Adjaye,, J. D., & Bakhshi,, N. N. (1995). Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio‐oil. Part II: Comparative catalyst performance and reaction pathways. Fuel Processing Technology, 45(3), 185–202.
Adjaye,, J. D., Katikaneni,, S. P. R., & Bakhshi,, N. N. (1996). Catalytic conversion of a biofuel to hydrocarbons: Effect of mixtures of HZSM‐5 and silica‐alumina catalysts on product distribution. Fuel Processing Technology, 48(2), 115–143.
Agblevor,, F. A., Mante,, O., Abdoulmoumine,, N., & McClung,, R. (2010). Production of stable biomass pyrolysis oils using fractional catalytic pyrolysis. Energy %26 Fuels, 24(7), 4087–4089.
Agblevor,, F. A., Mante,, O., McClung,, R., & Oyama,, S. T. (2012). Co‐processing of standard gas oil and biocrude oil to hydrocarbon fuels. Biomass and Bioenergy, 45, 130–137.
Almeida,, M., & Pinho,, A. (2015). Co‐processing of fast pyrolysis oil in FCC for transportation fuels. Empyro Symposium, Hengelo, The Netherlands.
Al‐Sabawi,, M., Chen,, J., & Ng,, S. (2012). Fluid catalytic cracking of biomass‐derived oils and their blends with petroleum feedstocks: A review. Energy %26 Fuels, 26(9), 5355–5372.
Bertero,, M., de la Puente,, G., & Sedran,, U. (2011). Effect of pyrolysis temperature and thermal conditioning on the coke‐forming potential of bio‐oils. Energy %26 Fuels, 25(3), 1267–1275.
Bertero,, M., de la Puente,, G., & Sedran,, U. (2012). Fuels from bio‐oils: Bio‐oil production from different residual sources, characterization and thermal conditioning. Fuel, 95, 263–271.
Bertero,, M., & Sedran,, U. (2015). Coprocessing of bio‐oil in fluid catalytic cracking. In A.Pandey,, T.Bhaskar,, M.Stocker,, & R. K.Sukumaran, (Eds.), Recent advances in thermochemical conversion of biomass (pp. 355–381). Amsterdam: Elsevier.
Bridgwater,, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.
Bridgwater,, A. V., Meier,, D., & Radlein,, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479–1493.
Bryden,, K., Weatherbee,, G., & Habib,, T. E. (2013). Flexible pilot plant technology for evaluation of unconventional feedstocks and processes. Catalagram, 113, 3–21.
Corma,, A., Huber,, G. W., Sauvanaud,, L., & O`Connor,, P. (2007). Processing biomass‐derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. Journal of Catalysis, 247(2), 307–327.
de Miguel Mercader,, F., Groeneveld,, M. J., Kersten,, S. R. A., Geantet,, C., Toussaint,, G., Way,, N. W. J., … Hogendoorn,, K. J. A. (2011). Hydrodeoxygenation of pyrolysis oil fractions: Process understanding and quality assessment through co‐processing in refinery units. Energy %26 Environmental Science, 4(3), 985–913.
de Miguel Mercader,, F., Groeneveld,, M. J., Kersten,, S. R. A., Way,, N. W. J., Schaverien,, C. J., & Hogendoorn,, J. A. (2010). Production of advanced biofuels: Co‐processing of upgraded pyrolysis oil in standard refinery units. Applied Catalysis B, 96(1–2), 57–66.
de Rezende Pinho,, A., de Almeida,, M. B. B., Mendes,, F. L., Casavechia,, L. C., Talmadge,, M. S., Kinchin,, C. M., et al. (2017). Fast pyrolysis oil from pinewood chips co‐processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel, 188, 462–473.
de Rezende Pinho,, A., de Almeida,, M. B. B., Mendes,, F. L., & Ximenes,, V. L. (2014). Production of lignocellulosic gasoline using fast pyrolysis of biomass and a conventional refining scheme. Pure and Applied Chemistry, 86(5), 859–865.
de Rezende Pinho,, A., de Almeida,, M. B. B., Mendes,, F. L., Ximenes,, V. L., & Casavechia,, L. C. (2015). Co‐processing raw bio‐oil and gasoil in an FCC unit. Fuel Processing Technology, 131, 159–166.
Diebold,, J. P., & Czernik,, S. (1997). Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy %26 Fuels, 11(5), 1081–1091.
Domine,, M. E., van Veen,, A. C., Schuurman,, Y., & Mirodatos,, C. (2008). Coprocessing of oxygenated biomass compounds and hydrocarbons for the production of sustainable fuel. ChemSusChem, 1(3), 179–181.
Drennan,, C. Refinery integration—Preliminary techno‐economics. PNNL. 2016. Retrieved from https://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/12132016drennan.pdf
Elliott,, D. C. (2015). Biofuel from fast pyrolysis and catalytic hydrodeoxygenation. Current Opinion in Chemical Engineering, 9, 59–65.
