IRENA. REmap 2030: a renewable energy roadmap. IRENA Report, Abu Dhabi, June 2014. Available at: http://www.irena.org/remap/REmap_Report_June_2014.pdf. (Accessed November, 2015).
Poore, RZ, Ostridge, C, Geer, T, Jones, SR. Wind power performance white paper: actual versus predicted: 2014 update. DNV GL Report RANA‐WP‐01, July 2014.
Shaw, WJ, Lundquist, JK, Schreck, SJ. Workshop on research needs for wind resource characterization. Bull Am Meteorol Soc 2009, 90:535–538.
Sanz Rodrigo, J, Moriarty, P. WAKEBENCH model evaluation protocol for wind farm flow models. 1st ed. IEA Task 31 Report to the IEA‐Wind Executive Committee, May 2015.
Britter, R, Schatzmann, M. Model evaluation guidance and protocol document. COST Action 732, © COST Office, distributed by University of Hamburg, 2007, 28.
AIAA. Guide for the verification and validation of computational fluid dynamics simulations. AIAA‐G‐077‐1998, American Institute of Aeronautics and Astronautics, Reston, VA, 1998.
Oberkampf, WL, Trucano, TG. Verification and validation in computational fluid dynamics. Prog Aerosp Sci 2002, 38:209–272.
Oberkampf, WL, Trucano, TG, Hirsch, C. Verification, validation, and predictive capability in computational engineering and physics. Appl Mech Rev 2004, 57:345–384.
Oberkampf, WL, Barone, MF. Measures of agreement between computation and experiment: validation metrics. J Comput Phys 2006, 217:5–36.
Pitch, M, Trucano, T, Moya, J, Froehlich, G, Hodges, A, Peercy, D. Guidelines for Sandia ASCI verification and validation plans—content and format: version 2.0. Sandia Report No. SAND2000‐3101, January 2001.
Hills, RG, Maniaci, DC, Naughton, JW. V&V framework. Sandia Report No. SAND2015‐7455, September 2015.
IEC 61400–1. Wind turbines part 1: design requirments. 3rd ed. IEC 61400–1:2005(E), International Electrotechnical Commisssion, 2005.
Sanz Rodrigo, J, Frias, L, Stoffels, N, von Bremen, L. Wind power predictability assessment from large to local scale. In: European Wind Energy Conference (EWEA), Vienna, Austria, February 2013.
EWEA. The Economics of Wind Energy. Brussels: European Wind Energy Association; 2009, 155.
Hale, E. The uncertainty of uncertainty. In: Wind Energy Systems Engineering Workshop 2015. Boulder, CO: University of Colorado Boulder, 2015.
Bailey, BH, Kunkel, J. The financial implications of resource assessment uncertainty. NAW1504, North American Wind Power, 2015 (published online).
Natarajan, A. An overview of the state of the art technologies for multi‐MW scale offshore wind turbines and beyond. Wiley Interdiscip Rev Energy Environ 2014, 3:111–121. doi:10.1002/wene.80.
Krogsæter, O, Reuder, J. Validation of boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model under the aspect of offshore wind energy applications—part II: boundary layer height and atmospheric stability. Wind Energy 2015, 18:1291–1302. doi:10.1002/we.1765.
Monin, AS, Obukhov, AM. Basic laws of turbulent mixing in the atmospheric surface layer. Trudy Geofiz Inst Acad Sci USSR 1954, 24:163–187.
Porté‐Agel, F, Lu, H, Wu, Y‐T. Interaction between large wind farms and the atmospheric boundary layer. Proc IUTAM 2015, 10:307–318. doi:10.1016/j.piutam.2014.01.026.
Petersen, EL, Troen, I. Wind conditions and resource assessment. Wiley Interdiscip Rev Energy Environ 2012, 1:206–217. doi:10.1002/wene.4.
Watson, S. Quantifying the variability of wind energy. Wiley Interdiscip Rev Energy Environ 2014, 3:330–342. doi:10.1002/wene.95.
Wyngaard, JC. Toward numerical modeling in the “Terra Incognita”. J Atmos Sci 2004, 61:1816–1826. doi:10.1175/1520-0469(2004)061%3C1816:TNMITT%3E2.0.CO;2.
Dee, DP, Uppala, SM, Simmons, AJ, Berrisford, P, Poli, P, Kobayashi, S, Andrae, U, Balmaseda, MA, Balsamo, G, Bauer, P, et al. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 2011, 137:553–597. doi:10.1002/qj.828.
Hamill, TM, Whitaker, JS, Mullen, SL. Reforecasts: an important dataset for improving weather predictions. Bull Am Meteorol Soc 2006, 87:33–46. doi:10.1175/2008bams2725.1.
Skamarock, WC, Klemp, JB, Dudhia, J, Gill, DO, Barker, DM, Duda, MG, Huang, X‐Y, Wang, W, Powers, JG. A description of the advanced research WRF version 3. Technical Note NCAR/TN‐475+STR, NCAR, Boulder, CO, June 2008.
Xue, M, Droegemeier, KK, Wong, V, Shapiro, A, Brewster, K, Carr, F, Weber, D, Liu, Y, Wang, D‐H. The advanced regional prediction system (ARPS)—a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications. Meteorol Atmos Phys 2001, 76:134–165. doi:10.1007/s007030170027.
Pielke, RA, Cotton, WR, Walko, RL, Tremback, CJ, Lyons, WA, Grasso, LD, Nichols, ME, Moran, MD, Wesley, DA, Lee, TJ, et al. A comprehensive meteorological modeling system—RAMS. Meteorol Atmos Phys 1992, 49:69–91. doi:10.1007/BF01025401.
