass spectra. Anal Chem 2001, 73:4676–4681.
Islam, A, Cho, Y, Ahmed, A, Kim, S. Data interpretaion methods for petroleomics. Mass Spectrom Lett 2012, 3:63–67.
Kim, S, Kramer, R, Hatcher, P. Graphical method for analysis of ultrahigh‐resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Anal Chem 2003, 75:5336–5344.
Cho, Y, Ahmed, A, Islam, A, Kim, S. Developments in FT‐ICR MS instrumentation, ionization techniques and data interpretation methods for petroleomics. Mass Spectrom Rev 2015, 34:248–263.
Panda, S, Andersson, J, Schrader, W. Mass‐spectrometric analysis of complex volatile and non‐volatile crude oil components: a challenge. Anal Bioanal Chem 2007, 389:1329–1339.
Hsu, C, Liang, Z, Campana, J. Hydrocarbon characterization by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 1994, 66:850–855.
Tose, L, Cardoso, F, Fleming, F, Vicente, M, Silva, S, Aquije, G, Vaz, B, Romao, W. Analyzes of hydrocarbons by atmosphere pressure chemical ionization FT‐ICR mass spectrometry using isooctane as ionizing reagent. Fuel 2015, 153:346–354.
Miyabayashi, K, Naito, Y, Miyake, M. Characterization of heavy oil by FT‐ICRMS by various ionization techniques. J Jpn Pet Inst 2009, 52:159–171.
Hourani, N, Muller, H, Adam, F, Panda, S, Witt, M, Al‐Hajji, A, Sarathy, S. Structural level characterization of base oils using advanced analytical techniques. Energy Fuels 2015, 29:2962–2970.
Lobodin, V, Nyadong, L, Ruddy, B, Curtis, M, Jones, PR, Rodgers, R, Marshall, A. DART Fourier transform ion cyclotron resonance mass spectrometry for analysis of complex organic mixtures. Int J Mass Spectrom 2015, 378:186–192.
Smith, E, Park, S, Klein, A, Lee, Y. Bio‐oil analysis using negative electrospray ionization: comparative study of high resolution mass spectrometers and phenolic versus sugaric components. Energy Fuels 2012, 26:3796–3802.
Abdelnur, P, Vaz, B, Rocha, J, de Almeida, M, Teixeira, M, Pereira, R. Characterization of bio‐oils from different pyrolysis process steps and biomass using high‐resolution mass spectrometry. Energy Fuels 2013, 27:6646–6654.
Leonardis, I, Chiaberge, S, Fiorani, T, Spera, S, Battistel, E, Bosetti, A, Cesti, P, Reale, S, De Angelis, F. Characterization of bio‐oil from hydrothermal liquefaction of organic waste by NMR spectroscopy and FTICR mass spectrometry. ChemSusChem 2013, 6:160–167.
Sudasinghe, N, Cort, J, Hallen, R, Olarte, M, Schmidt, A, Schaub, T. Hydrothermal liquefaction oil and hydrotreated product from pine feedstock characterized by heteronuclear two‐dimensional NMR spectroscopy and FT‐ICR mass spectrometry. Fuel 2014, 137:60–69.
Sudasinghe, N, Dungan, B, Lammers, P, Albrecht, K, Elliott, D, Hallen, R, Schaub, T. High resolution FT‐ICR mass spectral analysis of bio‐oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina. Fuel 2014, 119:47–56.
Jarvis, J, Page‐Dumroese, D, Anderson, N, Corilo, Y, Rodgers, R. Characterization of fast pyrolysis products generated from several western USA woody species. Energy Fuels 2014, 28:6438–6446.
Rathsack, P, Kroll, M, Rieger, A, Haseneder, R, Gerlach, D, Repke, J‐U, Otto, M. Analysis of high molecular weight compounds in pyrolysis liquids from scrap tires using Fourier transform ion cyclotron resonance mass spectrometry. J Anal Appl Pyrolysis 2014, 107:142–149.
