Aitola,, K., Zhang,, J., Vlachopoulos,, N., Halme,, J., Kaskela,, A., Nasibulin,, A. G., … Hagfeldt,, A. (2015). Carbon nanotube film replacing silver in high‐efficiency solid‐state dye solar cells employing polymer hole conductor. Journal of Solid State Electrochemistry, 19(10), 3139–3144. https://doi.org/10.1007/s10008-015-2937-1
Andrade,, M. A. S., Miettunen,, K., Tiihonen,, A., Lund,, P. D., Nogueira,, A. F., & Pastore,, H. O. (2017). Stabilizing Dendron‐modified talc‐based electrolyte for quasi‐solid dye‐sensitized solar cell. Electrochimica Acta, 228, 413–421. https://doi.org/10.1016/j.electacta.2017.01.101
Andrade,, M. A. S., Nogueira,, A. F., Miettunen,, K., Tiihonen,, A., Lund,, P. D., & Pastore,, H. O. (2016). Quasi‐solid electrolyte with polyamidoamine dendron modified‐talc applied to dye‐sensitized solar cells. Journal of Power Sources, 325, 161–170. https://doi.org/10.1016/j.jpowsour.2016.06.041
Asghar,, M. I., Miettunen,, K., Halme,, J., Vahermaa,, P., Toivola,, M., Aitola,, K., & Lund,, P. (2010). Review of stability for advanced dye solar cells. Energy %26 Environmental Science, 3(4), 418. https://doi.org/10.1039/b922801b
Bella,, F., Lamberti,, A., Bianco,, S., Tresso,, E., & Gerbaldi,, C. (2016). Floating, flexible polymeric dye‐sensitized solar‐cell architecture: The way of near‐future photovoltaics. Advanced Materials Technologies, 1, 1600002. https://doi.org/10.1002/admt.201600002
Bella,, F., Pugliese,, D., Nair,, J. R., Sacco,, A., Bianco,, S., Gerbaldi,, C., … Bongiovanni,, R. (2013). A UV‐crosslinked polymer electrolyte membrane for quasi‐solid dye‐sensitized solar cells with excellent efficiency and durability. Physical Chemistry Chemical Physics, 15(11), 3706–3711. https://doi.org/10.1039/c3cp00059a
Bella,, F., Pugliese,, D., Zolin,, L., & Gerbaldi,, C. (2017). Paper‐based quasi‐solid dye‐sensitized solar cells. Electrochimica Acta, 237, 87–93. https://doi.org/10.1016/j.electacta.2017.03.211
Bella,, F., Vlachopoulos,, N., Nonomura,, K., Zakeeruddin,, S. M., Gratzel,, M., Gerbaldi,, C., & Hagfeldt,, A. (2015). Direct light‐induced polymerization of cobalt‐based redox shuttles: An ultrafast way towards stable dye‐sensitized solar cells. Chemical Communications, 51(91), 16308–16311. https://doi.org/10.1039/C5CC05533D
Brown,, T. M., De Rossi,, F., Di Giacomo,, F., Mincuzzi,, G., Zardetto,, V., Reale,, A., & Di Carlo,, A. (2014). Progress in flexible dye solar cell materials, processes and devices. Journal of Materials Chemistry A, 2(28), 10788–10817. https://doi.org/10.1039/C4TA00902A
Cazzanti,, S., Caramori,, S., Argazzi,, R., Elliott,, C. M., & Bignozzi,, C. A. (2006). Efficient non‐corrosive electron‐transfer mediator mixtures for dye‐sensitized solar cells. Journal of the American Chemical Society, 128(31), 9996–9997. https://doi.org/10.1021/ja062087f
Chen,, K. F., Liu,, C. H., Hsieh,, C. K., Lin,, C. L., Huang,, H. K., Tsai,, C. H., & Chen,, F. R. (2014). New fabrication process of long‐life dye‐sensitized solar cells by in situ gelation of quasi‐solid polymer electrolytes. Journal of Power Sources, 247, 939–946. https://doi.org/10.1016/j.jpowsour.2013.08.103
Chiang,, T. H., Chen,, C. H., & Liu,, C. Y. (2015). Effect of sealing with ultraviolet‐curable adhesives on the performance of dye‐sensitized solar cells. Journal of Applied Polymer Science, 132(23), 42015. https://doi.org/10.1002/app.42015