Chen, S, Cummings, J, Doyle, J, Hodur, R, Holt, T, Liou, C‐S, Liu, M, Ridout, J, Schmidt, J, Thompson, W, et al. COAMPS Version 3 Model Description—General Theory and Equations. Monterey, CA: Naval Research Laboratory; 2003.
NOAA. The high‐resolution rapid refresh (HRRR). Available at: http://rapidrefresh.noaa.gov/hrrr/. (Accessed October, 2015).
Park, S‐H, Klemp, JB, Skamarock, WC. A comparison of mesh refinement in the global MPAS‐A and WRF models using an idealized normal‐mode baroclinic wave simulation. Mon Weather Rev 2014, 142:3614–3634. doi:10.1175/MWR-D-14-00004.1.
Draxl, C, Hahmann, AN, Peña, A, Giebel, G. Evaluating winds and vertical wind shear from weather research and forecasting model forecasts using seven planetary boundary layer schemes. Wind Energy 2014, 17:39–55. doi:10.1002/we.1555.
Kleczek, MA, Steeveneveld, GL, Holtslag, AAM. Evaluation of the weather research and forecasting mesoscale model for GABLS3: impact on boundary‐layer schemes, boundary conditions and spin‐up. Bound‐Layer Meteorol 2014, 152:213–243. doi:10.1007/s10546-014-9925-3.
Hahmann, AN, Lennard, C, Badger, J, Vincent, CL, Kelly, MC, Volker, PJH, Brendan, A, Nielsen, JR. Mesoscale modeling for the Wind Atlas of South Africa (WASA) project. DTU Wind Energy No. 0050 (updated), February 2015.
Sanz Rodrigo, J, Lozano, GS, Fernandes Correia, PM, Cantero Nouqueret, E, García Hevia, B, Stathopoulos, C, Borbón, F, Chávez Arroyo, RA, Gancarski, P, Koblitz, T, Barranger, N, Conan, B. Benchmarking of wind resource assessment flow models: the Alaiz complex terrain test case. Deliverable D26 of the FP7‐WAUDIT project, grant agreement number 238576, October 2013.
Giebel, G. The state‐of‐the‐art in short‐term prediction of wind power: a literature overview. 2nd ed. Deliverable D‐1.2 of the ANEMOS.plus project, January 2011.
Tammelin, B, Vihma, T, Atlaskin, E, Badger, J, Fortelius, C, Gregow, H, Horttanainen, M, Hyvönen, R, Kilpinen, J, Latikka, J, et al. Production of the Finnish Wind Atlas. Wind Energy 2013, 16:19–35. doi:10.1002/we.517.
Draxl, C, Hodge, B‐M, Clifton, A. Overview and meteorological validation of the wind integration national dataset toolkit. NREL Technical Report No. NREL/TP‐5000‐61740, April 2015.
Rife, DL, Vanvyve, E, Pinto, JO, Monaghan, AJ, Davis, CA, Poulos, GS. Selecting representative days for more efficient dynamical climate downscaling: application to wind energy. J Appl Meteorol Climatol 2013, 52:47–63. doi:10.1175/JAMC-D-12-016.1.
Badger, J, Frank, H, Hahmann, AN, Giebel, G. Wind‐climate estimation based on mesoscale and microscale modeling: statistical–dynamical downscaling for wind energy applications. J Appl Meteorol Climatol 2014, 53:1901–1919. doi:10.1175/JAMC-D-13-0147.1.
Hahmann, AN, Vincent, CL, Peña, A, Lange, J, Hasager, CB. Wind climate estimation using WRF model output: method and model sensitivities over the sea. Int J Climatol 2014, 35:3422–3439. doi:10.1002/joc.4217.
Jiménez, PA, Dudhia, J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteorol Climatol 2012, 51:300–316. doi:10.1175/JAMC-D-11-084.1.
Jiménez, PA, Dudhia, J. On the ability of the WRF model to reproduce the surface wind direction over complex terrain. J Appl Meteorol Climatol 2013, 52:1610–1617. doi:10.1175/JAMC-D-12-0266.1.
Fitch, A, Olson, J, Lundquist, J. Parametrization of wind farms in climate models. J Clim 2013, 26:6439–6458. doi:10.1175/JCLI-D-12-00376.1.
Jiménez, PA, Navarro, J, Palomares, AM, Dudhia, J. Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: a composite‐based analysis with the weather research and forecasting model over Horns Rev. Wind Energy 2014, 18:559–566. doi:10.1002/we.1708.
Volker, PJH, Badger, J, Hahmann, AN, Ott, S. The Explicit Wake Parametrisation V1.0: A wind farm parametrization in the mesoscale model WRF. Geosci Model Dev Discuss 2015, 8:3715–3731. doi:10.5194/gmd-8-3715-2015.
Leutbecher, M, Palmet, TN. Ensemble forecasting. J Comput Phys 2008, 227:3515–3539. doi:10.1016/j.jcp.2007.02.014.
Buizza, R, Houtekamer, PL, Pellerin, G, Toth, Z, Zhu, Y, Wei, M. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon Weather Rev 2005, 133:1076–1097. doi:10.1175/mwr2905.1.
Johnson, C, Bowler, N. On the reliability and calibration of ensemble forecasts. Mon Weather Rev 2009, 137:1717–1720. doi:10.1175/2009mwr2715.1.
Berner, J, Ha, S‐Y, Hacker, JP, Fournier, A, Snyder, C. Model uncertainty in a mesoscale ensemble prediction system: stochastic versus multiphysics representations. Mon Weather Rev 2011, 139:1972–1995. doi:10.1175/2010MWR3595.1.
Vanvyve, E, Delle, ML, Rife, D, Monaghan, A, Pinto, J. Wind resource estimates with an analog ensemble approach. Renew Energy 2015, 74:761–773. doi:10.1016/j.renene.2014.08.060.
