Alfa Laval. (2017). Alfa Laval. Retrieved from http://www.alfalaval.us/
Andersen,, K. (1990). European Patent No. 0 402 405 B1. Munich, Germany: European Patent Office.
Azadi,, P., Inderwildi,, O. R., Farnood,, R., & King,, D. A. (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 21, 506–523.
Beauchet,, R., Monteil‐Rivera,, F., & Lavoie,, J. (2012). Conversion of lignin to aromatic‐based chemicals (L‐chems) and biofuels (L‐fuels). Bioresource Technology, 121, 328–334.
Belkheiri,, T. (2015). Lignin depolymerisation in near‐critical water to produce biofuel and chemicals: Effect of co‐solvent and pH. Gothenburg, Sweden: Department of Heat and Power Technology, Chalmers University of Technology.
Belkheiri,, T., Mattsson,, C., Andersson,, S.‐I., Olausson,, L., Åmand,, L.‐E., Theliander,, H., & Vamling,, L. (2016). Effect of pH on Kraft lignin depolymerisation in subcritical water. Energy %26 Fuels, 30(6), 4916–4924.
Bureau of Labor Statistics. (2017). U.S. bureau of labor statistics. Retrieved from https://www.bls.gov/
Carr,, A. G., Mammucari,, R., & Foster,, N. R. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal, 172(1), 1–17. https://doi.org/10.1016/j.cej.2011.06.007
Chalmers University. (2016). Biorenewable feedstock forum at Preem refining. Gothenburg, Sweden: Chalmers University of Technology.
Chem Eng Online. (2017). The chemical engineering plant cost index—Chemical engineering. Retrieved from http://www.chemengonline.com/pci-home
Elliott,, D. C. (2007). Historical developments in hydroprocessing bio‐oils. Energy %26 Fuels, 21(3), 1792–1815.
Fang,, Z., Sato,, T., Smith,, R. L., Jr., Inomata,, H., Arai,, K., & Kozinski,, J. A. (2008). Reaction chemistry and phase behavior of lignin in high‐temperature and supercritical water. Bioresource Technology, 99(9), 3424–3430.
Funkenbusch,, L. T., Mullins,, M. E., Salam,, M. A., & Olsson,, L. (2018). Catalytic hydrotreatment of pyrolysis oil phenolic compounds over Pt/Al2O3 and Pd/C. In preparation for submission.
Furimsky,, E. (1983). Deactivation of molybdate catalyst during hydrodeoxygenation of tetrahydrofuran. Industrial %26 Engineering Chemistry Product Research and Development, 22(1), 34–38.
Furimsky,, E. (2000). Catalytic hydrodeoxygenation. Applied Catalysis A: General, 199(2), 147–190.
Greminger,, D. C., Burns,, G. P., Lynn,, S., Hanson,, D. N., & King,, C. J. (1982). Solvent extraction of phenols from water. Industrial %26 Engineering Chemistry Process Design and Development, 21(1), 51–54.
He,, Z., & Xianqin,, W. (2013). Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio‐oils upgrading. Catalysis for Sustainable Energy, 1, 28–52. https://doi.org/10.2478/cse-2012-0004
Hubbard,, E. (1902). The utilisation of wood‐waste. London, England: Scott, Greenwood %26 Company.
Huber,, G. W., Chheda,, J. N., Barrett,, C. J., & Dumesic,, J. A. (2005). Production of liquid alkanes by aqueous‐phase processing of biomass‐derived carbohydrates. Science, 308(5727), 1446–1450.
Jones,, S. B., Meyer,, P. A., Snowden‐Swan,, L. J., Padmaperuma,, A. B., Tan,, E., Dutta,, A., … Cafferty,, K. (2013). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels: fast pyrolysis and hydrotreating bio‐oil pathway (No. PNNL‐23053; NREL/TP‐5100‐61178). Pacific Northwest National Lab.(PNNL), Richland, WA (United States).
Knorr,, D., Lukas,, J., & Schoen,, P. (2013). Production of advanced biofuels via liquefaction—Hydrothermal liquefaction reactor design, 5 April 2013.
Kraft Lignin Innovation Forum at Verso Paper (2017, October). Retrieved from http://www.mtu.edu/docs/mifbi-lignin-forum-agenda.pdf
Lai,, Q., Zhang,, C., & Holles,, J. H. (2016). Hydrodeoxygenation of guaiacol over Ni@Pd and Ni@Pt bimetallic overlayer catalysts. Applied Catalysis A: General, 528, 1–13. https://doi.org/10.1016/j.apcata.2016.09.009
Lavoie,, J.‐M., Baré,, W., & Bilodeau,, M. (2011). Depolymerization of steam‐treated lignin for the production of green chemicals. Bioresource Technology, 102(7), 4917–4920.
Levenspiel,, O. (1999). Chemical reaction engineering. Industrial %26 Engineering Chemistry Research, 38(11), 4140–4143.