FASTCARD. (2017a). FASTCARD—FAST industrialisation by CAtalysts Research and Development. Retrieved from http://www.sintef.no/projectweb/fastcard/
FASTCARD. (2017b). Periodic Report Summary 1—FASTCARD (FAST industrialisation by CAtalysts Research and Development). Retrieved from http://cordis.europa.eu/docs/results/604/604277/periodic1-fastcard_periodic_report_m1-m18_publishable-summary.pdf
FASTCARD. (2017c). Periodic Report Summary 2—FASTCARD (FAST industrialisation by CAtalysts Research and Development). Retrieved from http://cordis.europa.eu/docs/results/604/604277/periodic2-publishable-summary-p2.pdf
Fermoso,, J., Pizarro,, P., Coronado,, J. M., & Serrano,, D. P. (2017). Advanced biofuels production by upgrading of pyrolysis bio‐oil. WIREs Energy and Environment, 6, e245.
Fogassy,, G., Thegarid,, N., Schuurman,, Y., & Mirodatos,, C. (2011). From biomass to bio‐gasoline by FCC co‐processing: Effect of feed composition and catalyst structure on product quality. Energy %26 Environmental Science, 4(12), 5068.
Fogassy,, G., Thegarid,, N., Schuurman,, Y., & Mirodatos,, C. (2012). The fate of bio‐carbon in FCC co‐processing products. Green Chemistry, 14(5), 1367–1365.
Fogassy,, G., Thegarid,, N., Toussaint,, G., van Veen,, A. C., Schuurman,, Y., & Mirodatos,, C. (2010). Biomass derived feedstock co‐processing with vacuum gas oil for second‐generation fuel production in FCC units. Applied Catalysis B, 96(3–4), 476–485.
Frey,, S. Production of Transportation Fuels by Co‐processing. tcbiomass 2015. Chicago, IL; 2015.
Graca,, I., Carmo,, A. M., Lopes,, J. M., & Ribeiro,, M. F. (2015). Improving HZSM‐5 resistance to phenolic compounds for the bio‐oils/FCC feedstocks co‐processing. Fuel, 140, 484–494.
Graca,, I., Comparot,, J. D., Laforge,, S., Magnoux,, P., Lopes,, J. M., Ribeiro,, M. F., & Ribeiro,, F. R. (2009a). Effect of phenol addition on the performances of H‐Y zeolite during methylcyclohexane transformation. Applied Catalysis A, 353(1), 123–129.
Graca,, I., Comparot,, J.‐D., Laforge,, S., Magnoux,, P., Lopes,, J. M., Ribeiro,, M. F., & Ribeiro,, F. R. (2009b). Influence of phenol addition on the H‐ZSM‐5 zeolite catalytic properties during methylcyclohexane transformation. Energy %26 Fuels, 23(9), 4224–4230.
Graca,, I., Fernandes,, A., Lopes,, J. M., Ribeiro,, M. F., Laforge,, S., Magnoux,, P., & Ribeiro,, F. R. (2010). Effect of phenol adsorption on HY zeolite for n‐heptane cracking: Comparison with methylcyclohexane. Applied Catalysis A, 385(1), 178–189.
Graca,, I., Fernandes,, A., Lopes,, J. M., Ribeiro,, M. F., Laforge,, S., Magnoux,, P., & Ribeiro,, F. R. (2011). Bio‐oils and FCC feedstocks co‐processing: Impact of phenolic molecules on FCC hydrocarbons transformation over MFI. Fuel, 90(2), 467–476.
Graça,, I., Lopes,, J. M., Cerqueira,, H. S., & Ribeiro,, M. F. (2013). Bio‐oils upgrading for second generation biofuels. Industrial and Engineering Chemistry Research, 52(1), 275–287.
Graca,, I., Lopes,, J. M., Ribeiro,, M. F., Ramôa Ribeiro,, F., Cerqueira,, H. S., & de Almeida,, M. B. B. (2011). Catalytic cracking in the presence of guaiacol. Applied Catalysis B, 101(3), 613–621.
Graca,, I., Ribeiro,, F. R., Cerqueira,, H. S., Lam,, Y. L., & de Almeida,, M. B. B. (2009). Catalytic cracking of mixtures of model bio‐oil compounds and gasoil. Applied Catalysis B, 90(3–4), 556–563.
Gueudré,, L., Chapon,, F., Mirodatos,, C., Schuurman,, Y., Venderbosch,, R., Jordan,, E., … Gutierrez,, R. M. (2017). Optimizing the bio‐gasoline quantity and quality in fluid catalytic cracking co‐refining. Fuel, 192, 60–70.
Huber,, G. W., & Corma,, A. (2007). Synergies between bio‐ and oil refineries for the production of fuels from biomass. Angewandte Chemie (International Edition in English), 46(38), 7184–7201.
Huynh,, T. M., Armbruster,, U., Atia,, H., Bentrup,, U., Phan,, B. M. Q., Eckelt,, R., … Martin,, A. (2016). Upgrading of bio‐oil and subsequent co‐processing under FCC conditions for fuel production. Reaction Chemistry %26 Engineering, 1, 239–251.