Landberg, L, Riffe, D. A science‐based commerical look at meso‐scale modelling. In: European Wind Energy Conference (EWEA), Barcelona, Spain, March 2014.
Poli, P. ECMWF global reanalyses: resources for the wind energy community (and a few myth‐busters). In: EWEA Wind Resource Assessment Technology Workshop 2013, Dublin, Ireland, June 2013.
Measnet. MEASNET Procedure: Evaluation of Site‐Specific Wind Conditions, Version 1. MEASNET; 2009.
Clifton, A, Courtney, M. Ground‐based vertically profiling remote sensing for wind resource assessment. 1st ed. Expert Group Study on Recommended Practices, 15, International Energy Agency, January 2013.
Sanz Rodrigo, J, Cantero, E, García, B, Borbón, F, Irigoyen, U, Lozano, S, Fernandes, P‐M, Chávez, RA. Atmospheric stability assessment for the characterization of offshore wind conditions. J Phys Conf Ser 2015, 625:012044. doi:10.1088/1742-6596/625/1/012044.
Hansen, K. Guideline for qualification of SCADA data for wake efficiency analysis. In: Sanz Rodrigo, J, Moriarty, P, eds. WAKEBENCH Best Practice Guidelines for Wind Farm Flow Models. IEA‐Wind Task 31. 1 ed. 2015.
Coleman, GN. Similarity statistics from a direct numerical simulation of the neutrally stratified boundary layer. J Atmos Sci 1999, 56:891–900. doi:10.1175/1520-0469(1999)056%3C0891:ssfadn%3E2.0.co;2.
Mellor, GL, Yamada, T. A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 1972, 31:1791–1806. doi:10.1175/1520-0469(1974)031%3C1791:ahotcm%3E2.0.co;2.
Holt, T, Raman, S. A review of comparative evaluation of multilevel boundary layer parameterizations for first‐order and turbulent kinetic energy closure schemes. Rev Geophys 1988, 26:761–780. doi:10.1029/rg026i004p00761.
Weng, W, Taylor, PA. On modelling the one‐dimensional atmospheric boundary layer. Bound‐Layer Meteorol 2003, 107:371–400. doi:10.1016/0004-6981(83)90127-0.
Sogachev, A, Kelly, M, Leclerc, MY. Consistent two‐equation modelling for atmospheric research: buoyancy and vegetation implementations. Bound‐Layer Meteorol 2012, 145:307–327. doi:10.1007/s10546-012-9726-5.
Gibson, MM, Launder, BE. Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech 1978, 86:491–511. doi:10.1017/s0022112078001251.
Lilly, DK. The representation of small‐scale turbulence in numerical simulation experiments. NCAR Manuscript No. 281, 1966.
Piomelli, U, Balaras, E. Wall‐layer models for large‐eddy simulations. Annu Rev Fluid Mech 2002, 34:349–374. doi:10.1016/j.paerosci.2008.06.001.
Spalart, PR, Jou, W‐H, Strelets, M, Allmaras, SR. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: 1st AFOSR International Symposium on Engineering Turbulence Modelling and Measurements, Corsica, France, May 1997.
Haupt, SE, Zajaczkowski, FJ, Peltier, LJ. Detached eddy simulation of atmospheric flow about a surface mounted cube at high reynolds number. J Fluids Eng 2011, 133:31002. doi:10.1115/1.4003649.
Deardorff, JW. Preliminary results from numerical integration of the unstable planetary boundary layer. J Atmos Sci 1970, 27:1209–1211. doi:10.1175/1520-0469(1970)027%3C1209:prfnio%3E2.0.co;2.
Mason, PJ, Derbyshire, SH. Large‐eddy simulation of the stably‐stratified atmospheric boundary layer. Bound‐Layer Meteorol 1990, 53:117–162. doi:10.1007/bf00122467.
Kosovic, B, Curry, JA. A large eddy simulation study of a quasi‐steady, stably stratified atmospheric boundary layer. J Atmos Sci 2000, 57:1052–1068. doi:10.1175/1520-0469(2000)057%3C1052:ALESSO%3E2.0.CO;2.
Cuxart, J, Holtslag, AAM, Beare, RJ, Bazile, E, Beljaars, A, Cheng, A, Conangla, L, Ek, M, Freedman, F, Hamdi, R, et al. Single‐column model intercomparison for a stably stratified atmospheric boundary layer. Bound‐Layer Meteorol 2006, 118:273–303.
Beare, RJ, Macvean, MK, Holtslag, AAM, Cuxart, J, Esau, I, Golaz, J‐C, Jimenez, MA, Khairoutdinov, M, Kosovic, B, Lewellen, D, et al. An intercomparison of large‐eddy simulations of the stable boundary layer. Bound‐Layer Meteorol 2006, 118:247–272. doi:10.1007/s10546-004-2820-6.
Sanz Rodrigo, J, Anderson, P. Investigation of the stable atmospheric boundary layer at Halley Antarctica. Bound‐Layer Meteorol 2013, 148:517–539. doi:10.1007/s10546-013-9831-0.
Svensson, G, Holtslag, AAM, Kumar, V, Mauritsen, T, Steeneveld, GJ, Angevine, WM, Bazile, E, Beljaars, A, de Bruijn, EIF, et al. Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single column models—the second GABLS experiment. Bound‐Layer Meteorol 2011, 140:177–206. doi:10.1007/s10546-011-9611-7.
Bosveld, FC, Baas, P, vanMeijgaard, E, de Bruijn, EIF, Steeneveld, GJ, Holtslag, AAM. The third GABLS intercomparison case for evaluation studies of boundary‐layer models, part A: case selection and set‐up. Bound‐Layer Meteorol 2014, 152:133–156. doi:10.1007/s10546-014-9917-3.