Ľudmila,, H., Michal,, J., Andrea,, Š., & Aleš,, H. (2015). Lignin, potential products and their market value. Wood Research, 60(6), 973–986.
Maschietti,, M., Nguyen,, T. D. H., Belkheiri,, T., Åmand,, L.‐E., Theliander,, H., Vamling,, L., & Andersson,, S.‐I. (2014). Catalytic hydrothermal conversion of LignoBoost Kraft lignin for the production of bio‐oil and aromatic chemicals. Paper presented at the International Chemical Recovery Conference, Tampere, Finland.
Miller,, J., Evans,, L., Littlewolf,, A., & Trudell,, D. (2002). Sandia National Laboratories Report SAND2002‐1317.
Möller,, M., Nilges,, P., Harnisch,, F., & Schröder,, U. (2011). Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation. ChemSusChem, 4(5), 566–579. https://doi.org/10.1002/cssc.201000341
Nelson,, D. A., Molton,, P. M., Russell,, J. A., & Hallen,, R. T. (1984). Application of direct thermal liquefaction for the conversion of cellulosic biomass. Industrial %26 Engineering Chemistry Product Research and Development, 23(3), 471–475.
Nguyen,, T. D. H. (2014). Catalytic conversion of LignoBoost Kraft lignin into liquid products in near‐critical water: The effects of K2CO3 concentration and reaction temperature (Doctoral dissertation). Gothenberg, Sweden: Chalmers University.
Okuda,, T., Suzuki,, M., Numata,, S., Yoshida,, K., Nishimura,, S., Adachi,, N., & Hashim,, M. (2004). Estimation of aboveground biomass in logged and primary lowland rainforests using 3‐D photogrammetric analysis. Forest Ecology and Management, 203(1–3), 63–75.
Pandey,, M. P., & Kim,, C. S. (2011). Lignin depolymerization and conversion: A review of thermochemical methods. Chemical Engineering %26 Technology, 34(1), 29–41. https://doi.org/10.1002/ceat.201000270
Peters,, M. S., Timmerhaus,, K. D., West,, R. E., Timmerhaus,, K., & West,, R. (1968). Plant design and economics for chemical engineers (Vol. 4). New York, NY: McGraw‐Hill.
Pińkowska,, H., Wolak,, P., & Złocińska,, A. (2012). Hydrothermal decomposition of alkali lignin in sub‐and supercritical water. Chemical Engineering Journal, 187, 410–414.
Roberts,, D., & Harris,, D. (2011). High‐pressure char gasification kinetics: CO inhibition of the C–CO2 reaction. Energy %26 Fuels, 26(1), 176–184.
Saisu,, M., Sato,, T., Watanabe,, M., Adschiri,, T., & Arai,, K. (2003). Conversion of lignin with supercritical water− phenol mixtures. Energy %26 Fuels, 17(4), 922–928.
Schmidl,, C., Marr,, I. L., Caseiro,, A., Kotianová,, P., Berner,, A., Bauer,, H., & Puxbaum,, H. (2008). Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid‐European Alpine regions. Atmospheric Environment, 42(1), 126–141.
Srettiwat,, N. (2016). Simulation of separation unit for chemical products from lignin depolymersiation with economic evaluation using ASPEN Plus (Master`s thesis). Gothenberg, Sweden: Chalmers University.
Toor,, S. S., Rosendahl,, L., & Rudolf,, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342.
Towler,, G., & Sinnott,, R. (2012). Chemical Engineering Design. Elsevier Science.
U.S. Energy Information Administration. (2017). U.S. gasoline and diesel retail prices. Retrieved from https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_w.htm
Unkelbach,, G., Schmiedl,, D., Schweppe,, R., & Hirth,, T. (2010). Catalyzed hydrothermal degradation of lignins from biorefineries to aromatic compounds. Paper presented at the 11th European Workshop on Lignocellulosics and Pulp, Hamburg, Germany.
Vispute,, T. P., Zhang,, H., Sanna,, A., Xiao,, R., & Huber,, G. W. (2010). Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science, 330(6008), 1222–1227. https://doi.org/10.1126/science.1194218
Winjobi,, O., Shonnard,, D. R., Bar‐Ziv,, E., & Zhou,, W. (2016). Techno‐economic assessment of the effect of torrefaction on fast pyrolysis of pine. Biofuels, Bioproducts and Biorefining, 10(2), 117–128.
Yong,, T. L.‐K., & Matsumura,, Y. (2013). Kinetic analysis of lignin hydrothermal conversion in sub‐and supercritical water. Industrial %26 Engineering Chemistry Research, 52(16), 5626–5639.
Zacher,, A. H., Olarte,, M. V., Santosa,, D. M., Elliott,, D. C., & Jones,, S. B. (2014). A review and perspective of recent bio‐oil hydrotreating research. Green Chemistry, 16(2), 491–515.