Ibarra,, Á., Rodríguez,, E., Sedran,, U., Arandes,, J. M., & Bilbao,, J. (2016). Synergy in the cracking of a blend of bio‐oil and vacuum gasoil under fluid catalytic cracking conditions. Industrial and Engineering Chemistry Research, 55(7), 1872–1880.
Lappas,, A. A., Bezergianni,, S., & Vasalos,, I. A. (2009). Production of biofuels via co‐processing in conventional refining processes. Catalysis Today, 145(1–2), 55–62.
Lappas,, A. A., Kalogiannis,, K. G., Iliopoulou,, E. F., Triantafyllidis,, K. S., & Stefanidis,, S. D. (2012). Catalytic pyrolysis of biomass for transportation fuels. WIREs Energy and Environment, 1(3), 285–297.
Lehto,, J., Oasmaa,, A., Solantausta,, Y., Kytö,, M., & Chiaramonti,, D. (2014). Review of fuel oil quality and combustion of fast pyrolysis bio‐oils from lignocellulosic biomass. Applied Energy, 116, 178–190.
Lindfors,, C., Paasikallio,, V., Kuoppala,, E., Reinikainen,, M., Oasmaa,, A., & Solantausta,, Y. (2015). Co‐processing of dry bio‐oil, catalytic pyrolysis oil, and hydrotreated bio‐oil in a micro activity test unit. Energy %26 Fuels, 29(6), 3707–3714.
Michailof,, C., Sfetsas,, T., Stefanidis,, S., Kalogiannis,, K., Theodoridis,, G., & Lappas,, A. (2014). Quantitative and qualitative analysis of hemicellulose, cellulose and lignin bio‐oils by comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry. Journal of Chromatography, 1369, 147–160.
Naik,, D. V., Kumar,, V., Prasad,, B., Behera,, B., Atheya,, N., Singh,, K. K., … Garg,, M. O. (2014). Catalytic cracking of pyrolysis oil oxygenates (aliphatic and aromatic) with vacuum gas oil and their characterization. Chemical Engineering Research and Design, 92(8), 1579–1590.
Piskorz,, J., Scott,, D. S., & Radlein,, D. (1988). Composition of oils obtained by fast pyrolysis of different woods. In E. J.Soltes, & T. A.Milne, (Eds.), Pyrolysis oils from biomass (pp. 167–178). Washington, DC: American Chemical Society.
Samolada,, M. C., Baldauf,, W., & Vasalos,, I. A. (1998). Production of a bio‐gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel, 77(14), 1667–1675.
Sharma,, R. K., & Bakhshi,, N. N. (1993). Catalytic upgrading of pyrolysis oil. Energy %26 Fuels, 7(2), 306–314.
Talmadge,, M., Chum,, H., Kinchin,, C., Zhang,, Y., Biddy,, M., de Rezende Pinho,, A., de Almeida, MBB, Mendes, FL, Casavechia, LC, Freel, B. Analysis for co‐processing fast pyrolysis oil with VGO in FCC units for second generation fuel production. TCS—Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products, Chapel Hill, NC; 2016.
Talmadge,, M. S., Baldwin,, R. M., Biddy,, M. J., McCormick,, R. L., Beckham,, G. T., Ferguson,, G. A., & Nimlos,, M. R. (2014). A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chemistry, 16(2), 407–453.
Technip. (2017). Technip signs agreement with BTG Bioliquids to design and build pyrolysis plants for biomass‐to‐oil production. Retrieved from http://www.technip.com/en/press/technip-signs-agreement-btg-bioliquids-design-and-build-pyrolysis-plants-biomass-oil
Thegarid,, N., Fogassy,, G., Schuurman,, Y., Mirodatos,, C., Stefanidis,, S., Iliopoulou,, E. F., … Lappas,, A. A. (2014). Second‐generation biofuels by co‐processing catalytic pyrolysis oil in FCC units. Applied Catalysis B, 145, 161–166.
Venderbosch,, R. H., Ardiyanti,, A. R., Wildschut,, J., Oasmaa,, A., & Heeres,, H. J. (2010). Stabilization of biomass‐derived pyrolysis oils. Journal of Chemical Technology and Biotechnology, 85(5), 674–686.
Vitolo,, S., Seggiani,, M., Frediani,, P., Ambrosini,, G., & Politi,, L. (1999). Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel, 78(10), 1147–1159.
Wang,, C., Li,, M., & Fang,, Y. (2016). Coprocessing of catalytic‐pyrolysis‐derived bio‐oil with VGO in a pilot‐scale FCC riser. Industrial and Engineering Chemistry Research, 55(12), 3525–3534.
Wissinger,, R. G. Production of Renewable Fuels from Biomass by FCC Co‐processing. Biomass 2014. Washington, DC; 2014.
Zacher, A. 2015. Optimizing co‐processing of bio‐oil in refinery unit operations using a Davison circulating riser (DCR). PNNL. Retrieved from https://energy.gov/sites/prod/files/2015/04/f21/thermochemical_conversion_zacher_242402.pdf