Bosveld, FC, Baas, P, Steeneveld, GJ, Holtslag, AAM, Angevine, WM, Bazile, E, de Bruin, EIF, Deacu, D, Edwards, JM, Michael, EK, et al. The third GABLS intercomparison case for evaluation studies of boundary‐layer models, part B: results and process understanding. Bound‐Layer Meteorol 2014, 152:157–187. doi:10.1007/s10546-014-9919-1.
Holtslag, AAM. Introduction to the third GEWEX atmospheric boundary layer study (GABLS3). Bound‐Layer Meteorol 2014, 152:127–132. doi:10.1007/s10546-014-9931-5.
Holtslag, AAM, Svensson, G, Baas, P, Basu, S, Beare, B, Beljaars, ACM, Bosveld, FC, Cuxart, J, Lindvall, J, Steeneveld, GJ, et al. Stable atmospheric boundary layers and diurnal cycles—challenges for weather and climate models. Bull Am Meteorol Soc 2013, 94:1691–1706. doi:10.1175/bams-d-11-00187.1.
Sherman, CA. A mass‐consistent model for wind fields over complex terrain. J Clim Appl Meteorol 1978, 17:312–319. doi:10.1175/1520-0450(1978)017%3C0312:AMCMFW%3E2.0.CO;2.
Guo, X, Palutikof, JP. A study of two mass‐consistent models: problems and possible solutions. Bound‐Layer Meteorol 1990, 53:303–332. doi:10.1007/BF02186092.
Jackson, PS, Hunt, JCR. Turbulent wind flow over a low hill. Q J R Meteorol Soc 1975, 101:929–955. doi:10.1002/qj.49710143015.
Troen, I, Petersen, EL. European Wind Atlas. Roskilde: Risø National Laboratory; 1989, 656. ISBN: 87-550-1482-8.
Palma, JMLM, Castro, FA, Ribeiro, LF, Rodrigues, AH, Pinto, AP. Linear and nonlinear models in wind resource assessment and wind turbine micro‐siting in complex terrain. J Wind Eng Ind Aerodyn 2008, 96:2308–2326. doi:10.1016/j.jweia.2008.03.012.
Koblitz, T, Bechmann, A, Berg, J, Sogachev, A, Sørensen, N, Réthoré, P‐E. Atmospheric stability and complex terrain: comparing measurements and CFD. J Phys Conf Ser 2014, 555:012060. doi:10.1088/1742-6596/555/1/012060.
Silva, LA, Palma, JMLM, Castro, FA. Simulation of the Askervein flow, part 2: large‐eddy simulations. Bound‐Layer Meteorol 2007, 125:85–108. doi:10.1007/s10546-007-9195-4.
Bechmann, A, Sørensen, NN. Hybrid RANS/LES applied to complex terrain. Wind Energy 2010, 13:36–50. doi:10.1002/we.414.
Diebold, M, Higgins, C, Fang, J, Bechmann, A, Parlange, MB. Flow over hills: a large‐eddy simulation of the Bolund case. Bound‐Layer Meteorol 2013, 148:177–194. doi:10.1007/s10546-013-9807-0.
Wood, N. Wind flow over complex terrain: a historical perspective and the prospect for large‐eddy modelling. Bound‐Layer Meteorol 2000, 96:11–32. doi:10.1023/A:1002017732694.
Moeng, C‐H, Dudhia, J, Klemp, J, Sullivan, P. Examining two‐way grid nesting for large eddy simulation of the PBL using the WRF model. Mon Weather Rev 2007, 135:2295–2311. doi:10.1175/mwr3406.1.
Bechmann, A, Sørensen, NN, Berg, J, Mann, J, Réthoré, P‐E. The Bolund experiment, part II: blind comparison of microscale flow models. Bound‐Layer Meteorol 2011, 141:245–271. doi:10.1007/s10546-011-9637-x.
Richards, PJ, Hoxey, R. Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. J Wind Eng Ind Aerodyn 1993, 46–47:145–153. doi:10.1016/b978-0-444-81688-7.50018-8.
Zhang, J, Yang, Q, Li, QS. Developments and applications of a modified wall function for boundary layer flow simulations. Wind Struct 2013, 17:361–377. doi:10.12989/was.2013.17.4.361.
Koblitz, T. CFD modelling of non‐neutral atmospheric boundary layer conditions. PhD Thesis, Technical University of Denmark, DTU Wind Energy PhD‐0019 (EN), July 2013, 97.
Taylor, P, Teunissen, H. The Askervein hill project: overview and background data. Bound‐Layer Meteorol 1987, 39:15–39. doi:10.1007/bf00121863.
Xu, D, Taylor, PA. A non‐linear extension of the mixed spectral finite difference model for neutrally stratified boundary‐layer flow over topography. Bound‐Layer Meteorol 1992, 59:177–186. doi:10.1007/bf00120693.
Castro, FA, Palma, JMLM, Silva, LA. Simulation of the Askervein hill flow, part I: Reynolds averaged Navier‐Stoker equations (k‐ε turbulence model). Bound‐Layer Meteorol 2003, 107:501–530. doi:10.1023/A:1022818327584.
Undheim, O, Anderson, HI, Berge, E. Non‐linear, microscale modelling of the flow over Askervein hill. Bound‐Layer Meteorol 2006, 120:477–495. doi:10.1007/s10546-006-9065-5.
Chow, FK, Street, RL. Evaluation of turbulence closure models for large‐eddy simulation over complex terrain: flow over Askervein hill. J Appl Meteorol Climatol 2009, 48:1050–1065. doi:10.1175/2008jamc1862.1.