Kekäläinen, T, Venäläinen, T, Jänis, J. Characterization of birch wood pyrolysis oils by ultrahigh‐resolution fourier transform ion cyclotron resonance mass spectrometry: insights into thermochemical conversion. Energy Fuels 2014, 28:4596–4602.
Sanguineti, M, Hourani, N, Witt, M, Sarathy, S, Thomsen, L, Kuhnert, N. Analysis of impact of temperature and saltwater on Nannochloropsis salina bio‐oil production by ultra high resolution APCI FT‐ICR MS. Algal Res 2015, 9:227–235.
Tessarolo, N, Silva, R, Vanini, G, Pinho, A, Romao, W, de Castro, E, Azevedo, D. Assessing the chemical composition of bio‐oils using FT‐ICR mass spectrometry and comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry. Microchem J 2014, 117:68–76.
Hartman, B, Hatcher, P. Hydrothermal liquefaction of isolated cuticle of Agave Americana and Capsicum annuum: chemical characterization of petroleum‐like products. Fuel 2015, 156:225–233.
Miettinen, I, Mäkinen, M, Vilppo, T, Janis, J. Compositional characterization of phase‐separated pine wood slow pyrolysis oil by negative‐ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2015, 29:1758–1765.
Rathsack, P, Wolf, B, Kroll, M, Otto, M. Comparative study of graphite‐supported LDI‐ and ESI‐FT‐ICR‐MS of a pyrolysis liquid from a German brown coal. Anal Chem 2015, 87:7618–7627.
Santos, J, dos Santos, L, Silva, F, Eberlin, M, Wisniewski, A Jr. Comprehensive characterization of second‐generation biofuel from invasive freshwater plants by FT‐ICR MS. Bioenergy Res 2015, 8:1–8.
Chiaberge, S, Leonardis, I, Fiorani, T, Cesti, P, Reale, S, de Angelis, F. Bio‐oil from waste: a comprehensive analytical study by soft‐ionization FTICR mass spectrometry. Energy Fuels 2014, 28:2019–2026.
Liu, Y, Shi, Q, Zhang, Y, He, Y, Chung, K, Zhao, S, Xu, C. Characterization of red pine pyrolysis bio‐oil by gas chromatography–mass spectrometry and negative‐ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2012, 26:4532–4539.
Jarvis, J, McKenna, A, Hilten, R, Das, K, Rodgers, R, Marshall, A. Characterization of pine pellet and peanut hull pyrolysis bio‐oils by negative‐ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2012, 26:3810–3815.
Olaitan, A, Zekavat, B, Dhungana, B, Hockaday, W, Chamblissa, C, Solouki, T. Analysis of volatile organic compound mixtures using radio‐frequency ionization/mass spectrometry. Anal Methods 2014, 6:4982–4987.
Olcese, R, Carre, V, Aubriet, F, Dufour, A. Selectivity of bio‐oils catalytic hydrotreatment assessed by petroleomic and GC × GC/MS‐FID analysis. Energy Fuels 2013, 27:2135–2145.
Bi, Y, Wang, G, Shi, Q, Xu, C, Gao, J. Compositional changes during hydrodeoxygenation of biomass pyrolysis oil. Energy Fuels 2014, 28:2571–2580.
Hu, Q, Noll, R, Li, H, Makarov, A, Hardman, M, Cooks, R. The Orbitrap: a new mass spectrometer. J Mass Spectrom 2005, 40:430–443.
Marshall, A, Hendrickson, C. High‐resolution mass spectrometers. Annu Rev Anal Chem 2008, 1:579–599.
Perry, R, Cooks, R, Noll, R. Orbitrap mass spectrometry: instrumentation, ion motions and applications. Mass Spectrom Rev 2008, 27:661–699.
Chernushevich, I, Loboda, A, Thomson, B. An introduction to quadrupole–time‐of‐flight mass spectrometry. J Mass Spectrom 2001, 36:849–865.
Standing, K, Ens, W. Time of flight mass spectrometers. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, from Encyclopedia of Spectroscopy and Spectrometry. Reedijk, J, (ed.), 2nd ed., UK: Elsevier; 1999, 2851–2856.