Darling,, S. B., & You,, F. (2013). The case for organic photovoltaics. RSC Advances, 3(39), 17633. https://doi.org/10.1039/c3ra42989j
De Rossi,, F., Mincuzzi,, G., Di Giacomo,, F., Fahlteich,, J., Amberg‐Schwab,, S., Noller,, K., & Brown,, T. M. (2016). A systematic investigation of permeation barriers for flexible dye‐sensitized solar cells. Energy Technology, 4(11), 1455–1462. https://doi.org/10.1002/ente.201600244
De Rossi,, F., Pontecorvo,, T., & Brown,, T. M. (2015). Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Applied Energy, 156, 413–422. https://doi.org/10.1016/j.apenergy.2015.07.031
Dennler,, G., Lungenschmied,, C., Neugebauer,, H., Sariciftci,, N. S., Latrèche,, M., Czeremuszkin,, G., & Wertheimer,, M. R. (2006). A new encapsulation solution for flexible organic solar cells. Thin Solid Films, 511–512, 349–353. https://doi.org/10.1016/j.tsf.2005.12.091
Fakharuddin,, A., Jose,, R., Brown,, T. M., Fabregat‐Santiago,, F., & Bisquert,, J. (2014). A perspective on the production of dye‐sensitized solar modules. Energy %26 Environmental Science, 7(12), 3952–3981. https://doi.org/10.1039/C4EE01724B
Feldt,, S. M., Gibson,, E. A., Gabrielsson,, E., Sun,, L., Boschloo,, G., & Hagfeldt,, A. (2010). Design of organic dyes and cobalt polypyridine redox mediators for high‐efficiency dye‐sensitized solar cells. Journal of the American Chemical Society, 132(46), 16714–16724. https://doi.org/10.1021/ja1088869
Greijer,, H., Karlson,, L., Lindquist,, S.‐E., & Hagfeldt,, A. (2001). Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system. Renewable Energy, 23(1), 27–39. https://doi.org/10.1016/S0960-1481(00)00111-7
Hagen,, A., Barkschat,, A., Dohrmann,, J. K., & Tributsch,, H. (2003). Imaging UV photoactivity and photocatalysis of TiO2‐films. Solar Energy Materials and Solar Cells, 77(1), 1–13. https://doi.org/10.1016/S0927-0248(02)00217-9
Hashmi,, S. G., Miettunen,, K., Peltola,, T., Halme,, J., Asghar,, I., Aitola,, K., … Lund,, P. (2011). Review of materials and manufacturing options for large area flexible dye solar cells. Renewable and Sustainable Energy Reviews, 15(8), 3717–3732. https://doi.org/10.1016/j.rser.2011.06.004
Hashmi,, S. G., Moehl,, T., Halme,, J., Ma,, Y., Saukkonen,, T., Yella,, A., … Grätzel,, M. (2014). A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye‐sensitized solar cells. Journal of Materials Chemistry A, 2(46), 19609–19615. https://doi.org/10.1039/C4TA03730H
Hashmi,, S. G., Ozkan,, M., Halme,, J., Misic,, K. D., Zakeeruddin,, S. M., Paltakari,, J., … Lund,, P. D. (2015). High performance dye‐sensitized solar cells with inkjet printed ionic liquid electrolyte. Nano Energy, 17, 206–215. https://doi.org/10.1016/j.nanoen.2015.08.019
Hashmi,, S. G., Ozkan,, M., Halme,, J., Paltakari,, J., & Lund,, P. D. (2014). Highly conductive, non‐permeable, fiber based substrate for counter electrode application in dye‐sensitized solar cells. Nano Energy, 9, 212–220. https://doi.org/10.1016/j.nanoen.2014.07.013
Hashmi,, S. G., Özkan,, M., Halme,, J., Zakeeruddin,, S. M., Paltakari,, J., Grätzel,, M., & Lund,, P. D. (2016). Dye‐sensitized solar cells with inkjet‐printed dyes. Energy %26 Environmental Science, 9(7), 2453–2462. https://doi.org/10.1039/C6EE00826G