Berg, J, Mann, J, Bechmann, A, Courtney, MS, Jørgensen, HE. The Bolund experiment, part I: flow over a steep, three‐dimensional hill. Bound‐Layer Meteorol 2011, 140:1–25.
Finnigan, JJ, Shaw, RH, Patton, EG. Turbulence structure above a vegetation canopy. J Fluid Mech 2009, 637:387–424. doi:10.1017/s0022112009990589.
Finnigan, JJ. Turbulence in plant canopies. Annu Rev Fluid Mech 2000, 32:519–571. doi:10.1146/annurev.fluid.32.1.519.
Sanz Rodrigo, J, van Beeck, J, Dezsö‐Weidinger, G. Wind tunnel simulation of the wind conditions inside bidimensional forest clear‐cuts: application to wind turbine siting. J Wind Eng Ind Aerodyn 2007, 95:609–634. doi:10.1016/j.jweia.2007.01.001.
Bergström, H, Alfredsson, H, Arnqvist, J, Carlén, I, Dellwik, E, Fransson, J, Ganander, H, Mohr, M, Segalini, A, Söderberg, S. Wind power in forests: wind and effects on loads. Vindforsk Rapport, Elforsk AB, 2013, 167.
Belcher, SE, Harman, IN, Finnigan, JJ. The wind in the willows: flows in forest canopies in complex terrain. Annu Rev Fluid Mech 2012, 44:479–504. doi:10.1146/annurev-fluid-120710-101036.
Sogachev, A, Panferof, O. Modification of two‐equation models to account for plant drag. Bound‐Layer Meteorol 2006, 121:229–266. doi:10.1007/s10546-006-9073-5.
Boudreault, L‐E, Bechmann, A, Tarvainen, L, Klemedtsson, L, Shendryk, I, Dellwik, E. A LiDAR method of canopy structure for wind modeling of heterogeneous forests. Agric For Meteorol 2015, 201:86–97. doi:10.1016/j.agrformet.2014.10.014.
Nebenführ, B, Davidson, L. Large‐eddy simulation study of thermally stratified canopy flow. Bound‐Layer Meteorol 2015, 156:253–276. doi:10.1007/s10546-015-0025-9.
Ross, AN. Large‐eddy simulations of flow over forested ridges. Bound‐Layer Meteorol 2008, 128:59–76. doi:10.1007/s10546-008-9278-x.
Patton, EG, Horst, TW, Sullivan, PP, Lenschow, DH, Oncley, SP, Brown, WOJ, Burns, SP, Guenther, AB, Held, A, Karl, T, et al. The canopy horizontal array turbulence study. Bull Am Meteorol Soc 2011, 92:593–611. doi:10.1175/2010BAMS2614.1.
Barthelmie, RJ, Hansen, KS, Pryor, SC. Meteorological controls on wind turbine wakes. Proc IEEE 2012, 101:1010–1019. doi:10.1109/JPROC.
Crespo, A, Hernandez, J, Frandsen, S. Survey of modeling methods for wind turbine wakes and wind farms. Wind Energy 1999, 2:1–24. doi:10.1002/(sici)1099-1824(199901/03)2:1%3C1::aid-we16%3E3.3.co;2-z.
España, G, Aubrun, S, Loyer, S, Devinant, P. Wind tunnel study of the wake meandering downstream of a modelled wind turbine as an effect of large scale turbulent eddies. J Wind Eng Ind Aerodyn 2012, 101:24–33. doi:10.1016/j.jweia.2011.10.011.
Hansen, KS, Réthoré, P‐E, Sørensen, JN, Palma, J, Hevia, BG, Prospathopoulos, J, Peña, A, Ott, S, Schepers, G, Palomares, A, et al. Simulation of wake effects between two wind farms. J Phys Conf Ser 2015, 625:012008. doi:10.1088/1742-6596/625/1/012008.
Christiansen, MB, Hasager, CB. Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens Environ 2015, 98:251–268. doi:10.1016/j.rse.2005.07.009.
Schlez, W, Neubert, A. New developments in large wind farm modeling. In: European Wind Energy Conference, Marseille, France, March 2009.
Barthelmie, R, Jensen, LE. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 2010, 13:573–586. doi:10.1002/we.408.
Nygaard, NG. Wakes in very large wind farms and the effect of neighbouring wind farms. J Phys Conf Ser 2014, 524:012162. doi:10.1088/1742-6596/524/1/012162.
Frandsen, S. On the wind speed reduction in the center of large clusters of wind turbines. J Wind Eng Ind Aerodyn 1992, 39:251–265. doi:10.1016/0167-6105(92)90551-k.
Peña, A, Rathmann, O. Atmospheric stability‐dependent infinite wind‐farm models and the wake‐decay coefficient. Wind Energy 2013, 17:1269–1285. doi:10.1002/we.1632.
Calaf, M, Meneveau, C, Meyers, J. Large eddy simulation study of fully developed wind‐turbine array boundary layers. Phys Fluids 2010, 22:1–16. doi:10.1063/1.3291077.
Andersen, SJ, Witha, B, Breton, S‐P, Sørensen, JN, Mikkelsen, RF, Ivanell, S. Quantifying variability of large eddy simulations of very large wind farms. J Phys Conf Ser 2015, 625:012027. doi:10.1088/1742-6596/625/1/012027.
Sørensen, JN, Mikkelsen, RF, Henningson, DS, Ivanell, S, Sarmast, S, Andersen, SJ. Simulation of wind turbine wakes using the actuator line technique. Philos Trans A Math Phys Eng Sci 2015, 373:20140071. doi:10.1098/rsta.2014.0071.
Réthoré, P‐E, Fuglsang, P, Larsen, GC, Buhl, T, Larsen, TJ, Madsen, HA. TOPFARM: multi‐fidelity optimization of wind farms. Wind Energy 2014, 17:1797–1816. doi:10.1002/we.1667.