Dhungana, B, Becker, C, Zekavat, B, Solouki, T, Hockaday, W, Chambliss, C. Characterization of slow‐pyrolysis bio‐oils by high‐resolution mass spectrometry and ion mobility spectrometry. Energy Fuels 2015, 29:744–753.
Staš, M, Chudoba, J, Kubička, D, Pospíšil, M. Chemical characterization of pyrolysis bio‐oil: application of Orbitrap mass spectrometry. Energy Fuels 2015, 29:3233–3240.
Cole, D, Smith, E, Dalluge, D, Wilson, D, Heaton, E, Brown, R, Lee, Y. Molecular characterization of nitrogen‐containing species in switchgrass bio‐oils at various harvest times. Fuel 2013, 11:718–726.
Cole, DP, Lee, Y. Effective evaluation of catalytic deoxygenation for in situ catalytic fast pyrolysis using gas chromatography–high resolution mass spectrometry. J Anal Appl Pyrolysis 2015, 112:129–134.
Xu, F, Xu, Y, Yin, H, Zhu, X, Guo, Q. Analysis of bio‐oil obtained by biomass fast pyrolysis using low‐energy electron‐impact mass spectrometry. Energy Fuels 2009, 23:1775–1777.
Smith, E, Lee, Y. Petroleomic analysis of bio‐oils from the fast pyrolysis of biomass: laser desorption ionization‐linear ion trap‐Orbitrap mass spectrometry approach. Energy Fuels 2010, 24:5190–5198.
Alsbou, E, Helleur, B. Direct infusion mass spectrometric analysis of bio‐oil using ESI‐ion‐trap MS. Energy Fuels 2014, 28:578–590.
Macomber, R. A Complete Introduction to Modern NMR Spectroscopy. USA: Wiley‐Interscience; 1998, 215–218.
Morris, G, Emsley, J. Multidimensional NMR: an introduction. In: Morris, G, Emsley, J, eds. Multidimensional NMR Methods for the Solution State. UK: John Wiley %26 Sons Ltd; 2010, 3–24.
Giraudeau, P. Quantitative 2D liquid‐state NMR. Magn Reson Chem 2014, 52:259–272.
Koskela, H. Quantitatve 2D NMR studies. Annu Rep NMR Spectrosc 2009, 66:1–31.
Ben, H, Ragauskas, A. Heteronuclear single‐quantum correlation‐nuclear magnetic resonance (HSQC‐NMR) fingerprint analysis of pyrolysis oils. Energy Fuels 2011, 25:5791–5801.
Ben, H, Ragauskas, A. Comparison for the compositions of fast and slow pyrolysis oils by NMR characterization. Bioresour Technol 2013, 147:577–584.
Ben, H, Ragauskas, A. In situ NMR characterization of pyrolysis oil during accelerated aging. ChemSusChem 2012, 5:1687–1693.
Mu, W, Ben, H, Newalkar, G, Ragauskas, A, Qiu, D, Deng, Y. Structure analysis of pine bark‐, residue‐ and stem‐derived light oil and its hydrodeoxygenation products. Ind Eng Chem Res 2014, 53:11269–11275.
Le Brech, Y, Delmotte, L, Raya, J, Brosse, N, Gadiou, R, Dufour, A. High resolution solid state 2D NMR analysis of biomass and biochar. Anal Chem 2015, 87:843–847.
Hu, J, Shen, D, Xiao, R, Wu, S, Zhang, H. Free‐radical analysis on thermochemical transformation of lignin to phenolic compounds. Energy Fuels 2013, 27:285–293.
del Río, J, Rencoret, J, Prinsen, P, Martinez, A, Ralph, J, Gutiérrez, A. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D‐NMR, and reductive cleavage methods. J Agric Food Chem 2012, 60:5922–5935.
Santos, J, Martín‐Sampedro, R, Fillat, U, Oliva, J, Negro, M, Ballesteros, M, Eugenio, M, Ibarra, D. Evaluating lignin‐rich residues from biochemical ethanol production of wheat straw and olive tree pruning by FTIR and 2D‐NMR. Int J Polym Sci 2015, 2015:1–11.