Hinsch,, A., Veurman,, W., Brandt,, H., Flarup Jensen,, K., & Mastroianni,, S. (2014). Status of dye solar cell technology as a guideline for further research. Chemphyschem, 15(6), 1076–1087. https://doi.org/10.1002/cphc.201301083
Ito,, S., Ha,, N.‐L. C., Rothenberger,, G., Liska,, P., Comte,, P., Zakeeruddin,, S. M., … Grätzel,, M. (2006). High‐efficiency (7.2%) flexible dye‐sensitized solar cells with Ti‐metal substrate for nanocrystalline‐TiO2 photoanode. Chemical Communications, (38), 4004–4006. https://doi.org/10.1039/B608279C
Ivanou,, D. K., Santos,, R., Maçaira,, J., Andrade,, L., & Mendes,, A. (2016). Laser assisted glass frit sealing for production large area DSCs panels. Solar Energy, 135, 674–681. https://doi.org/10.1016/j.solener.2016.06.043
Jen,, H.‐P., Lin,, M.‐H., Li,, L.‐L., Wu,, H.‐P., Huang,, W.‐K., Cheng,, P.‐J., & Diau,, E. W.‐G. (2013). High‐performance large‐scale flexible dye‐sensitized solar cells based on anodic TiO2 nanotube arrays. ACS Applied Materials %26 Interfaces, 5(20), 10098–10104. https://doi.org/10.1021/am402687j
Jones,, T. W., Duffy,, N. W., & Wilson,, G. J. (2015). Efficient all‐printable solid‐state dye‐sensitized solar cell based on a low‐resistivity carbon composite counter electrode and highly doped hole transport material. Journal of Physical Chemistry C, 119(21), 11410–11418. https://doi.org/10.1021/acs.jpcc.5b01711
Kammen,, D. M., Alstone,, P., & Gershenson,, D. (2015). Energy access and sustainable development. AIP Conference Proceedings, 1652(1), 14–32. https://doi.org/10.1063/1.4916165
Krebs,, F. C. (2009). Polymer solar cell modules prepared using roll‐to‐roll methods: Knife‐over‐edge coating, slot‐die coating and screen printing. Solar Energy Materials and Solar Cells, 93(4), 465–475. https://doi.org/10.1016/j.solmat.2008.12.012
Kreiger,, M., & Pearce,, J. M. (2013). Environmental life cycle analysis of distributed three‐dimensional printing and conventional manufacturing of polymer products. ACS Sustainable Chemistry %26 Engineering, 1(12), 1511–1519. https://doi.org/10.1021/sc400093k
Kroon,, J. M., Bakker,, N. J., Smit,, H. J. P., Liska,, P., Thampi,, K. R., Wang,, P., … Tulloch,, G. E. (2007). Nanocrystalline dye‐sensitized solar cells having maximum performance. Progress in Photovoltaics, 15(1), 1–18. https://doi.org/10.1002/pip.707
Kylberg,, W., de Castro,, F. A., Chabrecek,, P., Sonderegger,, U., Chu,, B. T.‐T., Nüesch,, F., & Hany,, R. (2011). Woven electrodes for flexible organic photovoltaic cells. Advanced Materials, 23(8), 1015–1019. https://doi.org/10.1002/adma.201003391
Law,, C., Miseikis,, L., Dimitrov,, S., Shakya‐Tuladhar,, P., Li,, X., Barnes,, P. R. F., … O`Regan,, B. C. (2014). Performance and stability of lead Perovskite/TiO2, polymer/PCBM, and dye sensitized solar cells at light intensities up to 70 Suns. Advanced Materials, 26(36), 6268–6273. https://doi.org/10.1002/adma.201402612
Liu,, I.‐P., Hung,, W.‐N., Teng,, H., Venkatesan,, S., Lin,, J.‐C., & Lee,, Y.‐L. (2017). High‐performance printable electrolytes for dye‐sensitized solar cells. Journal of Materials Chemistry A, 5(19), 9190–9197. https://doi.org/10.1039/C7TA01341H
Luo,, J., Pellet,, N., Giordano,, F., Zakeeruddin,, S. M., Moser,, J., Freitag,, M., … Gra,, M. (2017). 11% efficiency solid‐state dye‐sensitized solar cells with copper(II/I) hole transport materials. Nature Communications, 8, 1–8. https://doi.org/10.1038/ncomms15390