Vermeer, LJ, Sørensen, JN, Crespo, A. Wind turbine wake aerodynamics. Prog Aerosp Sci 2003, 39:467–510.
Sanderse, B, van der Pijl, SP, Koren, B. Review of CFD for wind‐turbine wake aerodynamics. Wind Energy 2010, 14:799–819. doi:10.1002/we.458.
Ainslie, JF. Calculating the flowfield in the wake of wind turbines. J Wind Eng Ind Aerodyn 1988, 27:213–224. doi:10.1016/0167-6105(88)90037-2.
Katic, I, Højstrup, J, Jensen, NO. A simple model for cluster efficiency. In: European Wind Energy Association Conference, Rome, Italy, October 1986
Larsen, GC, Madsen, HA, Bingol, F, Mann, J, Ott, S, Sørensen, JN, Okulov, V, Troldborg, N, Nielsen, M,Thomsen, K, Larsen, TJ, Mikkelsen, R. Dynamic wake meandering modelling. Risø‐R‐1607(EN), Technical University of Denmark, June 2007, 83.
Gupta, S, Leishman, JG. Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines. In: 24th ASME Wind Energy Symposium 2005, Reno, NV, January 2005.
Ott, S, Berg, J, Nielsen, M Linearised, CFD Models for wakes. Risø Report Risø‐R‐1772(EN), Risø National Laboratory, Røskilde, Denmark, December 2011.
Crespo, A, Hernandez, J. A numerical model of wind turbine wake and wind farms. In: European Wind Energy Conference, Rome, Italy, October 1986.
Schepers, JG, van der Pijl, SP. Improved modelling of wake aerodynamics and assessment of new farm control strategies. J Phys Conf Ser 2007, 75:12–39. doi:10.1088/1742-6596/75/1/012039.
Sørensen, JN, Kock, CW. A model for unsteady rotor aerodynamics. J Wind Eng Ind Aerodyn 1995, 58:259–275. doi:10.1016/0167-6105(95)00027-5.
Mikkelsen, R. Actuator disc methods applied to wind turbines. PhD Thesis, Technical University of Denmark, June 2003, 110.
Kasmi, AE, Masson, C. An extended k‐ε model for turbulent flow through horizontal‐axis wind turbines. J Wind Eng Ind Aerodyn 2008, 96:103–122. doi:10.1016/j.jweia.2007.03.007.
Cabezón, D, Migoya, E, Crespo, A. Comparison of turbulence models for the computational fluid dynamics simulation of wind turbine wakes in the atmospheric boundary layer. Wind Energy 2011, 14:909–921. doi:10.1002/we.516.
van der Laan, PM, Sørensen, NN, Réthoré, P‐E, Mann, J, Kelly, MC, Troldborg, N, Schepers, JG, Machefaux, E. An improved k‐ε model applied to a wind turbine wake in atmospheric turbulence. Wind Energy 2014, 18:889–907. doi:10.1002/we.1736.
Jimenez, A, Crespo, A, Migoya, E, Garcia, J. Advances in large‐eddy simulation of a wind turbine wake. J Phys Conf Ser 2007, 75:12–41. doi:10.1088/1742-6596/75/1/012041.
Troldborg, N, Sørensen, JN, Mikkelsen, R. Actuator line simulation of wake of wind turbine operating in turbulent inflow. J Phys Conf Ser 2007, 75:12–63. doi:10.1088/1742-6596/75/1/012063.
Ivanell, S, Sørensen, JN, Mikkelsen, R, Henningson, D. Analysis of numerically generated wake structures. Wind Energy 2009, 12:63–80. doi:10.1002/we.285.
Wu, Y‐T, Porté‐Agel, F. Large‐eddy simulation of wind‐turbine wakes: evaluation of turbine parameterisations. Bound‐Layer Meteorol 2011, 138:345–366. doi:10.1007/s10546-010-9569-x.
Curchfield, MJ, Lee, S, Moriarty, PJ, Martínez, LA, Leonardi, S, Vijayakumar, G, Brasseur, JG. A large‐eddy simulation of wind‐plant aerodynamics. In: 50th AIAA Aerospace Sciences Meeting 2012, New York, January 2012.
Nilsson, K, Ivanell, S, Hansen, KS, Mikkelsen, R, Sørensen, JN, Breton, S‐P, Henningson, D. Large‐eddy simulations of the Lillgrund wind farm. Wind Energy 2014, 18:449–467. doi:10.1002/we.1707.
Larsen, GC, Madsen, HA, Thomsen, K, Larsen, TJ. Wake meandering: a pragmatic approach. Wind Energy 2008, 11: 377–395, doi: 10.1002/we.267
Bingol, F, Mann, J, Larsen, GC. Light detection and ranging measurements of wake dynamics, part 1: one‐dimensional scanning. Wind Energy 2010, 13:51–61. doi:10.1002/we.352.
Barlas, E, Buckingham, S, van Beeck, J. Roughness effects on wind‐turbine wake dynamics in a boundary‐layer wind tunnel. Bound‐Layer Meteorol 2016, 158:27–42. doi:10.1007/s10546-015-0083-z.
Jafari, S, Chokani, N, Abhari, RS. Simulation of wake interactions in wind farms using an immersed wind turbine model. J Turbomach 2013, 136:061018. doi:10.1115/1.4025762.
Hansen, K, Larsen, GC, Ott, S. Dependence of offshore wind turbine fatigue loads on atmospheric stratification. J Phys Conf Ser 2014, 524:012165. doi:10.1088/1742-6596/524/1/012165.
Moriarty, P, Sanz Rodrigo, J, Gankarski, P, Chávez Arroyo, R, Churchfield, M, Naughton, JW, Hansen, KS, Machefaux, E, Maguire, E, Castellani, F, et al. IEA‐Task 31 WAKEBENCH: towards a protocol for wind farm flow model evaluation—part 2: wind farm wake models. J Phys Conf Ser 2014, 524:012185. doi:10.1088/1742-6596/524/1/012185.
Gaumond, M, Réthoré, P‐E, Ott, S, Peña, A, Bechmann, A, Hansen, KS. Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm. Wind Energy 2014, 17:1169–1178. doi:10.1002/we.1625.
Politis, E, Prospathopoulos, J, Cabezón, D, Hansen, K, Chaviaropoulos, P, Barthelmie, R. Modelling wake effects in large wind farms in complex terrain: the problem, the methods and the issues. Wind Energy 2010, 15:161–182. doi:10.1002/we.481.
Krogstad, P‐A, Sætran, L. Wind turbine wake interactions: results from blind tests. J Phys Conf Ser 2015, 625:012043. doi:10.1088/1742-6596/625/1/012043.
van der Laan, MP, Hansen, KS, Sørensen, NN, Réthoré, P‐E. Predicting wind farm wake interaction with RANS: an investigation of the Coriolis force. J Phys Conf Ser 2015, 625:012026. doi:10.1088/1742-6596/625/1/012026.
Gebraad, PMO, Teeuwisse, FW, van Wingerden, J‐W, Fleming, PA, Ruben, SD, Marden, JR, Pao, L. Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study. Wind Energy 2014, 19:95–114. doi:10.1002/we.1822.
Wilby, RL, Wigley, TML. Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr 1997, 21:530–548. doi:10.1177/030913339702100403.
Devis, A, van Lipzig, NPM, Demuzere, M. A new statistical approach to downscale wind speed distributions at a site in northern Europe. J Geophys Res 2013, 118:2272–2283. doi:10.1002/jgrd.50245.
Pryor, SC, Barthelmie, RJ. Empirical downscaling of wind speed probability distributions. J Geophys Res 2005, 110:D19109. doi:10.1029/2005JD005899.
García‐Bustamante, E, Gonález‐Rouco, JF, Navarro, J, Xoplaki, E, Luterbacher, J, Jiménez, PA, Montávez, JP, Hidalgo, A, Lucio‐Eceiza, EE. Relationship between wind power production and North Atlantic atmospheric circulation over the northeastern Iberian Peninsula. Clim Dyn 2013, 40:935–949. doi:10.1007/s00382-012-1451-8.
Sehnke, F, Strunk, S, Felder, M, Brombach, J, Kaifel, A, Meis, J. Wind power resource estimation with deep neural networks. In: Artificial Neural Networks and Machine Learning—ICANN 2013, 2013, 563–570. Berlin/Heidelberg: Springer.
Rogers, AL, Rogers, JW, Manwell, JF. Comparison of four measure‐correlate‐predict algorithms. J Wind Eng Ind Aerodyn 2005, 93:243–264. doi:10.1016/j.jweia.2004.12.002.
Woods, JC, Watson, SJ. A new matrix method of predicting long‐term wind roses with MCP. J Wind Eng Ind Aerodyn 1997, 66:85–94. doi:10.1016/s0167-6105(97)00009-3.
Romo, A, Amezcua, J, Probst, O. Validation of three new measure‐correlate‐predict models for the long‐term prospection of the wind resource. J Renew Sustain Energy 2011, 3:023105. doi:10.1063/1.3574447.
Wilks, DS, Wilby, RL. The weather generation game: a review of stochastic weather models. Prog Phys Geogr 1999, 23:329–357. doi:10.1177/030913339902300302.
Yan, Z, Bate, S, Chandler, RE, Isham, V, Wheater, H. Changes in extreme wind speeds in NW Europe simulated by generalized linear models. Theor Appl Climatol 2006, 83:121–137. doi:10.1007/s00704-005-0156-x.
Gutiérrez, JM, Cofiño, AS, Cano, R, Rodríguez, MA. Clustering methods for statistical downscaling in short‐range weather forecasts. Mon Weather Rev 2004, 132:2169–2183. doi:10.1175/1520-0493(2004)132%3C2169:cmfsdi%3E2.0.co;2.
Chávez‐Arroyo, R, Lozano, GS, Sanz Rodrigo, J, Probst, O. On the application of principal component analysis for accurate statistical‐dynamical downscaling of wind fields. Energy Procedia 2013, 40:67–76. doi:10.1016/j.egypro.2013.08.009.
Hewitson, BC, Crane, RG. Self‐organizing maps: applications to synoptic climatology. Clim Res 2002, 22:13–26. doi:10.3354/cr022013.
Chávez‐Arroyo, R, Lozano‐Galiana, S, Sanz‐Rodrigo, J, Probst, O. Statistical–dynamical downscaling of wind fields using self‐organizing maps. Appl Thermal Eng 2014, 75:1201–1209. doi:10.1016/j.applthermaleng.2014.03.002.
Delle, ML, Eckel, FA, Rife, DL, Nagarajan, B, Searight, K. Probabilistic weather prediction with an analog ensemble. Mon Weather Rev 2013, 141:3498–3516. doi:10.1175/mwr-d-12-00281.1.
Rife, D, Delle, ML, Ma, J, Whiting, R. Computationally efficient dynamical downscaling with an analog ensemble: application to wind resource assessment. In: EWEA Wind Resource Assessment Workshop 2015, Helsinki, Finland, June 2015.
Mengelkamp, H‐T, Kapitza, H, Pfluger, U. Statistical–dynamical downscaling of wind climatologies. J Wind Eng Ind Aerodyn 1997, 67–68:449–457. doi:10.1016/S0167-6105(97)00093-7.