Maçaira,, J., Andrade,, L., & Mendes,, A. (2016). Laser sealed dye‐sensitized solar cells: Efficiency and long term stability. Solar Energy Materials and Solar Cells, 157, 134–138. https://doi.org/10.1016/j.solmat.2016.05.016
Macht,, B., Turrión,, M., Barkschat,, A., Salvador,, P., Ellmer,, K., & Tributsch,, H. (2002). Patterns of efficiency and degradation in dye sensitization solar cells measured with imaging techniques. Solar Energy Materials and Solar Cells, 73(2), 163–173. https://doi.org/10.1016/S0927-0248(01)00121-0
Mastroianni,, S., Asghar,, I., Miettunen,, K., Halme,, J., Lanuti,, A., Brown,, T. M., & Lund,, P. (2014). Effect of electrolyte bleaching on the stability and performance of dye solar cells. Physical Chemistry Chemical Physics, 16(13), 6092–6100. https://doi.org/10.1039/c3cp55342f
Miettunen,, K., Asghar,, I., Mastroianni,, S., Halme,, J., Barnes,, P. R. F., Rikkinen,, E., … Lund,, P. (2012). Effect of molecular filtering and electrolyte composition on the spatial variation in performance of dye solar cells. Journal of Electroanalytical Chemistry, 664, 63–72. https://doi.org/10.1016/j.jelechem.2011.10.012
Miettunen,, K., Etula,, J., Saukkonen,, T., Jouttijärvi,, S., Halme,, J., Romu,, J., & Lund,, P. (2015). Insights into corrosion in dye solar cells. Progress in Photovoltaics, 23(8), 1045–1056. https://doi.org/10.1002/pip.2534
Miettunen,, K., Halme,, J., & Lund,, P. (2009). Spatial distribution and decrease of dye solar cell performance induced by electrolyte filling. Electrochemistry Communications, 11(1), 25–27. https://doi.org/10.1016/j.elecom.2008.10.013
Miettunen,, K., Halme,, J., & Lund,, P. (2013). Metallic and plastic dye solar cells. WIREs Energy and Environment, 2(1), 104–120. https://doi.org/10.1002/wene.46
Miettunen,, K., Jouttijarvi,, S., Jiang,, R., Saukkonen,, T., Romu,, J., Halme,, J., & Lund,, P. (2014). Low cost ferritic stainless steel in dye sensitized solar cells with cobalt complex electrolyte. Journal of the Electrochemical Society, 161(3), H138–H143. https://doi.org/10.1149/2.054403jes
Miettunen,, K., Poskela,, A., Tiihonen,, A., Rendon,, S., Axenov,, K., Kronberg,, L., … Lund,, P. D. (2016). From identification of electrolyte degradation rates to lifetime estimations in dye solar cells with iodine and cobalt redox couples. Nano Energy Systems. https://doi.org/10.24274/nes.2016.a7
Miettunen,, K., Saukkonen,, T., Li,, X., Law,, C., Sheng,, Y. K., Halme,, J., … O`Regan,, B. C. (2012). Do counter electrodes on metal substrates work with cobalt complex based electrolyte in dye sensitized solar cells? Journal of the Electrochemical Society, 160(2), H132–H137. https://doi.org/10.1149/2.074302jes
Miettunen,, K., Vapaavuori,, J., Tiihonen,, A., Poskela,, A., Lahtinen,, P., Halme,, J., & Lund,, P. (2014). Nanocellulose aerogel membranes for optimal electrolyte filling in dye solar cells. Nano Energy, 8, 95–102. https://doi.org/10.1016/j.nanoen.2014.05.013
Miller,, S. A. (2013). Sustainable polymers: Opportunities for the next decade. ACS Macro Letters, 2(6), 550–554. https://doi.org/10.1021/mz400207g
Miyasaka,, T., Ikegami,, M., & Kijitori,, Y. (2007). Photovoltaic performance of plastic dye‐sensitized electrodes prepared by low‐temperature binder‐free coating of mesoscopic titania. Journal of the Electrochemical Society, 154(5), A455. https://doi.org/10.1149/1.2712140