Pinto, JG, Neuhaus, CP, Leckebusch, GC, Reyers, M, Kerschgens, M. Estimation of wind storm impacts over western Germany under future climate conditions using a statistical–dynamical downscaling approach. Tellus 2010, 62A:188–201. doi:10.1111/j.1600-0870.2009.00424.x.
Frank, HP, Landberg, L. Modelling the wind climate of Ireland. Bound‐Layer Meteorol 1997, 85:359–377. doi:10.1023/A:1000552601288.
Frey‐Buness, F, Heimann, D, Sausen, R. A statistical dynamical downscaling procedure for global climate simulations. Theor Appl Climatol 1995, 50:117–131. doi:10.1007/BF00866111.
Avila, M, Folch, A, Houzeaux, G, Eguzkitza, B, Prieto, L, Cabezón, D. A parallel CFD model for wind farms. Procedia Comput Sci 2013, 18:2157–2166. doi:10.1016/j.procs.2013.05.386.
Fuentes, U, Heimann, D. An improved statistical–dynamical downscaling scheme and its application to the Alpine precipitation climatology. Theor Appl Clim 2000, 65:119–135. doi:10.1007/s007040070038.
Cutler, NJ, Jorgensen, BH, Ersboll, BK, Badger, J. Class generation for numerical wind atlases. Wind Eng 2006, 30:401–415. doi:10.1260/030952406779502704.
Martinez, YH, Yu, W, Lin, H. A new statistical–dynamical downscaling procedure based on EOF analysis for regional time series generation. J Appl Meteorol Climatol 2013, 52:935–952. doi:10.1175/JAMC-D-11-065.1.
Hahmann, AN, Rostkier‐Edelstein, D, Warner, TT, Vandenberghe, F, Liu, Y, Babarsky, R, Swerdlin, SP. A reanalysis system for the generation of mesoscale climatographies. J Appl Meteorol Climatol 2010, 49:954–972. doi:10.1175/2009JAMC2351.1.
Rife, DL, Vanvyve, E, Pinto, JO, Monaghan, AJ, Davis, CA, Poulos, GS. Selecting representative days for more efficient dynamical climate downscaling: application to wind energy. J Appl Meteorol Climatol 2013, 52:47–63. doi:10.1175/JAMC-D-12-016.1.
Zorita, E, von Storch, H. The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 1999, 12:2474–2489. doi:10.1175/1520-0442(1999)012%3C2474:TAMAAS%3E2.0.CO;2.
Reusch, DB, Alley, RB, Hewitson, BC. Relative performance of self‐organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr 2005, 29:188–212. doi:10.1080/789610199.
Lundquist, KA, Chow, FK, Lundquist, JK. An immersed boundary method for the weather research and forecasting model. Mon Weather Rev 2010, 138:796–817. doi:10.1175/2009MWR2990.1.
Howard, T, Clark, P. Correction and downscaling of NWP wind speed forecasts. Meteorol Appl 2007, 14:105–116. doi:10.1002/met.12.
Gasset, N, Landry, M, Gagnon, Y. A comparison of wind flow models for wind resource assessment in wind energy applications. Energies 2012, 5:4288–4322. doi:10.3390/en5114288.
Castro, FA, Silva, SC, Lopes da Costa, JC. One‐way mesoscale–microscale coupling for the simulation of atmospheric flows over complex terrain. Wind Energy 2015, 18:1251–1272. doi:10.1002/we.1758.
Mirocha, JD, Kosović, B, Kirkil, G. Resolved turbulence characteristics in large‐eddy simulations nested within mesoscale simulations using the weather research and forecasting model. Mon Weather Rev 2014, 142:806–831. doi:10.1175/MWR-D-13-00064.1.
Muñoz‐Esparza, D, Kosović, B, van Beeck, J, Mirocha, JD. A stochastic perturbation method to generate inflow turbulence in large‐eddy simulation models: application to neutrally stratified atmospheric boundary layers. Phys‐Fluids 2015, 27:035102. doi:10.1063/1.4913572.
Muñoz‐Esparza, D, Kosović, B, Mirocha, JD, van Beeck, J. Bridging the transition from mesoscales to microscale turbulence in atmospheric models. Bound‐Layer Meteorol 2014, 153:409–440. doi:10.1007/s10546-014-9956-9.
Patton, EG, Sullivan, PP, Davis, KJ. The influence of a forest canopy on top‐down and bottom‐up diffusion in the planetary boundary layer. Q J R Meteorol Soc 2003, 129:1415–1434. doi:10.1256/qj.01.175.
Linn, R, Winterkamp, J, Colman, JJ, Edminster, C, Balley, JD. Modeling interactions between fire and atmosphere in discrete element fuel beds. Int J Wildland Fire 2005, 14:37–48. doi:10.1071/WF04043.
Arriola, L, Hyman, JM. Sensitivity analysis for uncertainty quantification in mathematical models. In: Mathematical and Statistical Estimation Approaches in Epidemiology. Dordrecht Heidelberg, London, %26 New York, Springer; 2009, 195–247.
Aspinall, WP, Cooke, RM. Risk and uncertainty assessment for natural hazards. In: Quantifying Scientific Uncertainty from Expert Judgement Elicitation. Cambridge: Cambridge University Press; 2013, 64–99.
Le Maitre, O, Knio, OM. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Dordrecht Heidelberg, London, %26 New York, Springer; 2010, 156.
Rasmussen, CE, Williams, CKI. Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press; 2005.
Roy, CJ, Oberkampf, WL. A comprehensive framework for verification, validation, and uncertainty quantification. Comput Methods Appl Mech Eng 2011, 200:2131–2144. doi:10.1016/j.cma.2011.03.016.