Nieuwenhout,, F. D. J., Van Dijk,, A., Lasschuit,, P. E., Van Roekel,, G., Van Dijk,, V. A. P., Hirsch,, D., … Wade,, H. (2001). Experience with solar home systems in developing countries: A review. Progress in Photovoltaics, 9(6), 455–474. https://doi.org/10.1002/pip.392
Nogueira,, A. F., Longo,, C., & De Paoli,, M.‐A. (2004). Polymers in dye sensitized solar cells: Overview and perspectives. Coordination Chemistry Reviews, 248(13–14), 1455–1468. https://doi.org/10.1016/j.ccr.2004.05.018
Özkan,, M., Hashmi,, S. G., Halme,, J., Karakoç,, A., Sarikka,, T., Paltakari,, J., & Lund,, P. D. (2017). Inkjet‐printed platinum counter electrodes for dye‐sensitized solar cells. Organic Electronics, 44, 159–167. https://doi.org/10.1016/j.orgel.2017.02.015
Parisi,, M. L., & Basosi,, R. (2015). Environmental life cycle analysis of nonconventional thin‐film photovoltaics: The case of dye‐sensitized solar devices. In Energy security and development (pp. 195–210). New Delhi: Springer India. https://doi.org/10.1007/978-81-322-2065-7_12
Scalia,, A., Bella,, F., Lamberti,, A., Bianco,, S., Gerbaldi,, C., Tresso,, E., & Fabrizio,, C. (2017). A flexible and portable powerpack by solid‐state supercapacitor and dye‐sensitized solar cell integration. Journal of Power Sources, 359, 311–321. https://doi.org/10.1016/j.jpowsour.2017.05.072
Seethamraju,, S., Kumar,, S., B,, K. B., Madras,, G., Raghavan,, S., & Ramamurthy,, P. C. (2016). Million‐fold decrease in polymer moisture permeability by a graphene monolayer. ACS Nano, 10(7), 6501–6509. https://doi.org/10.1021/acsnano.6b02588
Seethamraju,, S., Rao,, A. D., Ramamurthy,, P. C., & Madras,, G. (2014). Layer‐by‐layer assembly of Nafion on Surlyn with ultrahigh water vapor barrier. Langmuir, 30(48), 14606–14611. https://doi.org/10.1021/la503302f
Seo,, S.‐J., Cha,, H.‐J., Kang,, Y. S., & Kang,, M.‐S. (2014). Printable ternary component polymer‐gel electrolytes for long‐term stable dye‐sensitized solar cells. Electrochimica Acta, 145, 217–223. https://doi.org/10.1016/j.electacta.2014.09.016
Sirimanne,, P. M., Jeranko,, T., Bogdanoff,, P., Fiechter,, S., & Tributsch,, H. (2003). On the photo‐degradation of dye sensitized solid‐state TiO2 vertical bar dye vertical bar CuI cells. Semiconductor Science and Technology, 18, 708–712. https://doi.org/10.1088/0268-1242/18/7/320
Song,, L., Yin,, X., Xie,, X., Du,, P., Xiong,, J., & Ko,, F. (2017). Highly flexible TiO2/C nanofibrous film for flexible dye‐sensitized solar cells as a platinum‐ and transparent conducting oxide‐free flexible counter electrode. Electrochimica Acta, 255, 256–265. https://doi.org/10.1016/j.electacta.2017.09.180
Su`ait,, M. S., Rahman,, M. Y. A., & Ahmad,, A. (2015). Review on polymer electrolyte in dye‐sensitized solar cells (DSSCs). Solar Energy, 115, 452–470. https://doi.org/10.1016/j.solener.2015.02.043
Tabone,, M. D., Cregg,, J. J., Beckman,, E. J., & Landis,, A. E. (2010). Sustainability metrics: Life cycle assessment and green design in polymers. Environmental Science %26 Technology, 44(21), 8264–8269. https://doi.org/10.1021/es101640n
de Wild‐Scholten,, M. J., & Veltkamp,, A. C. (2007). Environmental life cycle analysis of large area dye sensitized solar modules; status and outlook. Presented at the 22nd European Photovoltaic Solar Energy Conference and Exhibition (pp. 3–7), Vol. 3 (September).
Venkatesan,, S., Su,, S. C., Hung,, W. N., Liu,, I. P., Teng,, H., & Lee,, Y. L. (2015). Printable electrolytes based on polyacrylonitrile and gamma‐butyrolactone for dye‐sensitized solar cell application. Journal of Power Sources, 298, 385–390. https://doi.org/10.1016/j.jpowsour.2015.07.062
Wang,, B., & Kerr,, L. L. (2011). Dye sensitized solar cells on paper substrates. Solar Energy Materials and Solar Cells, 95(8), 2531–2535. https://doi.org/10.1016/j.solmat.2011.02.032
Wang,, C., Wang,, L., Shi,, Y., Zhang,, H., & Ma,, T. (2013). Printable electrolytes for highly efficient quasi‐solid‐state dye‐sensitized solar cells. Electrochimica Acta, 91, 302–306. https://doi.org/10.1016/j.electacta.2012.12.096
Wang,, P., Zakeeruddin,, S. M., Moser,, J. E., Nazeeruddin,, M. K., Sekiguchi,, T., & Grätzel,, M. (2003). A stable quasi‐solid‐state dye‐sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2(6), 402–407. https://doi.org/10.1038/nmat904
Wang,, X., Tang,, Q., He,, B., Li,, R., & Yu,, L. (2015). 7.35% Efficiency rear‐irradiated flexible dye‐sensitized solar cells by sealing liquid electrolyte in a groove. Chemical Communications, 51(3), 491–494. https://doi.org/10.1039/C4CC07549H
Weaver,, M. S., Michalski,, L. A., Rajan,, K., Rothman,, M. A., Silvernail,, J. A., Brown,, J. J., … Zumhoff,, M. (2002). Organic light‐emitting devices with extended operating lifetimes on plastic substrates. Applied Physics Letters, 81(16), 2929–2931. https://doi.org/10.1063/1.1514831
Wu,, J., Lan,, Z., Lin,, J., Huang,, M., Huang,, Y., Fan,, L., & Luo,, G. (2015). Electrolytes in dye‐sensitized solar cells. Chemical Reviews, 115, 2136–2173. https://doi.org/10.1021/cr400675m
Wu,, J., Xiao,, Y., Tang,, Q., Yue,, G., Lin,, J., Huang,, M., … Sato,, T. (2012). A large‐area light‐weight dye‐sensitized solar cell based on all titanium substrates with an efficiency of 6.69% outdoors. Advanced Materials, 24(14), 1884–1888. https://doi.org/10.1002/adma.201200003
Yang,, Y., Ri,, K., Rong,, Y., Liu,, L., Liu,, T., Hu,, M., … Han,, H. (2014). Full‐printable transparent monolithic solid‐state dye‐sensitized solar cell with mesoscopic indium tin oxide counter electrode. Physical Chemistry Chemical Physics, 16(January 2016), 17743–17747. https://doi.org/10.1039/C4CP02354D
Yella,, A., Lee,, H.‐W., Tsao,, H. N., Yi,, C., Chandiran,, A. K., Nazeeruddin,, M. K., … Gratzel,, M. (2011). Porphyrin‐sensitized solar cells with cobalt (II/III)‐based redox electrolyte exceed 12 percent efficiency. Science, 334(6056), 629–634. https://doi.org/10.1126/science.1209688
Yuan,, S., Tang,, Q., He,, B., & Yang,, P. (2014). Efficient quasi‐solid‐state dye‐sensitized solar cells employing polyaniline and polypyrrole incorporated microporous conducting gel electrolytes. Journal of Power Sources, 254, 98–105. https://doi.org/10.1016/j.jpowsour.2013.12.112
Yuan,, S., Tang,, Q., He,, B., & Zhao,, Y. (2014). Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi‐solid‐state dye‐sensitized solar cells. Journal of Power Sources, 260, 225–232. https://doi.org/10.1016/j.jpowsour.2014.03.034
Zardetto,, V., Brown,, T. M., Reale,, A., & Di Carlo,, A. (2011). Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. Journal of Polymer Science Part B: Polymer Physics, 49(9), 638–648. https://doi.org/10.1002/polb.22227